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Quantum Information Theory

Born out of Classical Information Theory

1

Mathematical theory of storage, transmission & processing of information

Quantum Information Theory: how these tasks can be accomplished using

guantum-mechanical systems
as information carriers (e.g. photons, electrons,...)

Quantum
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The underlying_ —;@ively new featuD
quantum mechanics

These can be exploited to:

- Improve the performance of certain
Information-processing tasks

- accomplish tasks which are
Impossible in the classical realm !
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= He posed 2 questions:
= (Q1) What is the limit to which information

can be reliably compressed ?
= relevance: there is often a physical limit
to the amount of space available for storage
Information/data - e.g. in mobile phones

= (Q2) What is the maximum amount of information that can
be transmitted reliably per use of a communications

channel ?

= relevance: biggest hurdle in transmitting info is presence
of noise In communications channels, e.g. crackling
telephone line,

= Information = data =signals= messages = outputs of a source
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= He posed 2 questions:

= (Q1) What is the limit to which information
can be reliably compressed ?

= (Al) Shannon’s Source Coding Theorem:

data compression limit = Shannon entropy of
the source

= (Q2) What is the maximum amount of information that can
be transmitted reliably per use of a communications

channel ?

= (A2) Shannon’s Noisy Channel Coding Theorem:

maximum rate of info transmission: given in terms of the
mutual information
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= Shannon: information —s==b—  ncertainty

= Information gain = decrease in uncertainty of an event
= measure of information <= measure of uncertainty

Surprisal or Self-information:
= Consider an event described by a random variable (r.v.)

X ~ p(X) (p.m.f); ° X € J (finite alphabet)
= A measure of uncertainty in getting outcome X
y(x)=—logp(x) e

= a highly improbable outcome is surprising!

log =log,

= rarer an event, more info we gain when we know it has occurred

= only dependson  P(X) -- notonvalues X takenby X
= continuous; additive for independent events
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= Defn: Shannon entropy H(X) of a discrete r.v. X ~ p(x),

Xed
H(X) =E(r(X)) == p(x)log p(x) log = log,
xed
= Convention: Olog0=1 - EviggwlogW:O

(If an event has zero probability, it does not contribute to the entropy)

H(X) : a measure of uncertainty of the r.v. X

= also quantifies the amount of info we gain on average
when we learn the value of ¥

H(X)=H(py)=H({p(x)}) Py ={P(X)} _
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X ~ p(x) J €{0,1} P(0) = p; p(1) =1-p;

H(X)=-plog p—(1-p)log(l-p) =h(p)

] 1.0 T
Properties I

o P=0=x=1 h(p)=0 h(p) +
P=1=Xx=0 no uncertainty I

O p:O5h(p):1 maximum

uncertainty

® Concave function of P

00 R S S |
® Continuous function of [
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Operational Significance of the Shannon Entropy

= optimal rate of data compression for a
classical memoryless (i.1.d.) information source

Classical Information Source

= Outputs/signals : sequences of letters from a finite set J

J :source alphabet
(i) binary alphabet J €{0,1}
(i1) telegraph English : 26 letters + a space

(1i1) written English : 26 letters in upper & lower case + punctuation



& CAMBRIDGE  Simplest example: a memoryless source
= successive signals: independent of each other

«characterized by a probability distribution { P(U)}__

=On each use of the source, a letter U € J emitted with prob P(U)

Modelled by a sequence of i.i.d. random variables
Uu,u,,. .U | U ~p) ueJ
p(u)=PU, =u), ued v1<k<n.

= Signal emitted by 1 uses of the source: Q — (u1’ uz,___, un) — Q(”)

p(u)=PU, =u,U, =u,,...,.U, =u,)=p(u,) p(u,)...p(u,)

= Shannon entropy of the H (U) '— —Z p(u) |Og p(U)

source.:
ued
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(A) There is redundancy in the info emitted by the source

-- an info source typically produces some outputs more
frequently than others:

In English text ‘e’ occurs more frequently than “z’.

--during data compression one exploits this redundancy in the
data to form the most compressed version possible

= Variable length coding:

-- more frequently occurring signals (e.g ‘e’) assigned shorter descriptions
(fewer bits) than the less frequent ones (e.g. ‘z’)

= Fixed length coding:
-- identify a set of signals which have high prob of occurrence: typical signals

-- assign unique fixed length (I) binary strings to each of them

-- all other signal (atypical) assigned a single binary string of same length (I)
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= Defn: Consider an 1.1.d. info source :
Uu,u,,.U.; pu);uel

Forany &>0, sequences U= (U,U,,...u )€ J" for which

2—n(H(U)+8) < p(Ul,Uz’---Un) < 2-”(H(U)—8)’

where H (U ) — Shannon entropy of the source

are called g — typical sequences

Tg(n) = & —typical set =set of & — typical sequences

s| Note: Typical sequences are almost equiprobable

vueT™, pu)=2""
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b .
u,u,,..U,;

VueT"”, p(u p(u) ; ue

(Q) Does this agree with our intuitive notion of typical sequences?

(A) Yes! Forani.i.d.source: U,U,,.U; U ~p();ueld

A typical sequence U= (U;,U,,...u.) of length N,

is one which contains approx. NP(U) copies of U, VUueJ

= Probability of such a sequence Is approximately given by

|
np(u) — np(u)log p(u) __ Ep(u)ogp(u)
~]] p(u) = 11 2 =2

ueld ueld
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(n) :
Tgn ‘ : humber of typical sequences

P(Tg(n)) . probability of the typical set

s Let

= Typical Sequence Theorem: Fix ¢£>0, then Vo >0,

and I large enough,
. P(T\”)>1-6

< 2n(H(U)+5)

O (1_5)2n(H(U)—8) < Tg(n)

— J" = Tg(“) U Aé”) = sequences in the atypical set rarely occur
P(A")<s

atypical set _ .
= typical sequences are almost equiprobable

(disjoint union)
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Operational Significance of the Shannon Entropy

= (Q) What is the optimal rate of data compression for
such a source?

[ min. # of bits needed to store the signals emitted
per use of the source] (for reliable data compression)

= Optimal rate is evaluated in the asymptotic limit N — o
N = number of uses of the source

(n)

error

\

= One requires —>0;:;NnN—>w

= (A) optimal rate of data compression = H (U)

Shannon entropy of the source
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Compression-Decompression Scheme

Suppose U,,U,,..U,; U, ~p(u); ueJ isani.i.d. information
Shannon entropy H (U ) source

= A compression scheme of rate R:

u mn
&y U= (U U, ,) X (% XXy, ) €101
cJ’ . m
When is this a com i ? im—- =R
pression scheme’ o
= Decompression: ¢ ;{0,1}”‘“ > " o

= Average probability of error: p{V= Z p(U)P (D, (E,(U)) =)

= Compr.-decompr. scheme reliable if pan) —0 as N—>®
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= Shannon’s Source Coding Theorem:

Suppose U,,U,,..U,; U, ~p(u); ued isani.i.d. information
Shannon entropy H (U ) source

= Suppose R > H (U): then there exists a reliable compression
scheme of rate R for the source.

= If R<H(U) then any compression scheme of rate R

will not be reliable.
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= Shannon’s Source Coding Theorem:

Suppose U,,U,,..U_; U ~p(u); ued isani.i.d. information
Shannon entropy H (U ) source

= Suppose R > H (U ): then there exists a reliable compression
scheme of rate R for the source.

Sketch of proof

(achievability) o
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=« If R<H(U) then any compression scheme of rate R
will not be reliable. (converse)

Proof follows from:
= Lemma: Let §™ be a set of sequences U™ = (U, U,,..u, )

of length n of size ‘S(”) < 2" where R<H(U) is fixed.

Each sequence u‘™ is produced with prob. p(u‘™)

Then for any o >0, and sufficiently large N
pu”) <&

uMes(n) ¢

— it isaset of at most™® sequences with R<H(U) , then with a
high probability the source will produce sequences which will not lie in
this set.

Hence encoding 2"*  sequences 74 reliable data compressiorn®
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= Consider a pair of discrete random variables
X ~p(x); xedy and Y ~p(y);yeld,

Given their joint probabilities P(X =X,Y =y)=p(X,y) ;
& their conditional probabilities P(Y =y | X =x) = p(y|X) ;

= Joint entropy: H(X,Y)::—Z Z p(x,y) log p(x,y)

Xe\]x yEJY

= Conditional entropy: ¢

H(Y [X):= > p(x)H(Y | X =X)==>" > p(x,y) log p(y|x)

XE‘JX XEJX yEJY

= Chain Rule: H(X,Y)=H( | X)+H(X)
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= Relative Entropy: Measure of the “distance” between two
probability distributions p={p(x)} . ; q={a(x)} .

pP(x)
D _ |
(plla)=>_ p(x) og(q( )j

xel

convention: 0log (gj =0 : ulog (%) =00 YUu>0
u

e D(pllg)=0

e D(pl|lg)=0 if&onlyif P=C
= Nnot symmetric;

= BUT not a true distance « does not satisfy the triangle
Inequality
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= Mutual Information: Measure of the amount of info one
r.v. contains about another r.v. X ~ p(x), Y ~ p(y)

. p(X, y)
1(X,Y):= I
e ;y:p(x 2 Og(p(x)p(y)j

I(X :Y) — D(va ” Px pY)
P ={ P Y5 Px ={P(X)} 5y ={P(Y)],

(X :Y)=H(X)+H(Y) =H(X,Y)
A(X) —H(X[Y)

=H(Y) -H(Y | X)

= Chain rules:
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Let X ~ p(x), Y ~ p(Y) be discrete random variables: Then,

= H(X)>0, with equality if & only if X is deterministic
« H(X) <log|d|,if xeJ °
= Subadditivity: H(X,Y)<H(X)+H(Y),

= Concavity: if Px & P are 2 prob. distributions,
H(pr +(1_l)pv)Zﬂ'H(px)"F(l_/l)H(pY)’
= H(Y | X) >0, orequivalently H(X,Y)>H(Y), ¢

= 1[(X:Y)20 withequalityif &onlyif X & Y

are independent
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= So far.......

. - ’ t -
= Classical Data Compression: answer to Shannon’s 1° question

(Q1) What is the limit to which information can be reliably
compressed ?

(A1) Shannon’s Source Coding Theorem:
data compression limit = Shannon entropy of the source

= Classical entropies and their properties
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= Shannon’s 2™ question

= (Q2) What is the maximum amount of information that can
be transmitted reliably per use of a communications

channel?

The biggest hurdle in the path of efficient transmission of info
IS the presence of noise in the communications channel

= Noise distorts the information sent through the channel.

input

noisy channel

output

output #* input

—>

= To combat the effects of noise: use error-correcting codes
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To overcome the effects of noise:

Instead of transmitting the original messages,

-- the sender encodes her messages into suitable codewords
-- these codewords are then sent through (multiple uses of)

the channel
Alice Bob
codeword
_ > encoding [— — N(n) > decoding-—?
Alice’s Input output Bob’s
message S N uses of N D, inference

s Error-correcting code: C,=(,,D,):
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= The idea behind the encoding:

= To Introduce redundancy in the message so that upon
decoding, Bob can retrieve the original message with a
low probability of error:

= The amount of redundancy which needs to be added -
depends on the noise in the channel
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Example

= Memoryless binary symmetric channel (m.b.s.c.)

= It transmits single bits

= effect of the noise: to flip
the bit with probability p

Repetition Code

codewords

= the 3 bits are sent through 3 successive uses of the m.b.s.c.

1_
O>p<i :
1 P > 1
1-p
= Encoding: o > 000
1 > 111
m S
HPPOse 000 m.b.s.c.
codeword

> 010

(Bob receives)

= Decoding : (majority voting)

010

> (0 (Bob infers)
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= Probability of error for the m.b.s.c. :

= without encoding = p

= With encoding = Prob (2 or more bits flipped) :=q

Inference possible inputs output of 3 uses
of am.b.s.c.

0" O®O T 010
1 < @1@ —

= Prove: q<pifp<1/2 -- In this case encoding helps!

= (Encoding - Decoding) : Repetition Code.
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= | Information transmission is said to be reliable if:
--| the probability of error in decoding the output
vanishes asymptotically in the number of uses of the channel

s [AIMm: to achieve reliable information transmission

whilst optimizing the

= the amount of information that can be sent

per use of the channel
—

= | The optimal rate of reliable info transmission: <capacity >

N~
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Discrete classical channel N
J, = input alphabet; J, =output alphabet

N uses of N

> (n) >
N output X(n)

input x"

= conditional probabilities ;

p(y™ [x™)

= known to sender & receiver
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Jy

= Shannon proved: it is possible to choose a subset of input

_ sequences--
such that there exists only :

— 1 highly likely input corresponding to a given input

= Use these input sequences as codewords
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J N %

Alice noisy channel Bob
M finite set of messages
(n)
me M x (M) y m' e M
>l encoding > N(n) > decoding |——>
Alice’s Input output _Bc;b S
inference
Message S N uses of N D,

(n) _ .
= codeword: X — (X11X2,---,Xn), (n) (n)
(n) .
output: y(”) =Y, Yoreens Vo ); NV p(y™™ | x*)

= Error-correcting code: C, =(&E,,D,):
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N
me M () y™ m'e M
> encoding | N > decoding |——>
Alice’s Input output _Bob S
message S P,  inference

= ITm =m then an error occurs!

= Info transmission is reliable if: Prob. of error—0 as N —> ®©

= Rate of info = number of bits of message transmitted

transmission per use of the channel -

= Aim: achieve reliable transmission whilst maximizing the rate
= Shannon: there is a fundamental limit on the rate of reliable

Info transmission ; property of the channel

= Capacity: maximum rate of reliable information
transmission
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= Shannon in his Noisy Channel Coding Theorem:

-- obtained an explicit expression for the capacity of a

memoryless classical channel n

p(y™ [ xX™) =] ] p(y; I %)

I=1

Memoryless (classical or qguantum) channels

= action of each use of the channel is identical and it is
Independent for different uses

-- 1.e., the noise affecting states transmitted through the
channel on successive uses Is assumed to be uncorrelated.
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= Classical memoryless channel: a schematic representation

X ~ p(x) Y
_ > N >
input X output Y
R (T R

= channel: a set of conditional probs. { P(Y| X)}

« Capacity| C(N) = max (X :Y)

AP} AN

input distributions mutual information

(X :Y)=H(X)+H(Y)=H(X.Y)
Shannon Entropy H(X)= —Z p(x)log p(x)
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= Shannon’s Noisy Channel Coding Theorem:

= For a memoryless channel:

X ~ p(x) Y
> N S

input OUtpUt

p(y [x)

Optimal rate of reliable info transmission = capacity

C(N)= max I(X:Y)
{P(¥)}

® Sketch of proof



