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Why?
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Standard Quantum Computation Model

• Qubits are encoded into a superposition of orthogonal states of a two level
system: |ψ〉 = α|0〉 + β|1〉.

• Quantum computer is a collection of n qubits.

• Calculations are performed through the action of a universal set of m quantum
gates {U1, U2, . . . , Um} on one or more qubits.

• Calculation result is read by projecting end state onto {|0〉, |1〉} basis.
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Decoherence and Error Correction

• In real world quantum computer will
fail due to decoherence effects

|ψ〉 = a|0〉 + b|1〉 → |ψ〉 = |0〉 or |1〉

• . . . unless we protect the qubits!

• Shor’s and Steane’s error correction
codes in 1995 allowed clever encoding
of qubits and gates
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• In principle, using error correction, fault-
tolerant computation can be performed

• However, to give reliable results, large
hierarchy of error correction mechanism are
needed.

• Need better hardware. . .

Imperfect Hardware

Reliable Hardware
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Topology

• In math: Topology is study of topological spaces

• Topological space is composed of set X and a collection of subsets T such
that:

1. Union of any collection of subsets of T is still in T
2. Intersection of any pair of subsets of T is still in T
3. T contains the empty set and X

• Examples of topological spaces: real numbers
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Topological properties of an object are those which are unchanged by smooth
deformations

⇔
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Topological properties of an object are those which are unchanged by smooth
deformations

We’d like to use this intrinsic fault tolerance to our advantage
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Topological Quantum Computer
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What?
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Indistinguishable particles

• Suppose I have two identical particles at x1 and x2 described by |ψ〉 = |x1x2〉

• Permutation operator, P , switches particles 1 and 2:

P |x1x2〉 = eiφ|x2x1〉

P 2|x1x2〉 = e2iφ|x1x2〉

• However, since P 2 ≡ I, we need e2iφ = 1. This implies eiφ = ±1.

• Fermions (φ = 2π · 1
2) and bosons (φ = 2π · 1)
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In all dimensions of space, particles are either bosons

or fermions. But there is an exception. . . ...
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Anyons

• Fermions
Ψ(x1, x2) = −Ψ(x2, x1) = Ψ(x2, x1)e

iπ

• Bosons
Ψ(x1, x2) = Ψ(x2, x1) = Ψ(x2, x1)e

i2π

• Anyons
Ψ(x1, x2) = Ψ(x2, x1) = Ψ(x2, x1)e

iπ(1+m)

anyons have fractional statistics 1

0 ≤ m ≤ 1
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• Swapping particles is represented as rotation. Double swap is a full loop.

• In 3D, the particle’s path can be smoothly contracted to the trivial one.

• In 2D, you can’t do this: rotation by 2π eigenvalues are not limited to ±1

• Anyons only exist in 2D due to different topological properties of the rotation
group SO(2).
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Braid Group

Braid group Bn consists of different ways in which n particles can be braided.
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• Knots are not allowed

• Braids can be composed
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• Any braid can be constructed from exchanges of neighboring particles. These
exchanges are the generators for the group. There are 3 generators for the B4

braid group:

• Braid group is infinite and thus has an infinite number of representations. It
has 1D, as well as higher dimension representations.
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• Identical particles that transform as a 1D representation of the braid group are
abelian anyons: generators are then represented as phase shifts:

σj = eiφj

• Braid group has nonabelian representations. For example, generators can be
represented as non-commuting matrices instead of phase shifts.

• Identical particles that transform as such are nonabelian anyons.

• Irreducible representation of Bn from n anyons acts on a topological vector
space Vn. Dimension of Vn increases exponentially with n.

• Depending on the type of nonabelian anyon, image of representation may be
dense in SU(Dn).
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Universal quantum computation is possible with

braiding of nonabelian anyons!
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Science Fiction? No!

Fractional Quantum Hall Effect

• Many 2D systems exist in nature
such as 2D electron gases and
rotating Bose gases

• In either of these systems,
there are abelian and nonabelian
quasiparticles.

• Lots of weird stuff, like fractional
charge.
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A Simple Nonabelian Anyon Model

• Suppose we have a finite list of particle labels {a, b, c, . . .} indicating value of
a conserved quantity that a particle can carry (like charge).

• Fusion rules are expressed as a×b =
∑

cN
c
abc. The N c

ab distinct ways in which
{a, b} → c form an orthonormal basis set of a Hilbert space V c

ab called fusion

space.
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• If, for at least one pair of labels ab,
∑

cN
c
ab ≥ 2, the anyon model is nonabelian.

• Topological Hilbert space! (Information about c isn’t localized)

• Intrinsical robustness against decoherence.

• We can use this Hilbert space to encode quantum information.

23



Example: Fibonacci Anyons

• Charges can take two different values: 0 and 1. All anyons have charge 1.

• Simple fusion rule: • × • = 0 + 1

|•〉 + |•〉 = |1〉 or |0〉

• This describes nonabelian anyons because fusion gives 2 distinct values.

• Called Fibonacci anyons because n anyons span a Hilbert space of dimension
equal to the n+ 1 Fibonacci number.
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• Example: 3 anyons → 3 states:

| (•, •)0 •〉1

| (•, •)1 •〉1

| (•, •)1 •〉0

• Asymptotically, 0.694 qubits encoded
by each anyon. Non locality! 0 5 10 15 20 25 30
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How?
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Using Fibonacci Anyons to Implement Quantum Gates

• Bonesteel’s group showed nice implementation of quantum gates with
Fibonacci anyons: quant-ph/0505065

• Logical qubits are encoded with 3 anyons.
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• Matrices σ1 and σ2 are braid generators acting on Hilbert space produced by
3 anyons in qubits

• Only upper 2x2 block acts on computational basis (where total charge=1)
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• General 3-qubit braid by successively applying σ1, σ2 and their inverses

• Through brute force search, any single qubit gate can be approximated
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• Controlled rotation gate. Resulting 2-qubit gate is a controlled rotation of
target qubit.

• Together with single qubit gates, universal quantum computing.
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CNOT
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Conlusions

• Topological Quantum Computing is desirable because of intrinsic decoherence
resistance

• To do TQC, need nonabelian anyons.

• Fortunately, they DO exist

• TQC could be carried out by braiding these nonabelian anyons
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What I’m doing

• Surprisingly, nobody has ever measure this topological phase

• I’m looking at rotating bosons and trying to find nonabelian states

Thanks for listening!
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