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OverviewOverview

I will discuss the following points:

1. Quantum Error Correction
2. The Stabilizer Formalism
3. Clifford Group Quantum Computation
4. Magic States
5. Derivation of the Distillation Algorithm
6. Present & Future Work
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1.1 Quantum Error Correction1.1 Quantum Error Correction

The purpose of quantum error correction is 
to encode qubits redundantly so that they 
may be recovered in the event of an error.

For example, we might use the encoding

α|0〉 + β|1〉 → α|000〉 + β|111〉

This state is resilient against a single bit-flip 
error (i.e., the Pauli X operator) on any of 
the three qubits.
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1.2  The Three Qubit Code1.2  The Three Qubit Code

Consider the encoding

|ψenc〉 = U(α|0〉 + β|1〉)|00〉 = α|000〉 + β|111〉

Since a bit-flip error could occur on any qubit,
our possible output states after decoding are
No error: U†(α|000〉 + β|111〉)   =   (α|0〉 + β|1〉)|00〉
Qubit 1 flip: U†(α|100〉 + β|011〉)   =   (α|1〉 + β|0〉)|11〉
Qubit 2 flip: U†(α|010〉 + β|101〉)   =   (α|0〉 + β|1〉)|01〉
Qubit 3 flip: U†(α|001〉 + β|110〉)   =   (α|0〉 + β|1〉)|10〉

Now we only need measure the ancilla qubits in the computational basis 
{|0〉, |1〉} to determine which error occurred.
Note that this encoding protects against bit-flip errors but not phase-flip 
errors (the Pauli Z operator). To protect against bit-flip and phase-flip 
errors, more ancillas are necessary!
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2.1 The Stabilizer Formalism2.1 The Stabilizer Formalism

The “stabilizer” for a state |ψ〉 is defined as the group of operators 
{Si} for which Si|ψ〉 = |ψ〉. For example, the stabilizer for the state 
|0〉 is {I, Z} since I|0〉 = |0〉 and Z|0〉 = |0〉.

To begin to see how this formalism is useful to understanding 
quantum error correction, again consider the encoding:

(α|0〉 + β|1〉)|00〉 → α|000〉 + β|111〉.

The state |ψ〉 is initially stabilized by the group of operators
{III, IIZ, IZI, IZZ}.

The encoded state |ψenc〉 is stabilized by the group of operators
{III, ZIZ, ZZI, IZZ}.
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2.2 Stabilizer for the Three Qubit Code2.2 Stabilizer for the Three Qubit Code

It is straightforward to determine what the stabilizer is for the 
encoded state |ψenc〉, even for more complicated encoding circuits. 
Just put each operator in the stabilizer group through the circuit 
and see what comes out!

For the three qubit code, (α|0〉 + β|1〉)|00〉 → α|000〉 + β|111〉, the 
mapping between unencoded and encoded stabilizer elements is

III → ΙΙΙ
IIZ → ΖΙΖ
IZI → ΖΖΙ
IZZ → ΙΖΖ

By choosing circuits with very specific encoded stabilizers, we can 
do quantum error correction.
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2.3 How (Non2.3 How (Non--Degenerate) Codes WorkDegenerate) Codes Work

Step 1: Begin with an arbitrary qubit |ψ〉 and several ancilla qubits 
|00…0〉. This state is stabilized by the identity acting on |ψ〉 and any 
permutation of identities and Pauli Z operations acting on the ancillas.

Step 2: Encode to a state with a stabilizer having the property that 
every one-qubit transformation results in a state with a new, 
unique stabilizer.
Step 3: Decode the state and measure the ancillas. If all of the 
ancillas are in the |0〉 state, we know that either no error occurred or 
that at least two errors occurred (which we cannot fix!). If one error 
occurred, some of the ancillas will be in the |1〉 state. Each permutation 
of |1〉’s will represent a different output stabilizer, and therefore a 
different single qubit error which can now be corrected. The 
permutations of outputted |1〉’s is called the “error syndrome”.
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2.4 So How Many 2.4 So How Many AncillasAncillas Already?Already?

Each qubit may suffer one of three errors: a bit-flip error (X), a 
phase-flip error (Z), or both (Y). Obviously we must also account 
for the possibility of no errors, so for n qubits there are 3n+1
possible outcomes. Since the n-1 ancillas can denote no more than 
2n-1 distinguishable states, we require:

3n + 1 ≤ 2n-1.
The equality is satisfied when n = 5, so quantum error correction 
on one qubit requires at least four ancilla qubits.

But what, you may wonder, if the error is not merely an X, Y, or Z 
Pauli operator, but some superposition of all three? By measuring 
a superposition of errors in the {X, Y, Z} basis we collapse it into 
just one of the three possible errors, and the problem is resolved!
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2.5 A 2.5 A ““PerfectPerfect”” Five Qubit Code Five Qubit Code [[33]]
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The “Clifford Group” scheme for quantum computation is 
constructed from the following three primitives:

1. Preparation of qubits in the |0〉 state.
2. Application of unitary operations from the Clifford Group.
3. Measurement of qubits in the X, Y, and Z bases.

The Clifford Group is the group of operators which maps the Pauli
Group {I, X, Y, Z} onto itself. It is defined by the generators

C = {H, S, cnot, ⊗, •},
where

But this model for quantum computing can be simulated 
efficiently on a classical computer [1,2], and is therefore not a 
prototype for universal quantum computation!

3.1 Clifford Group Quantum Computation3.1 Clifford Group Quantum Computation
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3.2 A Modification to Clifford for UQC3.2 A Modification to Clifford for UQC

The Clifford Group model is a “nice” model, since it has been 
shown that it is straightforward to implement fault-tolerantly 
using known error correction algorithms. It is therefore of interest 
to find a simple modification to the Clifford model that can also 
be implemented fault-tolerantly and will allow universal quantum 
computation.

It can be shown [4] that an additional primitive such as
4. Preparation of qubits in the state

is sufficient to allow quantum computation. (This ancilla is not unique!).

It is therefore of significant interest to find fault-tolerant methods of 
preparing qubit states such as the one above.

1)sin(0)cos( 88
ππ +
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In quant-ph/0403025, Bravyi & Kitaev demonstrate an ingenious 
method for purifying such states, granted that they can already be 
prepared approximately. They examine two states specifically,

and

|T〉 = cos(β)|0〉 + eiπ/4sin(β)|1〉,    

These are the so-called “magic states”, since they can be purified using 
Bravyi & Kitaev’s algorithm and can be added as ancilla qubits to the 
Clifford model to allow universal quantum computation.

3.3 3.3 BravyiBravyi & & KitaevKitaev’’ss (Partial) Solution(Partial) Solution
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These are eigenstates of

with eigenvalues
T |T0〉 = eiπ/3|T0〉,

T |T1〉 = e-iπ/3|T1〉.

Geometrically, T is a -120°
rotation about the XYZ-axis 
of the Bloch sphere.

4.1 Magic States4.1 Magic States

,
11

2
1HST ⎥

⎦

⎤
⎢
⎣

⎡
−

=⋅=
ii

Here we will examine the so-called “T-type” magic states:
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Consider the pure states |T0〉 and |T1〉 as density matrices:

Suppose, however, that we cannot prepare |T0〉 and |T1〉 perfectly. 
Instead, let us prepare partially mixed states that are approximations to 
|T0〉 and |T1〉:

where 0 ≤ p ≤ 1. When p = 1, a state is pure. When p = 0, it is the 
completely mixed state. In general, we can write these mixed states as 
sums of |T0〉〈T0| and |T1〉〈T1| in the following way:

Using this notation, the completely mixed state is

4.2 On the Notation4.2 On the Notation
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4.3 The Circuit4.3 The Circuit

The purification circuit takes five approximately prepared 
“magic states” and probabilistically returns an improved one:

1100T TTεTT)ε1()ε(ρ +−=( ) .173.01εwhenεε,Here 7
3

2
1 ≈−<<'
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4.4 The Algorithm4.4 The Algorithm

The purification algorithm itself quite straightforward:
1. Prepare five identical qubits in the state

ρT(ε) = (1-ε)|T0〉〈T0| + ε|T1〉〈T1|
2. Apply the decoding operation of the five qubit error 

correcting code with the stabilizer generated by
{IXZZX, XIXZZ, ZXIXZ, ZZXIX}.

3. Measure the ancilla qubits in the computational basis. If the 
syndrome |0000〉 is measured, the output state is

ρT′(ε′) = ε′|T0〉〈T0| + (1-ε′)|T1〉〈T1|
where

4. Repeat the algorithm recursively until enough qubits of the 
desired purity have been produced.
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5.1 Why Does It Work?5.1 Why Does It Work?

The most important thing to realize is that although 
T is a member of the Clifford Group, its eigenstates 
|T0〉 and |T1〉 can be used as ancillas to make quantum 
gates that are not!

Encoded Stabilizer
I I I I I

I X Z Z X
X I X Z Z
Z X I X Z
Z Z X I X
X Z Z X I
I Z Y Y Z
Z I Z Y Y
Y Z I Z Y
Y Y Z I Z
Z Y Y Z I
I Y X X Y
Y I Y X X
X Y I Y X
X X Y I Y
Y X X Y I

Since T is a -120° rotation 
about the XYZ-axis,
TXT† = Z, TZT† = Y, TYT† = X.

As a result, T⊗5 commutes with 
the stabilizer shown to the right:

T⊗5{Si} = {Si}T⊗5.
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Not only does T⊗5 commute with the stabilizer, it turns out that 
T⊗5 = Tenc. To see this, examine |T0enc〉 and |T1enc〉 closely:

It is clear that  T⊗5|T0enc〉 = eiπ/3|T0enc〉 and  T⊗5|T1enc〉 = e-iπ/3|T1enc〉, 
and since T⊗5 commutes with the stabilizer (i.e., it does not bring states 
into or out of the encoded subspace), we know that Tenc = T⊗5.
(Note, however, that Tenc is not unique!)

5.2 T is Transversal5.2 T is Transversal
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Now, we see that the mixed state ρT(ε)⊗5 = [(1-ε)|T0〉〈T0| + ε|T1〉〈T1|]⊗5

is closely related to the encoded states |T0enc〉 and |T1enc〉. When we 
decode and measure the ancilla qubits, if we obtain the “no error”
syndrome |0000〉 then we know we have projected the state onto the 
(decoded) stabilizer subspace.
Of course, it makes no difference whether we project onto the 
stabilizer subspace before or after we decode, since decoding is just 
a basis transformation from one stabilizer subspace to another.
So, let’s consider the effect of projecting the state ρT(ε)⊗5 directly 
onto the stabilizer subspace without decoding first. Our stabilizer 
projector, Π, can be defined in a few equivalent ways:

5.3 Projecting onto the Stabilizer5.3 Projecting onto the Stabilizer
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Recall that Π = |T0enc〉〈T0enc| + |T1enc〉〈T1enc| and that

Our initial state is ρT(ε)⊗5 = [(1-ε)|T0〉〈T0| + ε|T1〉〈T1|]⊗5:

ρT(ε)⊗5 = (1-ε)5|T00000〉〈T00000| +  ε(1-ε)4( |T00001〉〈T00001| +… )

+ ε2(1-ε)3( |T00011〉〈T00011| +… )  +  ε3(1-ε)2( |T00111〉〈T00111| +… )
+ ε4(1-ε) ( |T01111〉〈T01111| +… )  +  ε5|T11111〉〈T11111|

Since Π contains no terms like |T00001〉〈T00001| or |T01111〉〈T01111|, these 
terms in ρT(ε)⊗5 will be annihilated.
Terms like |T00011〉〈T00011| and |T11111〉〈T11111| will project to |T0enc〉〈T0enc|.
Terms like |T00111〉〈T00111| and |T00000〉〈T00000| will project to |T1enc〉〈T1enc|.
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We showed that the projector Π = |T0enc〉〈T0enc| + |T1enc〉〈T1enc| maps 
every term in ρT(ε)⊗5 to either |T0enc〉〈T0enc| or |T1enc〉〈T1enc|. Thus,

ρT′enc(ε′) = Ν(ε)ΠρT(ε)⊗5Π = ε′|T0enc〉〈T0enc| + (1-ε′)|T1enc〉〈T1enc|

where N(ε) is the appropriate normalization after projecting.
All that remains to be done is to find the value of ε′. It is given by 
the square of the “fidelity” of ρT(ε)⊗5 with |T0enc〉 and |T1enc〉:

Thus,

5.5 The New Coefficients5.5 The New Coefficients
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Of course, purification will only occur for values of ε for which ε′
(recursively) converges to either 0 or 1.

5.6 Graph of 5.6 Graph of εε′′ vs. vs. εε
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Do not think that this procedure will purify the eigenstate of just 
any operator with the property Uenc = U⊗5. When we project, the 
coefficients of the old density matrix must be rearranged just right
for there to be an improvement to the new ones.

5.7 Magic! 5.7 Magic! 

The states |0〉 and |1〉 are 
eigenstates of Z, and 
though Zenc = Z⊗5 for 
this stabilizer, the state 
ρ0(ε) = (1-ε)|0〉〈0| + ε|1〉〈1| 
will not purify using 
this method, as shown 
in the graph.
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We are currently developing an NMR implementation of 
the distillation algorithm using 13C labeled trans-crotonic
acid. Though a universal set of gates can already be done 
using NMR, this serves as an excellent proof-of-concept 
and a good test of our apparatus’s precision. 

6.1 Implementation6.1 Implementation

The methyl group (H3) and the four 
carbons will be used to perform one 
iteration of the five-qubit algorithm.
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The mixed state is prepared 
along the Z-axis, and then 
rotated into the T-basis. 
The distillation algorithm 
is performed, and the 
output on the post-selected, 
purified pseudo-qubit is 
measured.

6.2 The NMR Circuit 6.2 The NMR Circuit 

The distillation circuit 
is a modification to 
the one shown in [5].



26
Institute for Quantum ComputingInstitute for Quantum Computing

While it remains uncertain whether Bravyi & Kitaev’s model can 
be of use for devising a practical quantum computer, it provides a 
fascinating example of the emergent properties of multi-qubit 
systems. We are left with a number of interesting questions:

1. Is there a compact way to characterize the states that can   
be purified using a given stabilizer?

2. Could such an algorithm have any other useful properties 
(e.g., state purification when measurements are not ideal)?

3. What other surprising uses might error correcting circuits 
have, in general?

6.3 Future Work 6.3 Future Work 
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