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The One-Way Measurement Model
(a sketch)

© Prepare a state p to be transformed in

an input system |, and a collection of
ancillas in the |+) state;
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The One-Way Measurement Model
(a sketch)

@ Prepare a state p to be transformed in
an input system I, and a collection of

ancillas in the |+) state; : :
@ act on the ancillas and the qubits of |

using controlled-Z operators to form an

entanglement graph G ; : :

© perform a sequence of single-qubit
measurements on the qubits of G,
leaving only an output system O ; C. o .)

@ perform Pauli corrections on O, yielding Asoor ()
the output state. — A(p)
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The One-Way Measurement Model

@ Each qubit x ¢ O is measured with some operator on the equator
of the Bloch sphere, determined by a measurement angle ax

Mo = |+aX+al = [—aX=al [4+a) — O
o) = 5 (10) =€) ma) — 1
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@ Each qubit x ¢ O is measured with some operator on the equator
of the Bloch sphere, determined by a measurement angle ay

Mo = |+aX+al = [—aX=al [4+a) — O
o) = 5 (10) =€) ma) — 1

@ Measurements may (and almost always do) depend on the results
s, € {0,1} of previous measurements

e.g. a; — (=1)%F¥ q,
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The One-Way Measurement Model

@ Each qubit x ¢ O is measured with some operator on the equator
of the Bloch sphere, determined by a measurement angle ay

Mo = |+aX+al = [—aX=al [4+a) — O
o) = 5 (10) =€) ma) — 1

@ Measurements may (and almost always do) depend on the results
s, € {0,1} of previous measurements

e.g. a; — (=1)%F¥ q,

@ Dependencies arise from how information is propagated through
the entanglement graph
= the graph restricts the order of measurements
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About flows [Danos, Kashefi 2005]

Flows describe how information is “transmitted” in an entanglement
graph G = (V,E), from the inputs | C V to the outputs O C V.

Definition
Aflow on (G,I,0) is an ordered pair (f, <)
@ f : O° — I¢is a function on vertices

@ < is a partial order on V
(i.e. a reflexive, transitive, & antisymmetric relation)

which satisfy the following three conditions
for all vertices:

(F) x~f(x);

(Fii) x <f(x);
(Fii) y~f(x) = x<xy.

4
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About flows [Danos, Kashefi 2005]

The existence of a flow is an entirely graph-theoretic property, but
guarantees properties important for guantum computation:

@ For any choice of measurement angles {ay }, .. , there is a
one-way pattern with a measurement order consistent with
<, which performs a unitary injection;
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About flows [Danos, Kashefi 2005]

The existence of a flow is an entirely graph-theoretic property, but
guarantees properties important for guantum computation:

@ For any choice of measurement angles {ay }, .. , there is a
one-way pattern with a measurement order consistent with
<, which performs a unitary injection;

@ In that pattern, the result of each measurement is uniformly
random.

@ Also: every unitary operator can be implemented by a one-way
pattern whose measurement order is described by a flow.

This makes them a potentially useful tool for analysing:
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Phase Map Decomposition [B, Danos, Kashefi 2006]

Consider a one-way pattern implementing a unitary operator U :

@ entanglement graph G = (V, E), input/output vertices I,0 C V,
such that (G, 1, 0) has a flow

@ measurement angles {ay }, ¢

Considering U, between standard bases of H, and Hg :

U_.o = Rv_o o %z o P_yv,
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Phase Map Decomposition [B, Danos, Kashefi 2006]

@ Phase Map Decompositions describe how one-way measurement
patterns evolve in one special case. So, if we can find:

» &g realising a phase map decomposition for U,_o
» aflow for (G,1,0)

then we can obtain a one-way pattern for U .
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Phase Map Decomposition [B, Danos, Kashefi 2006]

@ Phase Map Decompositions describe how one-way measurement
patterns evolve in one special case. So, if we can find:

» &g realising a phase map decomposition for U,_o
» aflow for (G,1,0)

then we can obtain a one-way pattern for U .

For which families of unitary operators U
can we efficiently find phase map decompositions?

@ Candidate sub-problem: given (G, |, O), determine whether it has
a flow (and find one if it does).
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9 Graph-theoretic results
@ Path covers

@ Influencing walks, Vicious circuits
@ Uniqueness when |I| = |O]
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Flows describe “Path covers”

I | o

@)

Paths taken by following edges x — f(x):
@ inputs can only be at the beginning of paths, outputs at the end
@ for distinct x,y € O¢, we have f(x) # f(y)
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Flows describe “Path covers”

S
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Paths taken by following edges x — f(x):
@ inputs can only be at the beginning of paths, outputs at the end
@ for distinct x,y € O¢, we have f(x) # f(y)

= f describes a set P of non-intersecting paths* in G, ending in O.
Call this a path cover for (G,1,0).

(* paths not guaranteed to have non-zero length)
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Flows describe “Path covers”

S

P

@)

Paths taken by following edges x — f(x):
@ inputs can only be at the beginning of paths, outputs at the end
@ for distinct x,y € O¢, we have f(x) # f(y)

= f describes a set P of non-intersecting paths* in G, ending in O.
Call this a path cover for (G,1,0).

(* paths not guaranteed to have non-zero length)

@ If|I| = |O]|, then P is a collection of paths from | to O.

Niel de Beaudrap (IQC, UW) Efficient Construction of Flows CQISC 2006 12/20



Not all path covers are described by flows
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Not all path covers are described by flows
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b~f(a) = a<xb
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axb=xcxa
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Influencing walks, Vicious circuits

Definition
An influencing walk of a path-cover P
is a directed walk in G which can be
decomposed into paths of the following
two types (using arcs of P): *

@ asinglearc,x —y;

©Q asinglearcx — vy,

followed by any edge yz € E
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Influencing walks, Vicious circuits

Definition

An influencing walk of a path-cover P
is a directed walk in G which can be
decomposed into paths of the following
two types (using arcs of P):

@ asinglearc,x —y;

©Q asinglearcx — vy,
followed by any edge yz € E
A vicious circuit is an influencing

walk which starts and ends at the
same vertex.

Theorem:

a geometry (G,1,0) has a flow iff it has a path cover

with no vicious circuits.
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Uniqueness when |I| = |O|

@ P a path cover (solid arrows)

@ F a (different) collection of | — O paths (hollow arrows),
with the same number of paths

@ shaded area: vertices not covered by F
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Uniqueness when |I| = |O|

@ P a path cover (solid arrows)

@ F a (different) collection of | — O paths (hollow arrows),
with the same number of paths

@ shaded area: vertices not covered by F

e

=- we can construct an infinitely long influencing walk — which will
eventually close up into a vicious circuit.
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Uniqueness when |I| = |O|

@ P a path cover (solid arrows)

@ F a (different) collection of | — O paths (hollow arrows),
with the same number of paths

@ shaded area: vertices not covered by F

e

Theorem:

if Il = |O| and (G,I1,0) has a path cover P without
vicious circuits, then P is the only maximum-size
collection of disjoint | — O paths.
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Q Efficient algorithms when |I| = |O|
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Finding a function f when |I| = |O|

If (G,1,0) has a flow, then to find a path cover without vicious circuits,
we simply build a maximum collection of non-intersecting paths.

@ Use a modified version of an augmenting path algorithm (e.g.
Ford-Fulkerson):
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Finding a function f when |I| = |O|

If (G,1,0) has a flow, then to find a path cover without vicious circuits,
we simply build a maximum collection of non-intersecting paths.
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Finding a function f when |I| = |O|
If (G,1,0) has a flow, then to find a path cover without vicious circuits,
we simply build a maximum collection of non-intersecting paths.

@ Use a modified version of an augmenting path algorithm (e.g.
Ford-Fulkerson):

@ Time required to find a single augmenting path: O(m)
@ Time required to find a maximum-size family of paths: O(km)
@ By uniqueness: if paths don’t cover all vertices, there is no flow.

(wherem = |[E| and k = |O])



Finding a partial order < when |I| = |O|

If (G,1,0) has a flow, then any path-cover P has no vicious circuits.

@ Use a depth-first search along the influencing walks of P to look
for vicious circuits.
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If (G,1,0) has a flow, then any path-cover P has no vicious circuits.

@ Use a depth-first search along the influencing walks of P to look
for vicious circuits.
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@ By uniqueness: if a vicious circuit is found, there is no flow.
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Finding a partial order < when |I| = |O|

If (G,1,0) has a flow, then any path-cover P has no vicious circuits.

@ Use a depth-first search along the influencing walks of P to look

for vicious circuits.
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@ By uniqueness: if a vicious circuit is found, there is no flow.

@ Can reduce work by storing reachability information at vertices

» If there are no vicious circuits, this builds a partial order <
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If (G,1,0) has a flow, then any path-cover P has no vicious circuits.

@ Use a depth-first search along the influencing walks of P to look
for vicious circuits.
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@ By uniqueness: if a vicious circuit is found, there is no flow.
@ Can reduce work by storing reachability information at vertices
» If there are no vicious circuits, this builds a partial order <

@ Time required: O(km) (where m = |[E| and k = |O|)
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Summary

@ Flows help describe how information “flows” in the one-way
measurement model.

@ Finding a flow for a given geometry (G, |,O) seems a natural
sub-problem for finding phase map decompositions.

@ Using graph-theoretic techniques, we can efficiently find flows
when |I| = |O|.

@ Open problems:
» Can we find flows efficiently in cases where |I| < |O|?

» Find families of unitaries where we can efficiently find phase-map
decompositions!
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