Upper Bounds for Quantum Interaction

Gus Gutoski University of Calgary Calgary, Alberta, Canada

Interactive Proofs

Interactive Proofs

- A language *L* has an interactive proof if there exists a verifier V such that:
- 1. (completeness condition) If $x \in L$ then there exists a prover P that can convince V to accept x with probability > 3/4.
- 2. (soundness condition) If $x \notin L$ then <u>no</u> prover can convince V to accept x except with probability < 1/4.
- IP = PSPACE [LFKN92] [S92].

Quantum Interactive Proofs

$\mathsf{PSPACE} \subseteq \mathsf{QIP} \subseteq \mathsf{EXP}$ [KW00].

Refereed Games

Refereed Games

- A language *L* has a refereed game if there exists a verifier V such that:
- 1. (completeness condition) If $x \in L$ then there exists a yes-prover Y that can convince V to accept x <u>regardless of the no-prover</u> with probability > 3/4.
- 2. (soundness condition)

If $x \notin L$ then there exists a no-prover N that can convince V to reject x <u>regardless of the yes-prover</u> with probability > 3/4.

• RG = EXP [KM92] [FK97].

Quantum Refereed Games

New complexity class: QRG

Short Quantum Games

- New complexity class: SQG
- $QIP \subseteq SQG [GW05].$

Background and Overview

- $QIP \subseteq SQG$ [GW05].
- $QIP \subseteq EXP$ [KW00].
- How does SQG relate to EXP?
- We prove $SQG \subseteq EXP$.
 - First, we review $QIP \subseteq EXP$.
 - Next, we note that $QRG \subseteq NEXP$.
 - Finally, we show $SQG \subseteq EXP$.

Consider the states ρ_0, ρ_1, ρ_2 :

1. $\rho_0 = |0\rangle\langle 0|$; and 2. The verifier accepts *x* with probability $Tr(\Pi_{accept}V_2 \rho_2 V_2^*)$ (linear function of ρ_2).

What else can we say about ρ_0, ρ_1, ρ_2 ?

(linear constraints on ρ_0, ρ_1, ρ_2 .)

It turns out that ρ_0, ρ_1, ρ_2 can be <u>any</u> states with this property!

Proof:

- Given any ρ_0, ρ_1 , let $|u_0\rangle$, $|u_1\rangle$ be purifications.
- Then $V_0 |u_0\rangle$ purifies $Tr_M (V_0 \rho_0 V_0^*)$.
- As

 $\begin{array}{l} \mbox{Tr}_{M}(V_{0}\rho_{0}V_{0}^{*})=\mbox{Tr}_{M}(\rho_{1}),\\ \mbox{there must exist a unitary }P_{1}\mbox{ with }\\ P_{1}V_{0}|\textbf{u}_{0}\rangle=|\textbf{u}_{1}\rangle. \end{array}$

• Similar construction for P₂.

- This characterization can be expressed as a <u>semidefinite program (SDP)</u>:
 - $\begin{array}{ll} \mbox{maximize} & \mbox{linear function of } \rho_r \\ \mbox{subject to} & \mbox{linear constraints on } \rho_0, \dots, \rho_r; \\ \rho_0, \dots, \rho_r \mbox{ pos. semidefinite} \end{array}$
- SDPs can be solved in poly-time.
- Our matrices have size exponential in |x|.
- $QIP \subseteq EXP$

Verifier for a quantum interactive proof system!

- <u>Nondeterministic strategy</u>: Guess the unitaries $(Y_1, ..., Y_r)$ for the yes-prover and solve the induced QIP as before.
- $QRG \subseteq NEXP$

Suppose ξ is given. What can we say about ξ ?

The verifier rejects *x* with probability $Tr(\Pi_{reject}V_2N_1V_1 (\xi \otimes |0\rangle\langle 0|) V_1^*N_1^*V_2^*)$ (given N₁, it's a linear function of ξ).

The Set of Winning Yes-Provers

- Define *Win* to be the set of all density matrices ξ such that:
- $Tr_M(V_0|0\rangle\langle 0|V_0^*) = Tr_M(\xi)$; and
- Pr. rejection < $\frac{1}{4}$ \forall unitaries N₁.

Then *Win* is nonempty iff $x \in L$.

Given ξ , view the rest of the game as a QIP:

- Given $\rho_0 = \xi$, solve the SDP for (ρ_0, ρ_1) to maximize Pr. rejection (linear in ρ_1).
- If maximum Pr. rejection is < $\frac{1}{4}$ then $\xi \in Win$ $\Rightarrow Win$ is nonempty $\Rightarrow x \in L$
- Otherwise, deduce a no-prover N that yields ρ_1 (easy).

- N is a witness that ξ ∉ Win: linear_N(ξ) > ¼ and linear_N(ξ') < ¼ ∀ ξ' ∈ Win
 ⇒ ∃ a <u>hyperplane</u> that separates ξ from Win.
- <u>Recap</u>: Given ξ , we can use our SDP to decide if $\xi \in Win$ or to find a separating hyperplane for ξ .
- How does that help?

The Ellipsoid Method

How to find a lion in the desert...

- Given a poly-time <u>separation oracle</u>, the ellipsoid method can decide the emptiness of a convex set in poly-time!
- Poly-time separation oracle: the SDP
- <u>Convex set</u>: *Win*
- Dimension of *Win* is exponential in |x|
- $SQG \subseteq EXP$

Conclusion

• We used SDP [KW00] to decide QIPs and QRGs:

 $QIP \subseteq EXP.$ $QRG \subseteq NEXP.$

• We used the ellipsoid method to decide short quantum games

$SQG \subseteq EXP.$

• The emerging complexity map: $\begin{array}{l} \mathsf{PSPACE} \subseteq \mathsf{QIP} \subseteq \mathsf{SQG} \\ \subseteq \mathsf{EXP} \subseteq \mathsf{QRG} \subseteq \mathsf{NEXP}. \end{array}$