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Overview

i. How to encode data and operations fault-
tolerantly

ii. The threshold theorem

iii. Erasure error models

iv. The Markov chain description of error 
correction

v. Symmetries in the code and redundancy in 
the Markov chain



Quantum error correction

Given spatially uncorrelated errors, data can be 
protected if encoded into a specific subspace of 
a larger Hilbert space.

Usually this is done with stabilizer codes

where the 2D qubit Hilbert space is encoded 
into the common +1 eigenspace of a set of 
mutually commuting Pauli operators

Correction is performed by projecting into this 
subspace by measurement, and pushing the state 
back into the +1 eigenspace



The correction circuitry



Fault-tolerant operations

Aside from encoding the data, we must also 
encode operations, so that data can be 
protected at all times.

CSS codes are a subset of stabilizer codes 
that can be described by generators made up 
of only    s or   s

These codes have a very simple 
construction for encoded operations in 
the Clifford group, and thus are very well 
suited for FTQC.
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Erasure threshold theorem

After one level of encoding, the error rate can 
be higher or lower.  For a                   code,

is the encoded error rate. The break even 
point is called the error threshold for the given 
model

If we are below the threshold, we have efficient 
use of resources.
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Threshold estimation
Exact calculation of the error recursion relation 
is very complex if done naively

requires tracking propagation of all the errors

Most common method of estimating the 
threshold is via Monte Carlo simulation

which is slow for low error probabilities

and even more so for error models with 
multiple parameters, since they require 
simulation of multiple encoding levels [STD]



Erasures vs. general errors

Classically an erasure corresponds to 
complete loss of information at a known 
location

In QT, it corresponds to some type of state 
corruption at a known location
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Correcting Erasures

Correction is greatly simplified by knowledge 
of error locations

we only need to measure stabilizers that 
act non-trivially on the error

We can also continue correcting until we are 
certain the data is error free, or that it is 
uncorrectable.

This is not an unreasonable error model

see Linear Optics QC proposal [KLM]



Tracking Errors

Say we have a universal set of Q operations.

The error model tells us how an error affects 
each of these fundamental operations.

Notice that 

we only track the error, not the state of the 
data.

we assume the error model is independent of 
the qubit position.
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Markov Chain

The error model, in this form, can describe 
transition probabilities between erasures

as well as the initial distribution of erasures from 
state preparation

So we can compute all error probabilities
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The Threshold

Define the transition matrix for error 
correction

Given the initial error distribution     , the 
distribution after    rounds of error 
correction is given by

The probability of encoded error, e.g.            
is then given by the sum of erasure patterns 
that correspond to

We can calculate error probabilities at any 
level of encoding!
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The Cost

It is easy to see that the Markov chain is 
exponentially large in the number of qubits.

2187 elements for         and 7 qubits. 

But there is a lot of symmetry that we are 
ignoring:

the error model is “symmetric”.

in the [[7,1,3]] CSS code, e.g., all single 
qubit erasures have very similar transition 
probabilities
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Symmetries in error correction

Some permutations of the qubits leave the 
code space unchanged

similar to elementary row operations in 
matrices

The group generated by these permutations 
is called the autopermutation group of the 
code. Formally, 

AutPerm(C) = {π|π ∈ Sn, 〈πGiπ
†〉 = 〈Gi〉}



Equivalence of errors

We say that two Pauli operators        are 
equivalent           if

Equivalence can be similarly defined for 
erasure patterns:

two erasure patterns        are equivalent if           
there is a                         which is a 
bijection between the Pauli 
decompositions of 
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Operational Equivalence

If we require that the error correction 
circuitry have the same symmetries, that is

measure stabilizer     to correct erasure    
and measure stabilizer          to correct 
erasure 

then the transition probabilities from 
equivalent erasures are identical

and the Markov chain description of the 
error model becomes significantly smaller!
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The reduced cost

With        and the [[7,1,3]] CSS code, we go 
from 2187 elements to 11 
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The gains

The run time of the method I described is 
independent of the error probabilities

does not supper from the long simulation times 
that can be a problem in Monte Carlo simulations.

Even in error models with multiple parameters, one 
can find true thresholds exactly.

Numerical approximations can be easily made, given 
the simplicity of Markov chains.



Questions?


