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Quantum Information Theory

Born out of Classical Information Theory

Mathematical theory of storage, transmission & processing of information

Quantum Information Theory: how these tasks can be accomplished using
quantum-mechanical systems

as information carriers (e.g. photons, electrons,…)
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The underlying
quantum mechanics

distinctively new features

• improve the performance of certain 

information-processing tasks

• accomplish tasks which are
impossible in the classical realm !

as well as

These can be exploited to:



Classical Information Theory: 1948, Claude Shannon

 He posed 2 questions:

 (Q1) What is the limit to which information

can be reliably compressed ?
 relevance: there is often a physical limit 
to the amount of space available for storage 
information/data – e.g. in mobile phones

 information = data =signals= messages = outputs  of a source

 (Q2) What is the maximum amount of information that can 
be transmitted reliably per use of a communications 
channel ?

 relevance: biggest hurdle in transmitting info is presence 
of noise in communications channels, e.g. crackling 
telephone line,



Classical Information Theory:1948, Claude Shannon

 He posed 2 questions:

 (Q1) What is the limit to which information

can be reliably compressed ?

 (A1) Shannon’s Source Coding Theorem: 
data compression limit = Shannon entropy of                

the source

 (Q2) What is the maximum amount of information that can 
be transmitted reliably per use of a communications 
channel ?

 (A2) Shannon’s Noisy Channel Coding Theorem: 
maximum rate of info transmission: given in terms of the

mutual information



 rarer an event, more info we gain when we know it has occurred

What is information?

 Shannon: information 

 Information gain  = decrease in uncertainty of an event

Surprisal or Self-information:

uncertainty

 measure of information measure of uncertainty

 Consider an event described by a random variable (r.v.)

( )X p x x J (finite alphabet)(p.m.f);

 A measure of uncertainty in getting outcome       :

( ) : log ( )x p x  

 only depends on                -- not on values         taken by
 continuous; additive for independent events

( )p x X

 a highly improbable outcome is surprising!
2log log

x

x



Shannon entropy = average surprisal

 Defn: Shannon entropy            of a discrete r.v. ( ),X p x( )H X

( ) ( ( )) ( ) log ( )
x J

H X X p x p x


   

 Convention: 0log 0 1
0

lim log 0
w

w w




2log log

(If an event has zero probability, it does not contribute to the entropy)

: a measure of uncertainty of the r.v. 

 also quantifies the amount of info we gain on average
when we learn the value of 

( )H X X

  ( ) ( ) ( )XH X H p H p x 

x J

X

 ( )X x J
p p x






 Example:  Binary Entropy

{0,1}J ( )X p x

( ) log (1 ) log(1 )H X p p p p    

(0) ;  (1) 1 ;p p p p  

( )h p

0 1p x   ( )h p

p

( ) 0h p 
1 0p x   no uncertainty

0.5 :p  maximum 
uncertainty

( ) 1h p 

Concave function of

Properties

pContinuous function of



Operational Significance of the Shannon Entropy

= optimal rate of data compression for a 
classical memoryless (i.i.d.) information source 

Classical Information Source

 Outputs/signals : sequences of letters from a finite set

: source alphabet

(i) binary alphabet                 

(ii) telegraph English : 26 letters + a space

(iii) written English : 26 letters in upper & lower case + punctuation

{0,1}J 

J

J



Simplest example: a memoryless source
 successive signals: independent of each other

characterized by a probability distribution

On each use of the source, a letter emitted with prob

 ( )
u J

p u


( )p uu J

Modelled by a sequence of i.i.d. random variables

( )iU p u1 2, ,..., nU U U u J

 Signal emitted by        uses of the source:

( ) ( ),     1 .kp u P U u u J k n     

n

( ) : ( ) log ( )
u J

H U p u p u


  Shannon entropy of the 
source:

( )
1 2( , ,..., ) n

nu u u u u 

1 1 2 2( ) ( , ,..., )n np u P U u U u U u    1 2( ) ( )... ( )np u p u p u



(Q) Why is data compression possible?

(A) There is redundancy in the info emitted by the source

-- an info source typically produces some outputs more 
frequently than others:

--during data compression one exploits this redundancy in the 

data to form the most compressed version possible

In English text ‘e’ occurs more frequently than ‘z’.

 Fixed length coding:

 Variable length coding:

-- identify a set of signals which have high prob of occurrence: typical signals

-- assign unique fixed length (l) binary strings to each of them

-- all other signal (atypical) assigned a single binary string of same length (l)

-- more frequently occurring signals (e.g ‘e’) assigned shorter descriptions 
(fewer bits) than the less frequent ones (e.g. ‘z’)



Typical Sequences

 Defn: Consider an i.i.d. info source : 

sequences 0, 
1 2, ,... ;   ( ) ;  nU U U p u u J

For any 1 2: ( , ,... ) n
nu u u u J  for which

( ( ) ) ( ( ) )
1 22 ( , ,... ) 2 ,n H U n H U

np u u u     

where

are called          typical sequences

( )H U 
 

Shannon entropy of the source

( ) :nT  typical set = set of           typical sequences   

 Note: Typical sequences are almost equiprobable

( ) ,nu T  ( )( ) 2 nH Up u 



(Q) Does this agree with our intuitive notion of typical sequences?

(A) Yes! For an i.i.d. source : 

1 2, ,... ;  
 ( ) ;  

nU U U
p u u J

A typical sequence of length

is one which contains approx.            copies of              

 Probability of such a sequence is approximately  given by
( ) log ( )

( ) ( ) log ( ) ( ) =  2 2u J

p u p u
np u np u p u

u J u J
p u 

 


   

( )2 nH U

( ) np u  u J ,u
,n1 2: ( , ,... )nu u u u

( ) ,nu T  ( )( ) 2 nH Up u 

1 2, ,... ;   ( ) ;  n iU U U U p u u J



Properties of the Typical Set
( )nT

 Let               : number of typical sequences

: probability of the typical set ( )nP T

( )nT

 Typical Sequence Theorem: Fix then

and        large enough,

 ( ) 1nP T  

( ( ) ) ( ) ( ( ) )(1 )2 2n H U n n H UT 
    

0,  0, 

n

 sequences in the atypical set rarely occur

 typical sequences are almost equiprobable

( ) ( )n n nJ T A   

atypical set
 ( )nP A 

(disjoint union)



Operational Significance of the Shannon Entropy

[ min. # of bits needed to store the signals emitted
per use of the source] (for reliable data compression)

 Optimal rate is evaluated in the asymptotic limit n 
n  number of uses of the source 

( ) 0 ;  n
errorp n 

( )H U

 (Q) What is the optimal rate of data compression for 
such a source?

 One requires

 (A) optimal rate of data compression =

Shannon entropy of the source



When is this a compression scheme?

Compression-Decompression Scheme

Suppose                                                 is an i.i.d. information

Shannon entropy                ( )H U
1 2, ,... ;   ( ) ;  n iU U U U p u u J

source

:R A compression scheme of rate

 Decompression:

 Average probability of error: 

 Compr.-decompr. scheme reliable if

1 2: : ( , ,... )nn u u u uE 1 2: ( , ,... )
nmx x x x

nJ
 0,1 nm

 : 0,1 nm
nD nJ

( )n
avp

( ) 0n
avp  as n 

lim n

n

m R
n



 ( ) ( ( ))
u

n np u P u u  D E



 Shannon’s Source Coding Theorem:

Suppose                                                 is an i.i.d. information

Shannon entropy                

 Suppose                  : then there exists a reliable compression 

scheme of rate for the source.

 If                      then any compression scheme of rate 

will not be reliable.

( )H U
1 2, ,... ;   ( ) ;  n iU U U U p u u J

source

( )R H U
R

( )R H U R



 Shannon’s Source Coding Theorem:

Suppose                                                 is an i.i.d. information

Shannon entropy                

 Suppose                  : then there exists a reliable compression 

scheme of rate for the source.

( )H U
1 2, ,... ;   ( ) ;  n iU U U U p u u J

source

( )R H U
R

Sketch of proof

(achievability)



Shannon’s Source Coding Theorem (proof contd.)

 If                      then any compression scheme of rate 

will not be reliable.

( )R H U R

Proof follows from:

(converse)

 Lemma: Let            be a set of sequences                      

of length        of size                    ,   where           is fixed.

Each sequence           is produced with prob.

Then for any             and sufficiently large       ,

if          is a set of at most       sequences with            , then with a 
high probability the source will produce sequences which will not lie in 
this set. 

Hence encoding         sequences                     reliable data compression 

( )nS ( )
1 2: ( , ,... )n

nu u u u
( ) 2n nRS ( )R H U

( )( )np u( )nu
n

n0, 

( )

( )

( )

( )
n

n

u n

p u 



S

 2nR ( )R H U

2nR

( )nS



Entropies for a pair of random variables

 Consider a pair of discrete random variables

( ) ;  XX p x x J ( ) ;  YY p y y J

Given their joint probabilities

& their conditional probabilities

( , ) ( , ) ;  P X x Y y p x y  

( | ) ( | ) ;  P Y y X x p y x  

and

 Joint entropy:

 Conditional entropy:

( , ) : ( , ) log ( , )
X Yx J y J

H X Y p x y p x y
 

  

( | ) : ( ) ( | )
Xx J

H Y X p x H Y X x


  ( , ) log ( | )
X Yx J y J

p x y p y x
 

  

( , ) ( | ) ( )H X Y H Y X H X  Chain Rule:



Entropies for a pair of random variables

 Relative Entropy: Measure of the “distance” between two 

probability distributions 

 not symmetric;

 does not satisfy the triangle 
inequality

convention:

 BUT not a true distance

( )( || ) : ( ) log
( )x J

p xD p q p x
q x

 
  

 


00log 0  ;  log   0
0
uu u

u
          
   

   ( )  ;  ( )
x J x J

p p x q q x
 

 

( || ) 0D p q 

( || ) 0D p q  if & only if p q



Entropies for a pair of random variables

 Mutual Information: Measure of the amount of info one 

r.v. contains about another r.v. 

,

( , )( , ) :  ( , ) log
( ) ( )x y

p x yI X Y p x y
p x p y

 
  

 


( ),  ( )X p x Y p y 

( : ) ( || )XY X YI X Y D p p p

     ,
( , ) ;  ( ) ;  ( )XY X Yx y x y

p p x y p p x p p y  

( : ) ( ) ( ) ( , )I X Y H X H Y H X Y  
( ) ( | )H X H X Y 
( ) ( | )H Y H Y X 

 Chain rules:



Properties of Entropies

Let                                 be discrete random variables: Then,( ),  ( )X p x Y p y 

 with equality if & only if       is deterministic

 if 

( ) 0,H X  X
( ) log ,H X J x J

( | ) 0,H Y X  ( , ) ( ),H X Y H Y

( , ) ( ) ( ),H X Y H X H Y 

( : ) 0I X Y 

( (1 ) ) ( ) (1 ) ( ),X Y X YH p p H p H p       

 Subadditivity:

 Concavity: if          &          are 2 prob. distributions,Yp

 or equivalently

 with equality if & only if           &     

are independent

X Y

Xp



 So far…….

 Classical Data Compression: answer to Shannon’s      question

 Classical entropies and their properties

(Q1) What is the limit to which information can be reliably

compressed ?

(A1) Shannon’s Source Coding Theorem: 
data compression limit = Shannon entropy of the source            

1st



 (Q2) What is the maximum amount of information that can 
be transmitted reliably per use of a communications 
channel?

 Noise distorts the information sent through the channel.



input output

 To combat the effects of noise: use error-correcting codes

output input

noisy channel

 Shannon’s        question2nd

The biggest hurdle in the path of efficient transmission of info
is the presence of noise in the communications channel



To overcome the effects of noise: 

instead of transmitting the original messages,

-- the sender encodes her messages into suitable codewords

-- these codewords are then sent through (multiple uses of)

the  channel

Alice Bob

N
Alice’s
message

encoding decoding

uses of n
input output

nE nD Bob’s
inference

codeword 

: ( , ) :n n nC E D Error-correcting code:

( )nN



 The idea behind the encoding:

 To introduce redundancy in the message so that upon
decoding, Bob can retrieve the original message with a 
low probability of error:

 The amount of redundancy which needs to be added –
depends on the noise in the channel



 Memoryless binary symmetric channel (m.b.s.c.)

0

1

0              

1
p

p
1-p

1-p

 it transmits single bits

 effect of the noise: to flip 
the bit with probability  p

 Encoding: 0 000
1 111 codewords

 the 3 bits are sent through 3 successive uses of the m.b.s.c.

 Suppose 000 010

 Decoding : (majority voting)     010 0

(Bob receives)
m.b.s.c. 

Example

codeword

(Bob infers)

Repetition Code



 Probability of error for the m.b.s.c. :

 without encoding = p

 with encoding = Prob (2 or more bits flipped) := q

010
0 0 00

1 1 1 1  

 Prove: q < p if p < 1/2 -- in this case encoding helps!

 (Encoding – Decoding) : Repetition Code.

output of 3 uses 
of a m.b.s.c.

possible inputsinference



 Information transmission is said to be reliable if:
-- the probability of error in decoding the output 

vanishes asymptotically in the number of uses of the channel 

 the amount of information that can be sent 

per use of the channel

 Aim: to achieve reliable information transmission 

whilst optimizing the  rate

 The optimal rate of reliable info transmission:   capacity



Discrete classical channel

XJ 

 conditional probabilities ; 

 known to sender & receiver

( )nN
input output

( ) ( )( | )n np y x ( )n n
Yy J

( )nx
( )ny

( )n n
Xx J

N

( ) ( )( | )n np y x

input alphabet; output alphabetYJ 

Nuses of n



Correspondence between input & output sequences is not 1-1

 Shannon proved: it is possible to choose a subset of input 
sequences--

such that there exists only :
1 highly likely input corresponding to a given input

n
XJ n

YJ
( )nx

( )' nx

( )ny

 Use these input sequences as codewords



N
Alice’s

Alice Bob

Transmission of info through a classical channel

:M finite set of messages

noisy channel

( )nNmM

N

( )ny

Alice’s
message

encoding decoding

uses of n
input

( )nx
output

mM

nE nD
Bob’s
inference

output:
1 2

( ) ( , ,..., );  n
nx x x x codeword:

1 2
( ) ( , ,..., );  n
ny y y y

: ( , ) :n n nC E D Error-correcting code:

( ) ( )( | )n np y x( ) :nN



( )nNmM ( )ny

Alice’s
message

encoding decoding
input

( )nx
output

mM

 If

nE nD

 Info transmission is reliable if: Prob. of error 0

 Rate of info

transmission

n 

Bob’s
inference

 Aim: achieve reliable transmission whilst maximizing the rate

m m  then an error occurs!

as

 Capacity: maximum rate of reliable information 
transmission

number of bits of message transmitted 
per use of the channel

=

 Shannon: there is a fundamental limit on the rate of reliable 

info transmission ;  property of the channel



Memoryless (classical or quantum) channels

 action of each use of the channel is identical and it is 

independent for different uses

-- i.e., the noise affecting states transmitted through the 

channel on successive uses is assumed to be uncorrelated.

 Shannon in his Noisy Channel Coding Theorem:

-- obtained an explicit expression for the capacity of a

memoryless classical channel
( ) ( )

1

( | ) ( | )
n

n n
i i

i

p y x p y x






 Classical memoryless channel: a schematic representation

 ( | )p y x channel: a set of conditional probs.

N Y
input output

( | )p y x

( )X p x

,Xx J ,Yy J
x y

 ( )
( ) max ( : )

p x
C I X YN Capacity 

mutual informationinput distributions

( : ) ( ) ( ) ( , )I X Y H X H Y H X Y  

( ) ( ) log ( )
x

H X p x p x Shannon Entropy



 Shannon’s Noisy Channel Coding Theorem:

N Y
input output

( | )p y x

( )X p x

 For a memoryless channel:

Optimal rate of reliable info transmission      capacity

 ( )
( ) max ( : )

p x
C I X YN

Sketch of proof




