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Machine Learning

Machine Learning (ML) is the field that studies techniques to give
to machines the ability to learn from past experience.

Supervised learning:

I Predict the class of an object (classification)

I or some unobserved characteristic (regression) based on
observations on this object.

Unsupervised learning:

I Discover clusters of similar objects (clustering)

I find a meaningful low dimensional representation
(dimensionality reduction)

I or estimate the distribution of the data (density estimation).
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Quantum Information Processing

Quantum Information Processing (QIP) is the field that studies the
implication of quantum mechanics for information processing
purposes.

Quantum information is very different from its classical counterpart
I It can exist in a superposition of states

I Quantum states can be entangled

I They can be teleported

I They cannot be measured reliably

I They are disturbed by observation

I They cannot be cloned

I · · ·

θ θ
θ

θ
θ

IMPOSSIBLE!
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Joining classical and quantum information

Together, quantum and classical information can realize wonders
such as

I Factorize efficiently large integers (Shor 94)
I Search elements in an unstructured database in time Θ(

√
n)

(Grover 96)
I Quantum cryptography (Bennett and Brassard 84)
I · · · Long range quantum key exchange 

Kurtsiefer et al, (2002), Nature, 419, 450.
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Previous encounters of ML with QIP

I Study and comparison of learnability in the classical and
quantum settings (Servedio and Gortler 04)

I Quantum neural networks (Ezhov and Berman 03)

I Design of classical clustering algorithms inspired from
quantum mechanics (Horn and Gottlieb 01)

I Application of the maximum likelihood principle to quantum
channel modelling
(Ziman, Plesch, Bužek and Štelmachovič 05)

I Quantum Bayesian calculus (Kuzmin and Warmuth 06)

I · · ·
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Novel task: Learning in a quantum world

Initial interrogation: Generally, ML learns from a training set that
contains classical observations about classical objects.
What would happen if the training dataset contained quantum
objects?

Main motivations:

I For people of the QIP community: Can the machine learning
paradigm provide a constructive approach to resolve some
quantum detection scenarios?

I For machine learning people: How does the change of physical
theory influence the learning process?
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Learning in a quantum world
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Scenario

A space probe sent in exploration far away in the galaxy has
encountered some quantum phenomena and sampled from them.
These samples would constitute the training dataset.
What can be learned from this data?

Alternative scenario: A physicist in his laboratory has encountered
some quantum phenomena during his experiments.
What can be learned from the observations he made about them?
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ML with a classical dataset

A classical training dataset containing n data points:
Dn = {(x1, y1), . . . , (xn, yn)} where:

I xi are observations on the characteristics of the i th object
(or data point)

I and yi is the class of that object.

Typical example: if each object is described using d real-valued
attributes then xi ∈ Rd and yi ∈ {−1,+1} for binary classification.

Remark: in unsupervised learning, as opposed to supervised
learning, the yi values are unknown.
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Example 1 of machine learning task: Classification

Classification: from the training dataset, learn a classifier that can
be used later to predict the class of a new object based on
observations on this object.

More formally: learn a function f , called classifier, which can
associate to a vector of observations x, its corresponding class y .

A few examples : music genre classification, spam detection,
recognition of the digital fingerprints or the face of a person, . . .
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Illustration of the classification task (a French example :-))
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Example 2 of machine learning task: Clustering

Clustering: try to discover natural clusters which are hidden inside
the data.

Recall that in the unsupervised setting: Dn = {x1, . . . , xn}.

Formal goal: associate to each x, a category (or cluster)
y ∈ {1, . . . , k} such that similar objects are grouped together in
the same cluster (intra-similarity) and dissimilar objects are put in
different clusters (inter-dissimilarity).

Examples of applications: find the typical sociological categories
existing inside a population, automatically group songs according
to their genre, . . .
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Illustration of the clustering task
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The case of ML with a quantum dataset

A quantum training dataset containing n quantum states:
Dn = {(|ψ1〉 , y1), . . . , (|ψn〉 , yn)} where:

I |ψi 〉 is i th quantum state of the training set

I and yi is the class of that quantum state.

Typical example: for a quantum state living in a Hilbert space
formed by d qubits, |ψn〉 ∈ C2d

and yi ∈ {−1,+1} for binary
classification.

Remark: further generalization would include quantum
superposition of classes as well.
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Learning classes

Definition: Lcontext
goal is a learning class, where goal is the learning

goal and context the form of the training dataset and/or the
learner’s abilities.

Example of learning classes:

I Lc
q: all descriptions of the quantum states are given classically.

I L⊗k
q : we received k copies of each training quantum state.

I Lc
c : ML in a classical world.

I Lq
c : classical ML goal but with the help of a quantum

computer.
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Possible learning strategies

Quantum classification: task of predicting the class of an unknown
quantum state |ψ?〉 given a single copy of this state.

If Dn ∈ Lc
q, it is possible to maximize the probability of a good

guess of the class of |ψ?〉 or minimize the probability of making a
wrong guess (unambiguous discrimination).

If Dn ∈ L⊗k
q , possible strategies include:

(1) Estimation of the training set by making measurements (joint
or not) on some of the copies

(2) Classification mechanism using the copies only when the time
to classify |ψ?〉 comes or

(3) Hybrid strategy based on (1) and (2).
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Some facts on the hierarchy of quantum learning classes

I L⊗k
q ≡` Lc

q as k →∞.
“An infinite number of copies is as a good as a classical
description (due to quantum tomography).”

I L⊗1
q ≤` . . . ≤` L⊗k

q ≤` L⊗k+1
q ≤` . . . ≤` Lc

q.
“Adding more copies can never hurt.”

I L⊗k
q +L⊗1

q ≤` L⊗k+1
q , where “+” denotes a restriction that the

first k copies must be measured separately from the the last.
“Joint measurement can sometimes give more information
than separate ones.”
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Bounds on the training error for classification

Results from quantum detection and estimation theory can give
bounds on the best training error we could hope for.
Example:

I If Dn ∈ Lc
q, probability of distinguishing between the two

classes is bounded above by (1 + D(ρ−, ρ+))/2, where
D(ρ−, ρ+) is a distance measure between ρ− and ρ+

(Helstrom 76)1.

I Recent bounds for unambiguous discrimination (Herzog and
Bergou 05).

Remark: The goal of a quantum ML algorithm is to give a
constructive way to come close (or to achieve) these bounds.

1ρ− = 1
m−

Pn
i=1

1−yi
2

|ψi 〉〈ψi |,ρ+ = 1
m+

Pn
i=1

1+yi
2

|ψi 〉〈ψi |
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with a quantum dataset
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Notion of fidelity

The fidelity Fid(|ψ〉 , |φ〉) = |〈φ|ψ〉|2 is a measure of similarity
between quantum states.
It ranges from

I 0 if the states are orthogonal (i.e. perfectly distinguishable) to
I 1 if the states are identical.

Some properties of fidelity:
I Symmetry: Fid(|ψ〉 , |φ〉) = Fid(|φ〉 , |ψ〉).
I Invariance under unitary transformations:

Fid(|Uψ〉 , |Uφ〉) = Fid(|ψ〉 , |φ〉), where U is any unitary
operation.

Remark: the fidelity can be transformed into a metric obeying the
triangle inequality by using Dist(|ψ〉 , |φ〉) = arccos Fid(|ψ〉 , |φ〉).
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Control-Swap test: Description

Control-Swap (C-Swap) test: quantum operation that can be used
to estimate the fidelity between two unknown quantum states |ψ〉
and |φ〉 (BBDEJM2 96, BCWW3 01).

|0〉 H • H *-+,M

|ψ〉
SWAP

|φ〉
Figure: Circuit of the Control-SWAP test.

2Barenco, Berthiaume, Deutsch, Ekert, Jozsa and Macchiavello.
3Buhrman, Cleve, Watrous and de Wolf.
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Control-Swap test: Fidelity estimator

Result of applying the C-Swap test is:

I |0〉 with probability 1 if |ψ〉 and |φ〉 are identical.

I Otherwise, |1〉 with probability 1
2 −

1
2 |〈φ|ψ〉|

2.

The C-Swap test provides an estimator of the fidelity.

With k copies of |ψ〉 and |φ〉, we can run it k times and estimate
Fid(|ψ〉 , |φ〉) as 1− 2×# |1〉 /k.

Note: A side effect of the C-SWAP test is to irreversibly disturb
the input states.
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Possible quantum clustering strategies (1)

Quantum clustering: Group similar quantum states together and
separate dissimilar quantum states into different clusters.

If Dn ∈ L⊗k
q , it is possible to perform a quantum tomography by

using all the copies and then reconstruct of the classical
description of each training state.

The quality of the reconstruction depends on k, the number of
available copies, and d = 2n, the dimension of the Hilbert space
for n qubits: Fid(|ψguess〉 , |ψtrue〉) = k+1

k+d .

Problem: This requires an exponential number of copies in the
number of qubits for good reconstruction.
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Possible quantum clustering strategies (2)

More clever approaches:

I Estimate the fidelity between each pair of the training set by
using the C-Swap test several times and then run a classical
clustering algorithm (such as k-medians) on the data thus
obtained.

I Adapt a classical algorithm to the quantum setting.

Example: An agglomerative algorithm that grows clusters
around quantum seeds in a adaptive manner.
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(Classical) K -medians algorithm

1. Choose randomly k datapoints which will be the initial centers
of the clusters.

2. Do
I For each xi , attach him to the closest center.
I For each cluster, recompute the center by setting it to the

datapoint which is at minimal distance from the other points
in the cluster.

While there is no stabilization of the cluster centers

3. Return the discovered clusters and their centers.
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Simulated experimentation as a proof of concept

I Synthetic data of 5 clusters.

I The centre of each cluster is a 13-qubit pure state (d = 8192)
generated randomly and uniformly according to the Haar
measure.

I 20 pure states per cluster obtained by random perturbation of
the centre and such that the fidelity with the centre is never
below some threshold.

Algorithm:

1. Construction of a similarity matrix by estimating the fidelity
between each pair of states using the C-Swap test.

2. Running a variant of k-medians on this similarity matrix,
which groups the quantum states in 5 clusters.
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Clustering quality vs fidelity threshold
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Figure: Evolution of the clustering quality (averaged over 5 trials) as the
fidelity threshold decreases. Quality value of 1 = perfect clustering.
Random “clustering” results in a quality of approximately 0.37.
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Sébastien Gambs Machine Learning in a Quantum World 30



Outline
Introduction

Learning in a quantum world
Illustration: Clustering with a quantum dataset

Work in progress: Towards a quantum analogue of boosting
Conclusions and open problems

Boosting algorithm
Notion of weak measurement

Ensemble methods, boosting and AdaBoost

Illustration of the motto “Unity and diversity make strength”.

Principle of ensemble methods: Several classifiers are trained and
then combined into a single efficient mechanism (generaly using a
voting mechanism).

Philosophy of boosting: construction of an efficient classifier by
iteratively adding several weak classifiers whose predictions need
only to be a little bit better than a random guess.

AdaBoost (Adaptive Boosting): state-of-the-art boosting algorithm
(Freund and Schapire 97).
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AdaBoost algorithm

Iterative boosting algorithm that stops after T iterations. Each
datapoint has a weight which changes at each iteration. This
weight reflects how hard it is to classify a datapoint.

Details of one iteration:

1. Find the weak classifier that minimizes the weighted error on
the datapoints.

2. Compute the coefficient of this weak classifier from its
weighted error.

3. Reweight the datapoints.
For each datapoint, if it is correctly classified by the weak
classifier of the current iteration decrease its weight, otherwise
increase it.
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Weak measurement

Weak measurement: measurement which learns only a small
amount of information about an unknown quantum state |ψ?〉,
thus disturbing it only a little.

|ψ〉 •

|0〉 H −θ 2θ *-+,M

Figure: Example of a weak measurement circuit. θ is a unitary operation
(here a small rotation) close to the identity and whose strength can be
tune to change the amount of information acquired.

Resemblance between a weak classifier and a weak measurement.
Currently finishing to develop a quantum version of AdaBoost.
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Conclusions

I Novel learning task and new model of ML.

I Using quantum information has a great impact on the learning
process.

I Offers a lot of interesting questions and perspectives whose
study could lead to insights both in ML and QIP.
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Open problems

I Define analogues of classical notions of ML in the quantum
setting (such as the generalization error or the margin).

I Study the effect of noise (both classical and quantum).

I Extend or generalize classical ML algorithms to the quantum
world.
Currently in development: Quantum analogue of boosting and
ID3.

I Devise brand new ML algorithms.

I · · ·
I Suggestions?
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This is the end!!!

Thank you for your attention.
Questions?
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This is the end (bis)!!!

Many thanks to the organizer!!!
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Bonus slide: Towards a quantum analogue of ID3

I ID3 (Quinlan 86) is a ML algorithm that produce a decision
tree and uses Shannon entropy as a splitting criterion.

I The von Neumann entropy is a measure of the uncertainty we
have about a quantum state.

I Strong relationship between Shannon and von Neumann
entropies: S(ρ) = H(λi ) if λi and |ψi 〉 are respectively the
eigenvalues and eigenvectors of ρ.

I Idea: construct a quantized version of ID3 that uses von
Neumann entropy as a splitting criterion.
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