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Continuous-time Quantum Walks
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Graphs are described by
adjacency matrices:

A[u, v] =

{

1 u,v connected
0 otherwise

Quantum systems can be
described by a Hamiltonian H.
H[u, v] is non-zero if amplitude
move from state i to state j.

We want to create a quantum
system whose dynamics follows
the structures of the graph.
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Continuous-time Quantum Walks

H = A
[Farhi, Gutmann 1998]

Dynamics follows the Schrodinger equation

H|ψ〉 = i
d

dt
|ψ〉

Or as a unitary operator

U(t1, t2) = e−iH(t2−t1)

Spatial Search by Phased Continuous-time Quantum Walk – p.3/26



Phased Cont.-time Quantum Walks

In general Hamiltonians can be arbitrary Hermitian
matrices,

H = H†

and so can have complex entries.

If A[u, v] = 1 why restrict ourselves to H[u, v] = 1 when
we are dealing with quantum systems?

Why not allow H[u, v] = eiθ? (the most general would be
H[u, v] = reiθ but we are not dealing with weighted
graphs)
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Phased Cont.-time Quantum Walks

Phased Cont-time Quantum Walks:
Let A be the adjacency matrix of a graph G with n
vertices, the phased continuous-time quantum walk on
G is defined by

H[u, v] = eiθj

for j ∈ {1, . . . , n}, and every edge (u, v) of G.

What is the justification for introducing this model?

Lets think about a quantum network...
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Justifying Phased Walks

M = er(D−A)t

Classically we jump from one
vertex to another after some
random amount of time.
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Justifying Phased Walks

U = ei(D−A)t

Quantumly amplitude diffuses
through the graph.
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Justifying Phased Walks

U = ei(D−A)t

Quantumly amplitude diffuses
through the graph.
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Justifying Phased Walks

U = ei(D−A)t

Quantumly amplitude diffuses
through the graph.
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Justifying Phased Walks

U = ei(D−A)t

Quantumly amplitude diffuses
through the graph.
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Justifying Phased Walks

U = ei(D−A)t

Quantumly amplitude diffuses
through the graph.
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Justifying Phased Walks

U = e−iP t

Random phases give different
dynamics.
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Justifying Phased Walks

U = e−iP t

Random phases give different
dynamics.
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Justifying Phased Walks

U = e−iP t

Random phases give different
dynamics.
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Justifying Phased Walks

U = e−iP t

Random phases give different
dynamics.
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Justifying Phased Walks

What are the upsides of phased walks?

Does not need an extra coin space. For N vertices we
only need N states

May allow new interesting behaviors
Speed up spatial search?
Different limiting distributions

What are the downsides?

More complicated to analyze.

May not allow new interesting behaviors.

Why hasn’t anyone else done it?
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Spatial Search

Our data is arranged in space according to some graph, it
takes unit time to move between the vertices.
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Spatial Search

Grover search works on unstructured databases. Can it
also work on spatially arranged databases?
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Benioff’s Claim

The 2D grid has diameter O(
√
N), so grover search takes

time O(
√
N ∗

√
N) = O(N).

In 2001 Benioff suggested that for the two dimensional grid
quantum search is no better than classical.

Maybe sorting is Ω(N2) too??
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Benioff is Not a Computer Scientist

Divide and Conquer to the Rescue!

Aaronson and Ambainis (2003) show that the 2D grid
can be searched in O(

√
Nlog3N) using recursion and

amplitude amplification.

They also show that for d > 2 the d dimensional grid can
be searched in O(

√
N). Among other things...
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Lower Bounds

It is not obvious that Ω(
√
N) is the lower bound on spatial

search on the d dimension grid. The best we have:

d lower bound

2 Ω(N1/6)

3 Ω(N1/4)

4 Ω(N3/10)

5 Ω((N/logN)1/3)

> 6 Ω(N1/3)

[Zhang 2005]
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Related Results

Farhi and Gutmann (1996) Showed that the complete
graph can be searched in O(

√
N) by a continuous-time

quantum walk. This is equivalent to grover search.

Shenvi, Kempe, Whaley (2002) Showed that the
hypercube can be searched by a discrete time quantum
walk in O(

√
N).

Childs and Goldstone (2003) Showed the following for
searching the d dimensional grid.

d < 4 O(N)

d = 4 O(
√

NlogN)

d > 4 O(
√

N)
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Related Results

Ambainis, Kempe, Rivosh (2004) Showed the grid can
be searched by a dtqw in O(

√
N) for d > 2 and

O(
√
NlogN) for d = 2. This was the first (only?) result

showing a separation between dtqw’s and ctqw’s.

Childs and Goldstone (2004) modify the ctqw model by
using a Hamiltonian with spin states and used it to
search the grid in O(

√
N) for d > 2 and O(

√
NlogN) for

d = 2. 2d/2 spin states are needed, but this is ok for low
dimensions {2, 4, 4} states for d = {2, 3, 4}.

Ambainis’s algorithm (2004) for element distinctness
uses a dtqw to search special graphs.
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The Grid

When we are doing quantum walks on the grid we are
actually walking on cubic periodic lattices which are
periodic in every direction... Or in 2D we are walking on the
discrete version of the torus:
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Pros and Cons of the Models

CTQW’s

Pro:Simple

Con: Slow in low dimensions

Con: Unknown performance on many graphs

DTQW’s

Pro: Fast

Con: Extra states, extra complexity

Con: Unknown performance on many graphs

Amplitude Amplification

Pro: Fast

Pro: Works well on a wide rage of graphs
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Spatial Search by CTQW

Childs and Goldstones idea:

Start walk in |s〉 = 1√
N

∑N
j=1 |j〉

Run Hamiltonian H = γ(D − A) − |w〉〈w|, where |w〉 is
the marked state and γ is an adjustable parameter.
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Guiding Principle

Why does it work?

|s〉 is the ground state of D − A, |w〉 is the ground state
of −|w〉〈w|.
as γ goes from 0 to 1 the ground state of
H = γ(D − A) − |w〉〈w| will switch from |w〉 to |s〉.
If we assume that |s〉 and |w〉 both have substantial
overlap with the first excited state of H then
perturbation theory says that H will drive transitions
between them in time of order 1/(E1 − E0).

E1 and E0 are the first (lowest) two eigenvalues of H,
E1 − E0 is the eigenvalue gap.
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Spatial Search and Phased CTQW’s

The previous argument is directly applicable to phased
ctqw’s. The only modification is that we will start the walk at
|φ0〉 the ground state eigenvector of the phased adjacency
matrix. The question is then:

Can we increase the eigenvalue gap?

In general this seems to be a hard question as we are
adding as many phase variable as there are edges. Also,
randomly choosing the phases does not help on many
graphs. Random graphs with random phases do not seem
to work either.
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The Grid

For the grid we can get "close" to the full k (the number
of edges) phases by noting that the grid (periodic
version) is the graph Cartesian product of two cycles.

This means the eigenvalues of the grid are simply sums
of pairs of eigenvalues of the cycle. This can easily be
proved to be true for the phased grid (or any phased
graph).

This allows us to introduce O(
√
k) phases and still

analyze the walk.
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The Grid Sucks

Unfortunately when we do this it seems like phases can
only slow things down:

1 2 3 4 5 6
angle
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2

Eigenvalue gap

Spatial Search by Phased Continuous-time Quantum Walk – p.21/26



Cycles

Numerical investigations point to the fact that phases will
cancel unless they are in a cycle. The graph on the left has
the same eigenvalues as the unphased graph, while this is
not true of the graph on the right.
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Linked Cycles

−1

The unphased eigenvalue gap of this graph is 0.682,
with a phase of −1 at the position shown the gap is
1.236, an increase of 81%!

That seems pretty cool, but how does the difference
change as the size of the cycles grows?
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Search Times

So the gap is bigger on small instances but is it really
faster? The Times for the 3 × 3 double cycle:

Phased: {15.1, 15.1, 5.41, 1.54, 1.93, 1.93}

Unphased: {6.33, 6.33, 6.06, 6.06, 6.33, 6.33}

Averages p/u: 6.84/6.24

It is obvious that the eigenvalues are not the only things we
have to worry about anymore. The eigenvectors may now
be important.

|φ0〉 = {0.115,−0.115,−0.372,−0.602,−0.487,−0.487}
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Average Search Times

How long does it take to search on average?
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Things To Think About

Are there graphs with increasing eigenvalue gap
difference?

Do the eigenvectors really matter as the graphs get
larger?

My example is very contrived, what about higher degree
graphs like the grid or random graphs?

Can regular graphs be sped up?

How about applying phased ctqw’s to other things?

Why hasn’t anyone else done this?
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