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OUTLINE

on — What Is distinguishabillity?
Istinguishability?

Locally — one party

Locally — many parties — w/o communication
Multi-partite with communication
Unextendible product bases (UPBS)
Distinguishabllity of a UPB




DISTINGUISHABILITY?

We can (at least in principle), distinguish
between the different states of an entity
(e.g. a macroscopic object)

Example: A die has six distinguishable states.




DISTINGUISHABILITY?

Given a state |4) from a set of
known states {|4,)}, can we find a
protocol that will identify with
probability 100% which of the
states it Is? (l.e. Its Index 1)



STINGUISHABILITY?

sh different physical states
act information

Data hiding
= Metaphysical implications (locality/causality)

= Difference between classical and quantum
communication

= Test our knowledge/comprehension of QM




LLY — ONE PARTY

ven a state |4) from a known set of
states {|4,)|

U —/A




iIndex 1)?



LLY — ONE PARTY

tate |4) from a set of known
states {|¢4 )}, can we identify which one it
is? (i.e. its index i)

YES, iff the |#)s are orthogonal
(even If we consider generalized
measurements i.e. POVMSs)




ARTITE — W/O COMM.

rom a set {|¢ )} is seperated into two
: e and Bob are each given one part
(which can be entangled together).
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ARTITE — W/O COMM.

TIONS

0 parties have only one copy of
their part of the state

= They can only perform local
operations

= They cannot communicate
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Alice measures in the 19)./9}basis and gets

a 1, she now knows what was the state of
the first qubit.




EXAMPLE 1

:

Bob measures in the same basis and gets a 0, so
he knows what was the state of the second qubit.
Together they know the state.







XAMPLE 2.1
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Alice measures in the /9)./3} basis and
gets a 1, the states 1 and 3 are eliminate
as known by Alice.




XAMPLE 2.1
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Now, Bob doesn’t know If he should measure In

the {\0H1>} or {HH} basis. Even if he picks the
right one, he still doesn’t know If the result is right.




XAMPLE 2.1

Now, Bob doesn’t know If he should measure In

the {\0>\1>} or{\+>,\—>} basis. Even If he picks the
right one, he still doesn’t know If the result is right.

=» Need for communication




XAMPLE 2.2

Now, what about if Bob measures first? If he
measures in the {|{0),|1)} basis, he only eliminates
one state. Same thing for{|+).|-)}.

=» Need for communication.




PARTITE — W/ COMM.

from a set {|4)} is seperated ij
e and Bob are each given one _§
N be entaiiled togeitfjr)
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ARTITE — W/ COMM.

STRICTIONS
ave only one copy

= They can only perform local
operations

= The two parties can communicate but
only classically (they can’'t exchange
qubits)




PLE 2 (revisited)

and Bob call each other to schedule
ements and Alice tells her
measurement result to Bob, they can distinguish
the states perfectly.




XAMPLE 3
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EXAMPLE 3
5000, 10% + 11, 1,)
#)=2(00).00) -1, 9.
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Alice measures in the {|0).|1)} basis and gets 0,
that doesn’t help them. No state Is eliminated.
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EXAMPLE 3
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Bob measures In the same basis and gets 1,
they still don’t know which of two states it was.
The second bit is hidden.




EXAMPLE 3
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Bob measures in the {|+),|-)} basis and gets -, that
eliminates 2 states



EXAMPLE 3
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If Alice measures in the {+):|-)} basis then she
to get -. They still don’t know if it was | ~) Of
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TINGUISHABILITY

ell states cannot be distinguished
CC.

= One of the two classical bits of information
will never be available to Alice and Bob.

= This is called data hiding.



IBLE PRODUCT BASES

endible Product Basis (UPB) is a
product states to which we cannot
add any other orthogonal state lying inside
our space of interest.

= An UPB Is indistinguishable using only
LOCC.
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ubspace of H, = H, ® H,:
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B OF INTEREST

subspace of

® H, ® H,:
$:)=10),10)5 10).
¢2>: 1>A‘+>B +>C

The set of four states iIs symmetric under
permutation of A, B & C (relabeling)
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OPTIMAL PROTOCOL

Maximum Information extraction using 0),1
=)} measurements.
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This protocol results in an average extraction
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of 1.775 bits of information ( Hyeore = H ateer




MAL PROTOCOL

ext step: consider POVMs and see
If more information can be extracted.

Work In progress...



ER INTERESTING
VARIATIONS

ultiple copies to each parties

= Communication restrictions between all or
some parties

= Permit some quantum communication
(transfer qubits)



ESTING RESULTS

onal states distributed between

umber of parties can be reliably
distinguished (w/ probability 100%)

= Non-locality w/o entanglement

= Some states can’t be distinguished using
one copy, but can using multiple copies

= Any state can be distinguished w/ N-1
copies (for a state from a set of N
orthogonal states)
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