Topological Quantum Computing

Alexis Gagnon Morris

August 12, 2005

Summary

- Why?
- What?
- How?

Standard Quantum Computation Model

- Qubits are encoded into a superposition of orthogonal states of a two level system: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$.
- Quantum computer is a collection of n qubits.
- Calculations are performed through the action of a universal set of m quantum gates $\{U_1, U_2, \ldots, U_m\}$ on one or more qubits.
- Calculation result is read by projecting end state onto $\{|0\rangle, |1\rangle\}$ basis.

Decoherence and Error Correction

• In real world quantum computer will fail due to decoherence effects

 $|\psi\rangle = a|0\rangle + b|1\rangle \rightarrow |\psi\rangle = |0\rangle \text{ or } |1\rangle$

- . . . unless we protect the qubits!
- Shor's and Steane's error correction codes in 1995 allowed clever encoding of qubits and gates

Wanted: \$10,000 Reward

Schrödinger's Cat Dead and Alive

- In principle, using error correction, faulttolerant computation can be performed
- However, to give reliable results, large hierarchy of error correction mechanism are needed.
- Need better hardware. . .

Imperfect Hardware

Reliable Hardware

- In principle, using error correction, faulttolerant computation can be performed
- However, to give reliable results, large hierarchy of error correction mechanism are needed.
- Need better hardware. . .

Imperfect Hardware

Reliable Hardware

Topology

- In math: Topology is study of topological spaces
- Topological space is composed of set X and a collection of subsets T such that:
 - 1. Union of any collection of subsets of T is still in ${\cal T}$
 - 2. Intersection of any pair of subsets of T is still in ${\cal T}$
 - 3. T contains the empty set and \boldsymbol{X}
- Examples of topological spaces: real numbers

Topological properties of an object are those which are unchanged by smooth deformations

Topological properties of an object are those which are unchanged by smooth deformations

We'd like to use this intrinsic fault tolerance to our advantage

Topological Quantum Computer

Indistinguishable particles

- Suppose I have two identical particles at x_1 and x_2 described by $|\psi\rangle = |x_1x_2\rangle$
- Permutation operator, P, switches particles 1 and 2:

$$P|x_1x_2\rangle = e^{i\phi}|x_2x_1\rangle$$
$$P^2|x_1x_2\rangle = e^{2i\phi}|x_1x_2\rangle$$

- However, since $P^2 \equiv I$, we need $e^{2i\phi} = 1$. This implies $e^{i\phi} = \pm 1$.
- Fermions $(\phi = 2\pi \cdot \frac{1}{2})$ and bosons $(\phi = 2\pi \cdot 1)$

In all dimensions of space, particles are either bosons or fermions. But there is an exception.

Anyons

• Fermions

$$\Psi(x_1, x_2) = -\Psi(x_2, x_1) = \Psi(x_2, x_1)e^{i\pi}$$

• Bosons

$$\Psi(x_1, x_2) = \Psi(x_2, x_1) = \Psi(x_2, x_1)e^{i2\pi}$$

• Anyons

$$\Psi(x_1, x_2) = \Psi(x_2, x_1) = \Psi(x_2, x_1)e^{i\pi(1+m)}$$

anyons have fractional statistics 1 $0 \leq m \leq 1$

• Swapping particles is represented as rotation. Double swap is a full loop.

- In 3D, the particle's path can be smoothly contracted to the trivial one.
- In 2D, you can't do this: rotation by 2π eigenvalues are not limited to ± 1
- Anyons only exist in 2D due to different topological properties of the rotation group SO(2).

Braid Group

Braid group B_n consists of different ways in which n particles can be braided.

• Knots are not allowed

• Braids can be composed

• Any braid can be constructed from exchanges of neighboring particles. These exchanges are the generators for the group. There are 3 generators for the B_4 braid group:

• Braid group is infinite and thus has an infinite number of representations. It has 1D, as well as higher dimension representations.

• Identical particles that transform as a 1D representation of the braid group are *abelian anyons*: generators are then represented as phase shifts:

$$\sigma_j = e^{i\phi_j}$$

- Braid group has nonabelian representations. For example, generators can be represented as non-commuting matrices instead of phase shifts.
- Identical particles that transform as such are *nonabelian anyons*.
- Irreducible representation of B_n from n anyons acts on a topological vector space V_n . Dimension of V_n increases exponentially with n.
- Depending on the type of nonabelian anyon, image of representation may be dense in SU(D_n).

Universal quantum computation is possible with braiding of nonabelian anyons!

Science Fiction? No!

Fractional Quantum Hall Effect

- Many 2D systems exist in nature such as 2D electron gases and rotating Bose gases
- In either of these systems, there are abelian and nonabelian quasiparticles.
- Lots of weird stuff, like fractional charge.

A Simple Nonabelian Anyon Model

- Suppose we have a finite list of particle labels $\{a, b, c, \ldots\}$ indicating value of a conserved quantity that a particle can carry (like charge).
- Fusion rules are expressed as $a \times b = \sum_{c} N_{ab}^{c} c$. The N_{ab}^{c} distinct ways in which $\{a, b\} \rightarrow c$ form an orthonormal basis set of a Hilbert space V_{ab}^{c} called *fusion space*.

- If, for at least one pair of labels ab, $\sum_{c} N_{ab}^{c} \geq 2$, the anyon model is nonabelian.
- Topological Hilbert space! (Information about c isn't localized)

- Intrinsical robustness against decoherence.
- We can use this Hilbert space to encode quantum information.

Example: Fibonacci Anyons

- Charges can take two different values: 0 and 1. All anyons have charge 1.
- Simple fusion rule: \times = 0 + 1

$$|\bullet\rangle+|\bullet\rangle=|1\rangle$$
 or $|0\rangle$

- This describes nonabelian anyons because fusion gives 2 distinct values.
- Called Fibonacci anyons because n anyons span a Hilbert space of dimension equal to the n + 1 Fibonacci number.

• Example: 3 anyons \rightarrow 3 states:

 $|(\bullet, \bullet)_0 \bullet\rangle_1$ $|(\bullet, \bullet)_1 \bullet\rangle_1$ $|(\bullet, \bullet)_1 \bullet\rangle_0$

• Asymptotically, 0.694 qubits encoded by each anyon. Non locality!

Using Fibonacci Anyons to Implement Quantum Gates

 Bonesteel's group showed nice implementation of quantum gates with Fibonacci anyons: quant-ph/0505065

$$|0_L\rangle = \underbrace{\bullet_0}_1 |1_L\rangle = \underbrace{\bullet_1}_1$$
$$|NC\rangle = \underbrace{\bullet_1}_0$$

• Logical qubits are encoded with 3 anyons.

• Matrices σ_1 and σ_2 are braid generators acting on Hilbert space produced by 3 anyons in qubits

• Only upper 2x2 block acts on computational basis (where total charge=1)

• General 3-qubit braid by successively applying σ_1 , σ_2 and their inverses

• Through brute force search, any single qubit gate can be approximated

• Controlled rotation gate. Resulting 2-qubit gate is a controlled rotation of target qubit.

• Together with single qubit gates, universal quantum computing.

CNOT

Conlusions

- Topological Quantum Computing is desirable because of intrinsic decoherence resistance
- To do TQC, need nonabelian anyons.
- Fortunately, they DO exist
- TQC could be carried out by braiding these nonabelian anyons

What I'm doing

- Surprisingly, nobody has ever measure this topological phase
- I'm looking at rotating bosons and trying to find nonabelian states

Thanks for listening!