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Abstract

Quantum cryptography uses the quantum properties of individual photons to provide two

or more users with means to communicate securely and efficiently. Specifically, quantum

key distribution (QKD) focuses on the secure communication between two distant parties

and guarantees the security of a transmitted message between them. Although QKD is the

most mature application of quantum cryptography, applications of quantum mechanics in

communication systems are not limited to QKD and other cryptographic protocols can be

implemented as well.

This thesis focuses on the implementation of quantum cryptographic systems over de-

ployed fiber. A first QKD system was built and used to demonstrate the BB84 protocol over

deployed fiber between the University of Calgary and SAIT. The system implemented a novel

tool called quantum frames that allow for the quantum signals to be routed, for clock syn-

chronization, and for channel stabilization in a network scenario. The same system was used

to examine the scalability of the secret key generation rate in different steps of the process

in order to detect potential bottlenecks for key generation rate of high speed systems. A sec-

ond QKD system was developed to demonstrate the measurement-device independent QKD

protocol. The system worked over deployed fiber between the University of Calgary, SAIT,

and Foothills Hospital in the City of Calgary. The advantage of the measurement-device in-

dependent QKD protocol over previous QKD protocols is that it eliminates the possibility of

side-channel attacks that target single photon detectors used in QKD systems. This demon-

stration also involved the first demonstration of a Bell state measurement over deployed

fiber. Bell state measurements were further studied by using novel single photon detectors,

which allowed demonstrating a highly efficient Bell measurement. Finally, a cryptographic

protocol known as private queries was demonstrated between the University of Calgary and

SAIT. Quantum private queries were demonstrated for the first time over deployed fiber by

i



developing and implementing an error correction scheme to make the protocol noise and loss

tolerant.
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Chapter 1

Introduction

Secure communication is pivotal in our modern world. Current electronic communications

include the use of e-mail, e-banking, e-commerce, e-government, etc. The security of the

information transmitted is crucial for the users of these services. Modern cryptography,

in this thesis referred to as classical cryptography, protects this information by relying on

algorithms that are computationally difficult to break. The security of these algorithms is

not guaranteed however, as an eavesdropper with sufficient computational resources can still

break the algorithms and have unauthorized access to the private information that is being

transmitted. Quantum mechanics offers an exciting potential solution to this problem. If a

key can be generated and transmitted using quantum systems then, in principle, that key

can be distributed securely without requiring any assumptions on the computational power

of an eavesdropper. This is due to the fact that any measurement of a quantum system

disturbs its state, and because unknown quantum states cannot be copied. This promising

solution is called quantum key distribution (QKD). In this thesis I will present work on the

implementation and study of QKD systems and other quantum cryptographic protocols in a

real world environment using existing telecommunication components. This work was done

in the QC2 laboratory at the University of Calgary and experiments and measurements were

performed between the University of Calgary, SAIT Polytechnic and Foothills Hospital in

the City of Calgary.

1.1 Motivation

“Classical cryptography” relies on the use of ‘keys’ (specific sequence of bits) to encode and

decode private messages. The encoding of a message, which is assumed to be represented
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in binary form, makes it illegible to any party who does not have access to the private

key to decode it. In this way the security of a message in transmission through a public

channel depends on the security of the key that was used to encode it. An example of

the way cryptography is performed today is through the Rivest, Shamir, and Adleman

(RSA) encryption-decryption algorithm [1]. In RSA, when two parties want to communicate

securely, they use two keys, a private key and a public key. The sender encrypts the private

message using a public key and transmits the encrypted message through a public channel

to the receiver. The receiver uses the private key in order to decode or recover the message.

In order to have security, the communicating parties (users) need to find a mathematical

function that is easy to perform in one direction but hard to invert. These functions are

called one-way functions, an example is multiplication and factorization. It is easy to multiply

two large prime numbers, however it is hard (i.e. computationally demanding) to find the

prime factors of a large number. The security of the RSA algorithm, as well as other

classical encryption-decryption algorithms, is based on the assumption that the eavesdropper

has limited computational power and is not able to efficiently find a solution to a hard

mathematical problem (e.g. finding the prime factors of a large number) within a time

relevant to the security of the message. The algorithms that can only promise the security

of the message under assumptions about the computational power of the eavesdropper are

called computationally secure. The need for this assumption has the drawback that the the

security of the private message can not be proven. If the eavesdropper has access to more

computational power than assumed it is possible for her or him to find the private message

in a short time. Specifically, the algorithms are always breakable provided the eavesdropper

has enough computational time.

An alternative to computational security is to use an encoding-decoding algorithm for

which the security of the private message is independent of the computational power that

the eavesdropper has access to. These kinds of algorithms are called information theoretic
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secure, after Shannon who in 1949 introduced the concept of information theoretic security

[2]. The one-time pad [3] is an example of an information theoretic secure algorithm. In the

one-time pad, the sender and receiver share a secret random key. The secret key is composed

of a sequence of random bits and it must be as long as the message to be encrypted. The

sender encodes the private message with the random secret key via the addition modulo 2

of each bit of the message with a bit of the key. The receiver, who knows the random secret

key, decodes the encrypted message by adding it modulo 2 with the secret key. The security

of the one-time pad was mathematically proven by Shannon [2]. If implemented correctly,

the one-time pad can not be broken at any point, even if the eavesdropper has unlimited

computational power. The problem with the one-time pad is that the key has to be as long as

the message, random, kept secret, and it should be used only once for encryption. Without

these conditions, the security of the private message can not be proven. Hence, the problem of

secure communication between two parties translates into a problem of distributing random

secret keys between them.

Quantum key distribution (QKD) is a proposal to solve the problem of key distribution

between two distant parties. The first protocol for QKD was proposed in 1984 by Charles

Bennett and Gilles Brassard1, a protocol that is still widely used [4]. The goal of QKD is

to establish a secure key between two parties, typically named Alice (the sender) and Bob

(the receiver) who are communicating through a public channel. The idea behind QKD is

to use quantum properties of single photons (particles of light) to distribute a secure key.

These properties include the fact that the state of single photons are perturbed when they

are measured and that it is not possible to create a perfect copy of them (see chapter 2). If

Alice encodes information in single photons (quantum signals) and sends them to Bob, then

the two parties can establish an identical and random sequence of bits that is only known

to them and nobody else. This string of bits is typically simply referred to as a secret key.

An eavesdropper can try to intercept the photons in transmission and measure them, but it

1The protocol is now known as BB84.

3



is impossible to do so without leaving a trace. The eavesdropper cannot copy the quantum

signals either and therefore the security of the key in transmission is, in principle, guaranteed.

The eavesdropper, or third malicious party is normally referred to as Eve. The goal of Eve

is to obtain full or partial information about the key that is being distributed between Alice

and Bob. If Eve obtains information about the key then she can obtain information about

the private message, breaking the secure communication between Alice and Bob. Any errors

(discrepancies) found in the secret key are attributed to information about the key that Eve

has learned through some form of eavesdropping. Note that this means that Alice and Bob

can quantify the amount of information that the eavesdropper has about the key. If the

disturbance of the eavesdropper is below a specific limit, the information that Eve learned

can be removed through classical post-processing to an arbitrarily small amount (see chapter

3). The possibility to verify the security of the key before it is used for encoding is a feature

of QKD and is not possible with any classical protocol.

1.2 Background

The first implementation of QKD took place in 1989 and it was demonstrated by Bennett

and coworkers [5]. In the first demonstration, Alice and Bob were separated by only 30 cm, a

distance that cannot be considered practical for any real-world implementation. Despite all

the work done on QKD up to this point, the physics community remained isolated from the

results obtained since these were not presented in physics conferences or physics journals.

In 1991 A. K. Ekert proposed independently QKD [6], triggering the interest on QKD in

the physics community. The proposal by Ekert made use of entangled photons to perform

QKD. A source sends pairs of entangled photons to Alice and Bob. Each party measures the

photon received. Some of the photons are used to obtain a secret key, the rest of them are

used to perform a test (Bell inequality test). If the result of the test shows that there are

quantum correlations between the particles then Alice and Bob know that the photons used
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to obtain the key could not have been disturbed by eavesdropping. The eavesdropper does

not know which photons will be used to perform the test or to obtain the key as a result

she cannot measure the photons without being discovered by Alice and Bob. Since then

two approaches to implement QKD have developed, entanglement based QKD following the

proposal by Ekert and prepare-and-measure QKD according to the proposal by Bennett and

Brassard. Later on it was proven that both protocols are actually equivalent [7].

It is important to note that the protocols developed for QKD are noise and loss tolerant.

This means that a failure of the protocol will not be declared solely due to the inevitable

noise or loss of the communication channels. The resistance to loss is achieved by having Bob

announce to Alice which photons were measured and which ones were not. Noise tolerance

is achieved through the implementation of error correction protocols, just as in classical

communication systems. We will see later on that noise and loss tolerance are not always

straightforward to obtain, for example, this is the case in other cryptographic protocols in

which Alice and Bob are not cooperating. However, noise and loss tolerance are properties

that are needed in any protocol that intends to be implemented in the real world. The

experimental demonstration of QKD from 1989 motivated further research to perform QKD

over longer distances to demonstrate its practicality. The first QKD demonstration over a

real world link was in 1995 [8] and more implementations of QKD followed. At the same

time, developments of rigorous mathematical security proofs of QKD started to appear in the

literature. In 2000, the first proposal of a hacking attack that took advantage of loopholes in

some QKD implementations appeared [9]. The attack exploited the fact that perfect single

photons are rarely implemented, and instead optical pulses that have a very low probability of

having more than one photon are used. However, whenever there is more than one photon, it

is possible for the eavesdropper to “steal” one of the photons in the optical pulse and measure

it without leaving a trace for Alice and Bob. The proposal of this attack highlighted the

importance of, first, the need for a close collaboration between the experimental and theory

5



communities of quantum communication and, second, the development of security proofs

with realistic assumptions.

1.3 QKD implementations

The development of QKD has lead to different kind of encodings and protocols [10, 11]. There

are also commercial QKD systems [12, 13, 14] which are capable of distributing key over a

distance of ∼100 km. Newer protocols are designed to avoid as many assumptions as possible

about implementations. This provides higher security. At the same time efforts to extend

achievable distances and secret key rates are made both theoretically and experimentally.

QKD can be implemented using an optical fiber as a quantum channel or through free space.

This thesis will focus on implementations in optical fiber. Innovative QKD implementations

focus on having the following characteristics:

1. High secret key rates.

2. Straightforward integration of QKD systems into existing infrastructure of

communication networks.

3. Secure implementations. Loopholes in the implementation should be known

or avoided.

4. The secret key can be distributed for long distances (100 km -300 km)

In this thesis we address points 1, 2 and 3 for QKD implementations in a real world envi-

ronment. We also address experimentally the possibility of improving other cryptographic

protocols with quantum mechanics.

The need for high secret key rates becomes evident when one recalls that, in the one-

time pad, the length of the secret key must be the same as the length of the private message

that needs to be transmitted. Ideally, key rates in QKD should match bit rates in existing

6



communication systems (10-100 gigabits per second). So far, secret key rates in QKD are

limited by hardware, specifically by single photon detectors, and channel loss. However, one

must also foresee potential bottlenecks in QKD systems originating at various steps of the key

distribution process. This requires studies that analyze the performance of a QKD system

at different stages of the secret key distribution procedure. An analysis of the scalability

of secret keys is presented in chapter 5. This analysis is done to optimize the entire key

distribution process and to locate bottlenecks that can originate in high speeds systems.

In addition to commercial systems, there have also been several demonstrations of quan-

tum networks [15, 16, 17, 18] over dedicated fiber links. A quantum network consists of

dedicated optical fibers that interconnect individual parties, each with a QKD system. In

order to distribute a private message between two parties of the network, current quantum

networks establish pairwise secret keys, used to encode, decode, and again encode a mes-

sage while being transmitted from one node to the next. These networks work under the

assumption that every party involved in the network can be trusted as they have full ac-

cess to the message. However, for some applications, the assumption of trusted parties in

quantum networks may not be acceptable. Additionally, the economical expense required to

have dedicated optical fibers make mandatory the use of existing optical networks. In order

to integrate QKD into existing optical fiber networks we study tools that can be added to

QKD systems in order to facilitate this integration (see chapter 4). The tools also include the

capability to control parameters relevant in a network scenario. Additionally, the possibility

of all-optical routing of quantum information is explored to avoid assumptions about trusted

parties.

Implementations of QKD must be studied thoroughly before claiming information the-

oretic security. In particular, one must locate loopholes of security due to experimental

imperfections or side-channels through which information about the key is leaked. An ex-

ample of a side-channel is the occurrence of multiple photons (hence forward referred to as
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“multi-photon” pulses) in attenuated pulses emitted by a laser, a commonly used source in

QKD2. Multi-photon pulses can be exploited by Eve by intercepting one of the photons and

extracting information about the key [9]. Another example is the optical access that Eve

can have to Alice’s and Bob’s laboratory through the quantum channel that connects them.

Nothing prevents Eve from sending signals into their laboratories and the devices used in the

implementation [19, 20]. The eavesdropper can gain information about the key through the

back reflected light. It is therefore important to develop protocols that exclude side-channels

based on fundamental physical laws. A recently proposed protocol takes advantage of en-

tangling measurements, or Bell state measurements (see chapter 2) in order to distribute

a secret key. The benefit of this protocol is that detector side channels are automatically

closed, if they are operated by the eavesdropper. The implementation of this protocol over

deployed fiber is presented in chapter 6.

The extensive work on QKD has been proven successful, both theoretically and experi-

mentally. While QKD between two parties has received by far the most attention, there are

other kinds of cryptographic protocols that are also commonly employed for secure commu-

nication. An interesting question is whether other cryptographic protocols can also benefit

from quantum mechanics. This question is addressed in chapter 8 for private queries, an

application of the cryptographic primitive known as oblivious transfer. In oblivious transfer,

Bob wants to learn a bit from a collection of bits in Alice’s possession. However, Bob does

not want to reveal which bit he is interested in and at the same time, Alice does not want

to reveal the entirety of the bits in her possession. In chapter 8 we present the implemen-

tation of quantum private queries over deployed fiber. This required the development and

implementation of error correction to fulfill the requirements of noise and loss tolerance of

cryptographic protocols implemented in the real world.

2Attenuated laser pulses are commonly used in QKD implementations to replace single photon sources.
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1.4 This thesis

The application of quantum physics in areas such as cryptography can be beneficial, since

innovative or improved protocols can be developed. In particular, for key distribution the

use of quantum mechanics brings the possibility of having information theoretic secure pro-

tocols that are also possible to implement with current technology. The development of

QKD systems that are capable of working optimally over real world conditions is necessary.

Furthermore, the study and implementation of other cryptographic protocols assisted by

quantum mechanics is a natural extension of the field. The implementation of cryptographic

protocols like quantum private queries over the real world is necessary to trigger the devel-

opment of security proofs for this protocol, as it has been shown that improved performance

can be achieved when quantum systems are employed.

This thesis is concerned with real world implementations of QKD systems and quantum

private queries. In order to have a better understanding of this work I give a brief introduction

to quantum mechanics and QKD in chapters 2 and 3, respectively. The QKD systems are

used to study the tools that can be developed to integrate QKD in existing networks (chapter

4) and locate potential restrictions that will limit key rates in high speed systems when

improved technology is available (chapter 5). A new QKD protocol called measurement-

device independent QKD was demonstrated as well (chapter 6). This protocol requires

the implementation of a Bell-state measurement, which was implemented for the first time

over deployed fiber. The possibility for a highly efficient Bell state measurement is studied

in chapter 7. Finally I present the first implementation of quantum private queries over

deployed fiber in chapter 8. The thesis is also supplemented with appendices. Appendix

A gives a detailed description of the error correction protocol used throughout this thesis.

Appendix B gives a brief description of two of the most important security proofs developed

for QKD. Appendix C describes in detail the applications of quantum communication that

employ Bell state measurements. Appendix D contains the supplementary material of the
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implementation of the measurement-device independent QKD system (chapter 6). Finally,

appendix E contains the supplementary information to the quantum private queries work

(chapter 8).

The work contained within this thesis was done in collaboration with: Xiaofan Mo,

Philip Chan, Allison Rubenok, Josh Slater and Raju Valivarthi. I always participated in

the measurement process and setup of experiments however; my specific contributions are

adressed in the following chapters, in which these developments are described using published

paper supplemented by short introductions.
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Chapter 2

Elements of quantum cryptography

In this chapter I introduce some of the fundamental quantum concepts used in QKD. For

more complete discussions refer to [10, 11, 21].

2.1 Introduction

The classical unit of information is the bit, it can take the values 0 or 1 and it can be

identified with the state of a classical system (“on-of”). In the quantum counterpart the

unit of information is the quantum bit or qubit. A qubit can be implemented using a two-

level quantum system; that is to say a system described by two orthogonal basis states. In

mathematical terms, the state of a qubit is a normalized vector in a two-dimensional complex

vector space with an inner product 〈ψ|ψ〉 = 1. Unlike classical bits, qubits can also be in

a linear superposition of the basis states: |ψ〉 = α |0〉 + β |1〉 where α and β are complex

numbers that satisfy |α|2 + |β|2 = 1

Qubit states can be represented graphically by vectors on what is known as a Bloch

sphere, see figure 2.1. The convention is to represent the states |0〉 and |1〉 in the poles of the

sphere. In this representation any states lying on opposite sides of the sphere are orthogonal

and form a basis. Any point on the surface of the sphere, i.e. vector length of 1, corresponds

to a pure state. The coefficients α and β of a general qubit state can be parametrized as

cos(θ/2) ≡ α and eiφsin(θ/2) ≡ β,

|ψ〉 = cos
(θ

2

)
|0〉+ eiφsin

(θ
2

)
|1〉 . (2.1)

The states for which |α| = 1/
√

2 and |β| = 1/
√

2 lie on the equator of the sphere.
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Figure 2.1: Representation of a qubit on a Bloch sphere. An arbitrary qubit |ψ〉 is represented
by a point on the sphere defined by the angled θ and φ. The states |0〉 and |1〉 are represented
on the poles of the sphere. The states (|0〉 + |1〉)/2 and (|0〉 − |1〉)/2 lie on the equator of
the sphere, specifically on the X axis of the sphere.

2.2 Qubit preparation

There are different ways to create qubits. Any degree of freedom belonging to a two-level

quantum system can be used. The most relevant to this thesis are photons, which give rise

to the so-called photonic qubits. Different degrees of freedom of the photon can be used

to encode information, in this thesis we restrict ourselves to polarization and timing of the

photon, to form polarization and time-bin qubits respectively.

When using polarization, the two orthogonal basis states are |H〉 ≡ |0〉 and |V 〉 ≡ |1〉

where H and V refer to the horizontal and vertical polarization of the photon, respectively.

Moreover, a pair of linear superpositions of the basis states are defined, for example, by the

diagonal polarization states:

|+〉 =
1√
2

(|H〉+ |V 〉) (2.2)
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and

|−〉 =
1√
2

(|H〉 − |V 〉), (2.3)

in which the states |+〉 and |−〉 also form a basis.

In the case of time-bin qubits, the orthogonal basis states are |e〉 ≡ |0〉 and |l〉 ≡ |1〉,

where e and l label the creation time of the photon ‘early’ or ‘late’. If the time separation

between early and late states is longer than the coherence time of the photon then the

two different time windows, or time-bins, are well defined. If the photon is in a coherent

superposition of the two temporal |e〉 and |l〉 modes we can obtain the superposition states:

|+〉 =
1√
2

(|e〉+ |l〉),

|−〉 =
1√
2

(|e〉 − |l〉). (2.4)

2.3 Qubit measurement

Another difference between bits and qubits is the measurement process and result. When a

classical bit is measured it outputs one of two values, ‘0’ or ‘1’, according to the value that

the bit has.

A measurement on a qubit is different since measuring a qubit is only an attempt to

determine its state. When a quantum state |ψi〉 is measured, its state is projected (projection

measurement) onto the subspace |m〉 〈m|, where |m〉 is a label of the possible results of the

measurement. The probability of projecting onto |m〉 is given by:

p = |〈m |ψi〉 |2. (2.5)

This means that the result of the measurement depends on the basis chosen to measure the

qubit. For example if the state to be measured is |ψ〉 = |0〉 and we measure it in the basis

{|0〉 , |1〉} then it is projected onto the state |0〉 100% of the time. However, if the state to

be measured is |ψ〉 = |0〉 and we measure it in the basis {|+〉 , |−〉} then it is projected onto

the state |+〉 only with probability p = |1/
√

2|2 = 50%. Note that, when the basis states
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are |+〉 and |−〉, then the state |0〉 can be expressed |0〉 = (|+〉 + |−〉)/
√

2. In quantum

mechanics a measurement on a qubit disturbs or modifies its state and the quantum state

resulting from the measurement is the new state after the measurement.

Bennet and Brassard realized that they could use this fundamental property of quantum

states for cryptographic purposes. If the eavesdropper tries to obtain information about the

qubits while they are in transmission she must measure them. However, when performing

the measurement she changes the quantum state if the basis she chooses to measure is not

the same in which the qubit was prepared in, leaving a trace or creating an error that Alice

and Bob can detect. In addition, it is fundamentally impossible for Eve to measure a single

qubit in two different bases simultaneously.

2.4 Entanglement

If one considers two bits, then the four possible states of the bits are 00, 01, 10 and 11.

In the case of two qubits, the quantum state of the two independent qubits A and B is

represented as:

|ψA〉 ⊗ |ψB〉 ≡ |ψAψB〉 . (2.6)

As they are separable, these states are known as product states. When each of the quantum

states are a superposition of two orthogonal basis states, the product is written as:

|ψAψB〉 = (m |0A〉+ n |1A〉)⊗ (m′ |0B〉+ n′ |1B〉)

= M |0A0B〉+N |0A1B〉+ P |1A0B〉+Q |1A1B〉 , (2.7)

in which the coefficients M,N,P,Q are given by the multiplications mm′, mn′, nm′ and nn′

respectively. The states |0A0B〉, |0A1B〉, |1A0B〉, |1A1B〉 form a basis for two-qubit states.

However, there are two-qubit states states that cannot be written as a product state of

their individual systems. An example of this kind of states is the following:∣∣φ+
〉

=
1√
2

(|0A0B〉+ |1A1B〉). (2.8)
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When the quantum state shown above is measured, the value obtained from the measurement

on one particle is correlated to the value of the measurement obtained on the second particle.

The outcome of the first measurement is completely random, however the outcome of the

second is always correlated. These are known as quantum correlations. As an example,

if one of the bits is measured in the basis {|0〉 , |1〉}, the measurement outcome can be |1〉

with probability 1/2 or |0〉 with probability 1/2. When the second particle is measured, the

outcome value is completely correlated.

Quantum states that cannot be written as a product state of their individual systems are

entangled states. An important set of two-qubit entangled states are the Bell states:

∣∣φ+
〉

= (|00〉+ |11〉)/
√

2∣∣φ−〉 = (|00〉 − |11〉)/
√

2∣∣ψ+
〉

= (|01〉+ |10〉)/
√

2∣∣ψ+
〉

= (|01〉 − |10〉)/
√

2. (2.9)

There are relevant facts about Bell states: 1) Bell states form a basis for two-qubit states. 2)

Bell states show quantum correlations, as explained for equation 2.8. Quantum correlations

can be used to establish a secret key between two distant parties, as proposed by Ekert [6].

It is possible to perform measurements that project the state of two qubits into a Bell state,

i.e. entangling of two photons. These are called Bell measurements, see chapter 7.

Entangled states play an important role in quantum communication as they have useful

applications that cannot be reproduced with classical systems, including quantum telepor-

tation and entanglement swapping, see appendix C.

2.5 No-cloning theorem

An important property of quantum states is that they cannot be cloned (or copied). To

demonstrate this property assume we have an unknown qubit |ψ〉 that we want to copy onto
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a second qubit with initial pure state |0〉. The initial state of the two qubits is: |ψ〉 ⊗ |0〉.

Let Uc denote the unitary operator performing the cloning

Uc(|ψ〉 ⊗ |0〉)→ |ψ〉 ⊗ |ψ〉 . (2.10)

The same holds for an orthogonal quantum state |φ〉:

Uc(|φ〉 ⊗ |0〉)→ |φ〉 ⊗ |φ〉 . (2.11)

However, if the state we want to copy is an arbitrary superposition of |ψ〉 and |φ〉, such as

α |ψ〉+ β |φ〉, from the linearity of quantum mechanics we will obtain:

Uc((α |ψ〉+ β |φ〉)⊗ |0〉) = αUc(|ψ〉 ⊗ |0〉) + βUc(|φ〉 ⊗ |0〉)

= α |ψ〉 ⊗ |ψ〉+ β |φ〉 ⊗ |φ〉 (2.12)

Which differs from the desired result:

Uc((α |ψ〉+ β |φ〉)⊗ |0〉)→ (α |ψ〉+ β |φ〉)⊗ (α |ψ〉+ β |φ〉). (2.13)

The no-cloning theorem states that it is impossible to create a perfect copy of an uknown

quantum state. The no-cloning theorem, in combination with quantum measurements un-

derpins the security of QKD.

2.6 Shannon entropy

Finally, I would also like to give a brief introduction to some concepts introduced by Claude

Shannon in 1948 regarding information1 [23]. The theory developed by Shannon has many

applications, including secure communication, one of the goals of QKD. The key step taken by

Shannon was to mathematically define information. He was interested in several questions:

What is information? How do we measure information? How can we efficiently encode

information? Can we send information in a reliable way over a noisy channel?

1The following paragraphs follow [22] closely.
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Information is related to the amount of uncertainty in a situation of choice. Shannon

used entropy as a measure of information and expressed the result of the measurement in

bits. A bit is defined as the average amount of information that is obtained when tossing

a fair coin. Information is quantified using random variables that describe the situation of

choice. A discrete random variable is composed of a finite set of elements or symbols x that

take value from the set X. Each value x is taken with probabilities p(X = x) ≡ p(x). The

elements p(x) of the probability distribution satisfy p(x) ≥ 0 ∀x and
∑

x p(x) = 1. For

example, the outcome of a fair coin toss can be X = {heads, tails}. The outcomes occur

with probabilities p(heads) = p(tails) = 1/2. Information is additive. This means that the

information obtained from two independent random variables is the sum of the information

obtained from each random variable. If the probability distribution is not uniform, then the

information received from each outcome is different. The information learned from knowing

the outcome x is −log2p(x) bits. Shannon entropy (or entropy) is the average information

given by

h(X) = −
∑
i

p(xi)log2p(xi). (2.14)

If p = 1/2 then h(X) = 1 bit, if p = 0, 1 then h(X) = 0 bits.

The first application of entropy is the possibility to model information sources using

random variables. In this case a set of outcomes is associated with a probability distribution.

If a source outputs bit strings with nonuniform distribution of 1s and 0s, the messages can

be compressed to shorter strings without loosing information. Shannon’s channel coding

theorem states that the maximum compression of a random variable X is given by the

entropy h(X).

In many situations, relationships between random variables are of interest. For example,

in the context of QKD, what can we say about the message by seeing the encoded message.

In this case we use the joint entropy h(X, Y ) of a pair of random variables X and Y with a
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joint probability distribution p(x, y). The joint entropy is defined as

h(X, Y ) = −
∑
x

∑
y

p(x, y)log(p(x, y)). (2.15)

The joint entropy satisfies h(X, Y ) ≤ h(X) + h(Y ) with the equality only holding for inde-

pendent variables.

It is possible to also define a conditional entropy, which express the lack of knowledge on

X provided we know Y averaged over all possible realizations of Y :

h(X|Y ) = −
∑
x

p(x)h(Y |X)

= −
∑
x

p(x)
∑
y

p(y|x)log(p(y|x))

= −
∑
x

∑
y

p(x, y)log(p(y|x)). (2.16)

The conditional entropy can be used to describe a binary symmetric channel in which the

input and output sets are {0, 1}. This kind of channel is used to model a noisy channel, see

appendix A.

Finally, we can describe the mutual information. Let X and Y be two random variables

with join probability distribution p(x, y). The information that Y gives about X is:

I(X : Y ) = h(X)− h(X|Y ), (2.17)

if I(X : Y ) > 0, the two variables X and Y are at least partially correlated and knowing

(or measuring) one yields information about the other. Similarly, the information that X

gives about Y is I(Y : X) = h(Y )− h(Y |X). The mutual information measures the average

reduction in uncertainty about X that results from learning the value of Y or vice versa,

the average amount of information that X conveys about Y . Note that if X and Y are

independent then h(X|Y ) = h(X) and I(X : Y ) = 0, that is Y does not give any information

about X. Shannon found that it is possible to reliably send information over noisy channels.

The communication is possible if error correction protocols are implemented, in which the
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rate of additional amount of information needed for correction is given by h(Y |X). This rate

is relevant for Alice and Bob as the quantum channel is a noisy channel and error correction

mechanisms must be implemented at some point of the key distribution process, see chapter

3.

All the elements introduced so far are used in QKD and other cryptographic protocols.

In the following chapter I will introduce QKD and highlight how the quantum properties

introduced in this chapter are used to obtain information theoretic security.
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Chapter 3

Quantum key distribution

Quantum bits can be implemented in two-level systems including ions, atoms, or photons.

However, the advantages of photons over the other systems are easy to identify. First,

photons do not interact with matter easily, hence it is possible to use optical fibers that

present high transmission (very low loss) for long distances. Photons are easy to manipulate

because there are many existing communication elements used to produce and control light.

These communication elements are low cost, robust and reliable, and perfect to implement

QKD. Finally, an extensive network of optical fiber is already deployed throughout the world.

There are also elements of QKD that are critical and hence common to every imple-

mentation, regardless of the protocol or encoding chosen. In the following paragraphs I will

present the common elements to QKD implementations needed to obtain a secret key. I

will also describe a hacking attack that exploits a loophole common to most of reported

implementations and two possible solutions to the attack.

3.1 Assumptions

There are some assumptions made by Alice and Bob for secure key distribution [24]. I have

only listed the common assumptions in QKD systems as specific implementations may differ

on the assumptions made depending on the protocol implemented.

• The eavesdropper is restricted by quantum physics.

• Alice’s and Bob’s laboratories are perfectly isolated. This means that only

information that is intended to leave the laboratory does so.

• Alice and Bob have access to trusted sources of random number generators.
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• Alice and Bob share an authenticated classical channel (see section 3.3). This

means that the messages transmitted through the classical channel cannot be

changed by the eavesdropper without Alice and Bob noticing so.

• The devices at Alice and Bob have no internal memory. This means that there

is no correlation between different uses of the devices.

3.2 Quantum and classical channel

Since Alice and Bob want to communicate, a communication channel between them is nec-

essary. They share a public quantum channel through which quantum signals can be trans-

mitted (e.g. an optical fiber or free space). The eavesdropper can modify or tamper with

the signals transmitted through this channel. However, Alice and Bob can also exchange

classical communication through a second public channel called a classical channel. This

channel has been authenticated, see section 3.3. An eavesdropper can listen to the informa-

tion transmitted through the classical channel but cannot change the signals sent through it

without being noticed by Alice and Bob.

3.3 Authentication

QKD requires Alice and Bob to authenticate all communication taking place through the

classical channel. This communication includes the process of sifting, error correction, and

privacy amplification, explained in section 3.5. To do authentication they must share a

small secret key before implementing QKD. For this reason QKD is sometimes referred to

as quantum key growing. The small amount of secret key could initially be established

by meeting personally, or formed by a small portion of a previous key distribution session

between Alice and Bob.

Authentication is well studied in classical cryptography and it can be performed in an
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information theoretic secure form. In order to do authentication, Alice and Bob use the

shared secret key to choose a hash function, g, from a family of hash functions. Hash

functions are used in order to map their message to the authenticated shorter secret message

known as a tag. The tag is computed as T = gK(m), in which m is the message to be

authenticated and K is the initial secret key. Alice sends to Bob a composite message

M = (m,T ). Bob obtains the information and computes his own tag with the message

received by Alice. If Eve tampered with the communication the tag that Bob obtains from

his computation will be different. When performing authentication, if Alice receives the

correct tag from Bob and vice versa, then they know that the eavesdropper has not changed

the message.

3.4 Qubit exchange

Once a quantum channel has been established, Alice sends her qubits to Bob. In the following

paragraphs I describe the BB84 protocol, however any QKD protocol can be implemented at

this stage. The BB84 protocol uses four different quantum states belonging to two mutually

unbiased bases and encoded into individual photons. Mutually unbiased bases are bases

chosen such that the inner product between any two basis states belonging to different bases

is the same. The quantum basis states used can be: {|0〉 , |1〉} and {|+〉 , |−〉}, in which

|±〉 = (|0〉 ± |1〉)/2. The quantum states |0〉 , |+〉 are associated to the bit value ‘0’ and the

states |1〉 , |−〉 are associated to the bit value ‘1’. Alice randomly selects one of the four states

and sends it to Bob, keeping a record of the qubit emitted. Upon receiving the qubit, Bob

must randomly select one of the two bases to measure the state. That is, he must choose

between distinguishing states |0〉 and |1〉 or |+〉 and |−〉. It is fundamentally impossible to

make a measurement that can distinguish all four states. Next, Bob announces to Alice via

the classical channel which of the emitted photons he detected. Alice discards all bits that

are associated to the photons that Bob did not detect. At this stage, Alice and Bob share a
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string of bits known as a raw key.

3.5 Post-processing

In the next step, Alice and Bob must communicate through the classical channel to compare

their choice of basis preparation and basis measurement for each qubit. Alice and Bob

discard all the events of the key that originate from having chosen different basis to prepare

and measure the qubits as there will be no correlation between their bit values for these

cases. This process is known as sifting and at the end of it Alice and Bob have strings of

bits which can be expressed as vectors ~α and ~β, called sifted key. Only the events in which

their basis choices coincide can lead to strings for which they know each of the bit values are

the same.

After the sifting process Alice’s and Bob’s key strings should be completely correlated,

i.e. contain identical bit values. However, either due to eavesdropping or noise there will be

errors, and Alice and Bob must execute classical error correction, to reconcile their data. Note

that for security purposes, all errors are attributed to Eve and determine her information

about the key. In order to perform error correction, Alice and Bob must exchange additional

information about their bit strings through the classical channel. For detailed information

about the error correction procedure refer to appendix A.

At the end of error correction Alice and Bob share an error-free key that is a string of

random bits. However, the additional information sent over the classical channel in order to

perform error correction could be used by Eve to obtain information about the key. For this

reason it is necessary for Alice and Bob to reduce their key to a secret key via privacy ampli-

fication. Using the same family of 2-universal hash functions used in channel authentication,

Alice and Bob use a hash function to compress the error free key. By compressing the key,

the information that the eavesdropper knows about the key is reduced to an arbitrarily small

amount of information. 2-universal means that the probability that two different strings x1
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and x2 (e.g. Alice’s key and Eve’s key respectively) have the same value is one over the

number of possible key strings. For a 1000 bit key, the probability is 2−1000.

Once privacy amplification is performed Alice and Bob share a string of completely

correlated bits that is known only to them. The secret key can then be used for one-time

pad encryption.

3.6 Photon number splitting attack and countermeasures

As the secret key generation rate is a key figure of QKD implementations, attenuated laser

pulses are typically employed. This is done to overcome the low generation rates of single

photon sources. The attenuated laser pulses used in QKD systems have mean photon num-

bers less than 1. These attenuated laser pulses are weak coherent pulses with randomized

phase and are described by the Poissonian distribution

Pµ(n) =
∑
n

e−µµn

n!
, (3.1)

in which n indicates the photon number and µ indicates the mean photon number. As can

be seen from equation 3.1 there is a non-zero probability of obtaining pulses that contain

multi-photons. These multi-photon events can be exploited by an eavesdropper to perform a

photon number splitting attack [9]. In this attack Eve measures the number of photons in the

optical pulse.If the optical pulse only contains one photon then Eve blocks it. If the optical

pulse contains more than one photon, then the eavesdropper keeps one of the photons and

sends the rest to Bob. The eavesdropper can keep the “stolen” qubits until post-processing,

during which she can listen to the communication between Alice and Bob. Eve learns the

basis choice for each qubit and performs the respective measurements on the qubits she has,

therefore learning all the information about the key without being caught.
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3.6.1 Decoy states

The photon number splitting attack reveals why multi-photon events are not secure for QKD.

Alice and Bob must obtain the secret key from single photons only as the eavesdropper

cannot split them or eavesdrop on them without leaving a trace. The decoy state protocol

[25, 26, 27] allows to identify, in an efficient way, how much key originates from individual

photons and their associated error rate, needed to quantify the security of the key as shown

in the paragraphs below and appendix B.

Alice, who has the source, must produce optical pulses for which she randomly chooses

different mean photon numbers, e.g. µ, ν1, ν2. The change of mean photon number can

be implemented with an optical attenuator. The optical pulses emitted by Alice belong

to different Poissonian distributions (Pµ(n), Pν1(n), Pν2(n)), depending on the mean photon

number chosen. After the transmission of all the optical pulses has taken place, Alice and

Bob communicate to sort the sifted key bits according to the mean photon number they

belong to. For a given Poissonian distribution, the probability that Alice emits a pulse with

n photons and Bob detects it is:

Qn = Yn
µne−µ

n!
, (3.2)

and the sum over all the Qn is known as the gain and it is given by:

Qµ =
∞∑
n

Yn
µne−µ

n!
,

=
∞∑
n

YnPµ(n). (3.3)

In equations 3.2 and 3.3 the term Yn is the conditional probability that Bob detects the

pulse provided the source emitted n photons. The point of the decoy state protocol is that

this conditional probability, Yn is the same for any optical pulses belonging to any of the

Poissonian distributions, that is, it is independent of the mean photon number chosen by

Alice:

Yn(µ) = Yn(ν1) = Yn(ν2). (3.4)
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When the eavesdropper intercepts a pulse, she can obtain the number of photons in the

pulse, however she cannot know which Poissonian distribution the pulse belongs to. This

is important as for each mean photon number we have an equation like 3.3. The quantities

Qµ, Qν1 and Qν2 are measured, and Pµ, Pν1 , Pν2 are chosen by Alice, the only parameter left

open is Yn. Since there are three different mean photon numbers, we can write the following

system of equations:

Qµe
µ = Y0 + µY1 +

µ2Y2

2!
+
µ3Y3

3!
+ ...,

Qν1e
ν1 = Y0 + ν1Y1 +

ν2
1Y2

2!
+
ν3

1Y3

3!
+ ...,

Qν2e
ν2 = Y0 + ν2Y1 +

ν2
2Y2

2!
+
ν3

2Y3

3!
+ .... (3.5)

As stated in paragraphs above, optical pulses that contain more than one photon are insecure.

Only pulses that contain single photons should be used to distill a secret key. Therefore it

is possible to find the value Y1 from the system of equations 3.5. The work by H.-K. Lo and

cooworkers [27] proved that it is enough to implement two decoy states (ν1, ν0) in addition

to the signals states (µ) to find an efficient lower bound of Y1.

A similar analysis can be performed to find the upper bound of the error rate of single

photon events using:

eµ =
∑

Pµ(n)Ynen, (3.6)

in which eµ is the error rate measured by Alice and Bob for the optical pulses with mean

photon number µ, and en is the error rate for n-photon signals.

The secret key generation rate for a QKD system implementing the BB84 protocol is

given by equation [28]:

S = Q1[1− h2(e1)]−Qµh2(eµ). (3.7)

Alice and Bob can measure Qµ and eµ, H2 is the Shannon entropy, and through the decoy

state protocol they can lower bound Q1 and upper bound e1, leading to a secure bound of

the secret key generation rate.

26



3.6.2 SARG protocol

There is an alternative solution to the photon number splitting attack. The solution consists

of implementing a different QKD protocol called SARG [29]. The SARG protocol assumes

the implementation of QKD with weak coherent pulses. It employs the BB84 states, however,

the difference stands in the association of states and bits. In this case Alice encodes the bit

value in the basis rather than in the quantum state: the Z basis ({|0〉 , |1〉}) corresponds to

bit 0 and X basis ({|+〉 , |−〉}) corresponds to bit 1. Therefore, the two values of a classical

bit are encoded into pairs of non-orthogonal states, which are not possible to unambiguously

discriminate. Bob chooses to measure between the two bases with probability 1/2, exactly as

in the BB84 protocol. In BB84, during the sifting procedure Alice announces what basis she

used to encode the quantum state. In the SARG protocol the basis are kept secret as they are

associated to a bit value. Instead, Alice announces two states: the state she emitted and one

of the states belonging to the other basis, and does so in random order. Bob can determine

which state was sent by Alice only if he measures an orthogonal state to the ones announced

by Alice, as a projection onto this state discards perfectly one of the states announced.

For example, assume Alice emits the state |0〉 and announces {|−〉 , |0〉}. If Bob chooses to

measure in the X basis and obtains as a result |+〉 then he knows Alice could not have sent

the state |−〉, and therefore concludes that Alice sent the state |0〉. Eve can implement a

photon number splitting attack and obtain a photon from multi-photon pulses. However, the

states that Alice announces are non-orthogonal and Eve cannot unambiguously distinguish

what state was sent. Although the SARG protocol was initially intended to overcome the

photon number splitting attack, in this thesis it was used to implement quantum private

queries, see chapter 8. The remaining of the thesis is composed of the published papers

about implementations of QKD and quantum private queries. The concepts presented in

chapter 2 and this chapter are use throughout the rest of this thesis.
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Chapter 4

Implementation of quantum frames in a QKD system

Since its proposal, quantum key distribution (QKD) has been subject of vast experimental

and theoretical research [10, 11]. QKD systems consist of point-to-point links in which the

sender (typically referred to as Alice) is directly connected to the receiver (typically referred

to as Bob) through a quantum channel. Point-to-point QKD has been demonstrated up to a

distance of ≈250 km over optical fiber [30] and free space for distance of 144 km [31] and some

QKD systems have already been commercialized [12, 13, 14]. However, the implementation

of QKD in a over dedicated point-to-point fashion links contrasts with the networks employed

in the majority of current classical communications.

An important development in QKD, which started in 2003, is the integration of point-to-

point QKD systems into networks, i.e. to create quantum networks, in which multiple users

are interconnected and quantum information can be distributed among any pair of users.

The integration of QKD systems into a quantum network requires the ability of the QKD

system to communicate and control parameters that are relevant in such network setting.

Examples of these control parameters are: routing information (sender and receiver identifi-

cation), quantum link establishment, timing information, protocol and encoding information

for interconnection of varying QKD systems, etc.

To date, several quantum networks have been demonstrated, including the cities of Boston

(DARPA network) [18], Vienna (SECOQC network) [17], Hefei [16], and Tokyo [15]. The

quantum networks are composed of many users interconnected via dedicated or reconfig-

urable point-to-point links. In a network, a link connects neighbouring locations denom-

inated nodes. The secret key is distributed using trusted nodes or by means of optical

switches that allow reconfigurable links between the users.
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Node A Node BNode 1

q link q link q link

Node 2

Figure 4.1: Illustration of a simplified quantum network. The distribution of a secret key
from node A to node B is made in a hop-by-hope mode where node A encrypts the secret
key using a session key (k1) via one-time pad and sends the encrypted information to node 1
through the quantum link (q link). Node 1 decrypts the information and re-encrypts it using
a second session key (k2), and sends it to node 2. The process continues in a hop-by-hop
mode until the secret key reaches node B.

The network in Vienna and Tokyo incorporated the trusted node method. The distri-

bution of a secret key from node A to node B is performed in the following way: node A

encodes the secret key, ks, via the one time pad using a session key, k1, and distributes the

message to the adjacent node 1. Node 1 decrypts the secret key and re-encrypts it using

one-time pad encryption and a second session key, k2, and sends the encrypted key to its ad-

jacent node. The process, typically referred to as hop-by-hop, continues until the secret key

reaches node B. The advantage of this network scheme is the ability to distribute a secret key

over an unlimited distance using existing technology. However, this scheme only works if all

intermediate nodes between Alice and Bob can be trusted as they will have full information

on the secret key. It is important to emphasize that in the Vienna and Tokyo networks the

routing problem was solved at the software level. Once the trusted node receives the secret

key, it is decrypted and transferred to dedicated hardware (e.g. PC) located in the node,

where it is managed. An algorithm determines the routing path to follow. The key is then

re-encrypted with another session key and sent towards the adjacent node specified by the

routing algorithm.

The network in Boston [18] incorporated optical elements in its nodes that do not perform

any measurement (e.g. optical switches) and instead allow the qubits to be routed from Alice

to Bob. The advantage of the approach followed in the Boston network is that trusted nodes

are not required. The disadvantage of this approach, however, is that the optical loss between

each node limits this kind of network to metropolitan areas (∼50 km). The Boston network
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included 10 nodes with quantum systems, 8 of the nodes are connected with fixed links,

and the other two nodes are connected through a 2 × 2 optical switch (optical switch with

four input-output combinations). This network employed a combination of the hop-by-hop

method described above and routing of optical signals via the optical switch to distribute a

secret key between node A and node B.

The successful demonstration of early quantum networks is expected to lead to the de-

velopment of larger quantum networks. For economical reasons, large quantum networks

would take advantage of existing optical networks. These optical networks consist of optical

fibers and include optical elements like switches or multiplexers that allow for routing of

optical signals. The integration of QKD systems into these optical networks require routing

quantum signals at the optical level, i.e. without having to send the entire key to dedicated

hardware to process it and determine the path for routing. Instead, the receiver address in-

formation is dynamically communicated to the optical switch as soon as the message arrives

to a node and the routing path changes according to the information received.

In this chapter we proposed a tool for existent QKD systems that will allow them to route

quantum signals and communicate additional control parameters facilitating the integration

of QKD systems into optical networks. I will present work we have done on developing a QKD

system that is capable of, in principle, routing quantum signals. The system implements the

BB84 protocol and makes use of polarization encoding and decoy states, and it operates

through fiber deployed across the city of Calgary. The system features quantum frames,

which, inspired by the Ethernet protocol, consist of alternating sequences of high-intensity

pulses and faint pulses. The high-intensity pulses include classical control information and

so they are labeled classical control frames. A classical control frame allows for a platform

for tasks related to establishing a link for QKD in a network environment. It comprises:

• Routing information: Sender and receiver identification are encoded in the

frame. It enables building a reconfigurable quantum network, where it is
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possible to change the route between Alice and Bob within the network. For

example, if a denial of service attack is present for a chosen path it is then

possible to reroute the qubits through another path.

• Clock synchronization: timing information is included for qubit time-tagging

(i.e. a time label attached to the detection of each qubit). Any timing vari-

ation due to a change in the fiber length of the quantum channel that could

disrupt clock synchronization is automatically compensated because the quan-

tum frames are transmitted through this channel.

• Channel stabilization: the quantum frames are used to implement a polar-

ization compensation system. This compensation is needed because of time-

varying birefringence in the quantum channel (fiber link between Alice and

Bob) which causes polarization changes of the photons transmitted through

the fiber. The polarization information is included in the quantum frames. The

quantum frames are transmitted to the receiver through the quantum channel

and the polarization information contained is analyzed at the receiver. The

compensation system adjusts feedback mechanism according to the polariza-

tion information received in order to compensate for the changes induced by

the fiber. The implementation of the compensation system using the quantum

frames allow for a long-term operation of the system, as demonstrated in our

work. In fact, the compensation system can be extended to other degrees of

freedom and adapted for QKD systems that employ different kind of encoding

[32].

Our proof-of-principle demonstration shows the suitability of quantum frames for QKD

systems. We have demonstrated that our scheme facilitates the establishment of a quantum

channel, allowing for timing and channel stabilization. Additionally, by implementing quan-

tum frames, it is straightforward to add routing capabilities, bringing QKD systems closer
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to network integration.

This work was done in collaboration with Xiaofan Mo and Philip Chan. Even though

part of the work follows from studies done during my Masters degree, the components of

the system presented here required to be characterized and a number of improvements were

implemented, which was done during my PhD. I contributed to this study in the following

stages: I characterized the optical components that form the system and assembled the sys-

tem. I also adjusted the system for its deployment to perform measurements in a real world

environment. I performed the measurements with the system presented in the manuscript. I

developed the program to calculate the secret key generation rate of the system for different

mean photon number and taking into account the use of decoy states. I also contributed by

writing part or the entirety of sections 1-7 and 9 of the manuscript presented below.
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4.1 Proof-of-concept of real-world quantum key distribution with quantum

frames

I Lucio-Martinez1, P Chan2, X Mo1,4, S Hosier3 and W Tittel1

1.- Institute for Quantum Information Science and Department of Physics and Astronomy,

University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada

2.- Advanced Technology Information Processing Systems Laboratory and Department of

Electrical and Computer Engineering, University of Calgary, 2500 University Drive NW,

Calgary T2N 1N4, Alberta, Canada

3.- Applied Research and Innovation Services and School of Information and

Communications Technologies, Southern Alberta Institute of Technology, 1301 16th Ave.

NW, Calgary T2M 0L4, Alberta, Canada

Abstract

We propose a fibre-based quantum key distribution system, which employs polarization

qubits encoded into faint laser pulses. As a novel feature, it allows sending of classical

framing information via sequences of strong laser pulses that precede the quantum data.

This allows synchronization, sender and receiver identification and compensation of time-

varying birefringence in the communication channel. In addition, this method also provides a

platform to communicate implementation specific information such as encoding and protocol

in view of future optical quantum networks. We demonstrate in a long-term (37h) proof-

of-principle study that polarization information encoded in the classical control frames can

indeed be used to stabilize unwanted qubit transformation in the quantum channel. All

optical elements in our setup can be operated at Gbps rates, which is a first requirement

for a future system delivering secret keys at Mbps. In order to remove another bottleneck

towards a high rate system, we investigate forward error correction based on low-density

parity-check codes.
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4.1.1 Introduction

Based on the particular properties of single quantum systems, quantum key distribution

(QKD) promises cryptographic key exchange over an untrusted, authenticated public com-

munication channel with information theoretic security [4, 33]. Significant academic [10, 11]

and industrial effort [12, 13, 34] has been devoted to the development of point-to-point (P2P)

QKD systems based on attenuated laser pulses or entangled photons, and the first fully func-

tional prototype of a quantum cryptographic network consisting of pre-established P2P links

in a trusted node scenario has recently been demonstrated [17] (see also [18]). Furthermore,

various proof-of- principle demonstrations of quantum teleportation and quantum memory

(see [35, 36] and references therein) have been reported, which will eventually allow build-

ing of fully quantum enabled networks [37, 38], e.g. for perfectly secure communication in

settings with un-trusted nodes and over large distances [39, 40].

Despite these remarkable achievements, the building of a reconfigurable real-world QKD

network still requires significant progress, even when limiting quantum communication to

qubits encoded into faint laser pulses and to entangled qubits. Among the issues to be solved

is the necessity to route quantum data from any sender to any receiver. The possibility to

use active optical switches to send quantum information to different users has first been

demonstrated in 2003 [41]. However, the question regarding the addition of sender and re-

ceiver addresses to the quantum data (which is not required in pre-established P2P links)

has, to the best of our knowledge, never been addressed. Beyond routing, another require-

ment for quantum networks is path stabilization between sender and receiver, i.e. to ensure

that carriers of qubits prepared at Alices arrive unperturbed at Bobs. This includes control

of the properties of the quantum channel, e.g. birefringence in an optical fibre, and the

establishment of a common reference frame at Alices and Bobs, e.g. a direction or a precise

time-difference, depending on the property chosen to encode the qubit [42]. Current P2P

QKD systems are either of the plug and play type and automatically stabilize the quantum
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channel [43, 44], or achieve unperturbed quantum communication by adding from time to

time short sequences of classical control information [45]. However, neither method allows

communication of the properties that are important in reconfigurable networks, including

sender and receiver address, or the specific QKD protocol or the type of qubit encoding

chosen1.

In this paper, we propose the use of quantum frames (Q-frames) as a flexible framework

for sensing, communicating and controlling the parameters relevant in a QKD network set-

ting. Our approach is sufficiently flexible to accommodate for current and future quantum

technology or applications, including technology from different vendors, which is important

in view of open quantum networks. We demonstrate the suitability of our solution for QKD

with polarization qubits over a 12 km real-world fibre optic link.

This article is organized as follows: in section 4.1.2, we present the general idea of Q-

frames. We then discuss the principle QKD setup (section 4.1.3), and give further details

of key components (section 4.1.4). After presenting the properties of our fibre optics link

(section 4.1.5), we describe the QKD field tests and discuss the results (section 4.1.6) and

then elaborate briefly on some issues related to the security of the key establishment (section

4.1.7). In section 4.1.8, we present the status of our classical post processing, required to

distil a secret key, specifically the possibility of hardware implementation of one-way error

correction. We present our conclusions in section 4.1.9.

4.1.2 Q-frames

To add control functionalities to the communication between Alice and Bob, we propose

supplementing the quantum data (e.g. qubits) with classical control frames (C-frames). The

C-frames, encoded into strong laser pulses, alternate with the quantum data and a pair of

1Note that this information can also be sent through another (classical) channel. However, given that
control information for channel stabilization has to be sent in any case (except for auto-compensating systems
such as the plug and play system), it is natural to consider sending the network relevant control information
through the quantum channel as well.
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Figure 4.2: Quantum framing with alternating classical C-frames (inspired by the Ethernet
protocol) and quantum data. In the here reported implementation, subsequent C-frames
encode different polarization states (horizontal, vertical and circular), each one used to in-
dependently stabilize one particular set of polarization qubit basis states.

Figure 4.3: Schematic of our QKD system.

classical/quantum data forms a Q-frame (see figure 4.2). The C-frame allows synchronizing

sender Alice and receiver Bob, facilitates time-tagging and provides a platform to commu-

nicate sender and receiver address (for routing or packet switching) plus implementation

specific information such as encoding (e.g. polarization or time-bin qubit [42]) and protocol

(e.g. BB84 [4], decoy state [25, 26, 27], or B92 [7]). This is interesting in view of open,

reconfigurable networks comprising different QKD technologies.

The classical information in our implementation is encoded into specific polarization

states, allowing assessment and compensation of time-varying birefringence in the quantum

channel. Note that the compensation scheme can easily be adapted to other QKD setups

employing e.g. time-bin qubits, entanglement, or quantum repeaters. Furthermore, the

C-frames can be used to assess channel loss, which may be important for routing.
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4.1.3 Our QKD system

Our QKD system is based on polarization qubits and employs the BB84 protocol [4], supple-

mented with two decoy states [25, 26, 27]. It allows alternating sequences of strong and faint

laser pulses, encoding classical data and quantum data, respectively. A simplified schematic

of the QKD system is depicted in figure 4.3. Alice uses two laser diodes to generate the

classical data (LDC) and the quantum data (LDQ). The pulses emitted from LDQ are first

attenuated by an optical attenuator (ATT), and then sent through an intensity modulator

(IM) to create signal and decoy states with different mean photon numbers. To create vac-

uum decoy states, no electrical pulses are sent to LDQ. The horizontally polarized faint pulses

are then transmitted through a polarization beam splitter (PBS), and combined with the

strong, vertically polarized pulses from LDC. All pulses are then sent to a polarization mod-

ulator (PM), where horizontal (H), vertical (V), right (R), or left (L) circular polarization

states can be created.

Quantum and classical data are transmitted to Bob through a quantum channel. At

Bob’s end, 10% of the light is directed towards a fast photodetector (PD) followed by a

logic device (LOG). The detector and the logic device, which were not implemented in our

investigation, will read the information encoded in the classical data and take appropriate

action, e.g. for clock synchronization, optical routing, or communication of protocol specific

information used by Bob for the measurement and subsequent processing of the quantum

data.

The remaining light is split at a 50/50 beam splitter (BS), and directed to two polariza-

tion stabilizers (PSs) (PS1 and PS2) followed by PBSs (PBS1 and PBS2) and single photon

detectors (SPDs). PS1 ensures that horizontally polarized classical data, and hence qubits,

emitted at Alices arrive unchanged at PBS1. Similarly, PS2 is set up such that right circular

polarized classical data and qubits emitted at Alices always impinge horizontally polarized

on PBS2. Since the transformation in the quantum channel is described by a unitary matrix
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(a) (b)

(c) (d)

Figure 4.4: Schematics of (a) the one-way polarization modulator, (b) the basic unit, (c) the
two-way polarization modulator based on the basic unit and (d) the two-way IM based on
the basic unit.

(i.e. orthogonal states remain orthogonal), our stabilization scheme ensures that qubits pre-

pared in H and V, or R and L states arrive horizontally and vertically polarized on PBS1 or

PBS2, respectively. Hence, the two sets of PS, PBS and two SPDs both allow compensation

of unwanted polarization transformations in the quantum channel, and projection measure-

ments onto H, V, R and L, as required in the BB84 protocol. Note that our scheme does

not prevent H and V created at Alices from arriving in an arbitrary superposition of H and

V at PBS2 (similar for R and L at PBS1). However, these cases do not cause errors as they

are eliminated during key sifting.

4.1.4 Polarization and IMs

One-way polarization and IM.

Initially, we used a commercial LiNbO3 phase modulator (PM) and a Mach-Zehnder IM

in a one-way configuration to achieve fast polarization and intensity modulation. Figure

4.4(a) shows the schematics of the polarization modulator, i.e. a phase modulator with

polarization maintaining input fibre (PMF) whose slow axis is rotated 45◦ (R45) with respect

to the optical axis of the modulator waveguide, and standard single mode output fibre
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(SMF). Hence, horizontally polarized input light, which propagates parallel to the slow axis

of the PMF, is split into two components, where each one propagates along one axis of the

waveguide. By applying a control voltage to the phase modulator, a phase shift is introduced

between the two components, resulting in a polarization modulation.

Unfortunately, the phase modulator features significant polarization mode dispersion

(PMD) for 500 ps long optical pulses resulting in a polarization extinction ratio (PER),

i.e. the ratio between optical power in two orthogonal polarization states, of only 16 dB.

Moreover, we found both the phase and IM to be temperature sensitive – a change of en-

vironmental temperature or heating caused by passing a current through the impedance

matching resistance inside the modulators causes a variation of the polarization state, or the

intensity level, of the output light. This would have a direct impact on the quantum bit

error rate (QBER) and stability of our QKD system.

The ‘basic unit’

To overcome these problems, we designed a basic unit (see figure 4.4(b)) consisting of a

phase modulator (PM) with 45◦ rotated input PMF and a Faraday mirror (FM) [46]. As

explained below, this allows building stable polarization and IMs by means of a go-and-

return configuration (the light travels twice and in orthogonal polarization states through

the phase modulator). To explain how the basic unit works, we calculate the polarization

evolution of light using Jones calculus:

Jout = MBU · Jin. (4.1)

Jin and Jout denote the Jones polarization vectors of the input and output light, respectively,

and MBU is the polarization transformation matrix of the basic unit:

MBU =
←−
MPMF ·R†45 ·

←−
MWG ·

←−
MSMF · FM · −→MSMF

−→
MWG ·R45 ·

−→
MPMF. (4.2)

MSMF, MPMF and MWG denote the polarization transformation matrices of the single mode
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fibre, the polarization maintaining fibre and the waveguide, respectively, and the arrows on

top of the matrices specify the direction of light propagation. FM denotes the effect of

the Faraday mirror, and R45 characterizes the rotation between the polarization maintaining

fibre and the waveguide. Assuming that one can neglect all temperature or mechanical stress

mediated changes of the properties of the fibres and the waveguide between two subsequent

passages of a pulse of light (around 10 ns in our setup), and that these elements do not

feature polarization dependent loss, we have

←−
MPMF = M†

PMF,

−→
MPMF = MPMF,

MPMF =

1 0

0 eiφPMF

 (4.3)

where M† stands for the adjoint matrix of M and φPMF is the phase shift caused by the

birefringence of the polarization maintaining fibre. Furthermore, we have

←−
MSMF = M†

SMF,

−→
MSMF = MSMF,

MSMF =

 √
a

√
1− aeiα

√
1− aeiβ −√aei(α+β)

 (4.4)

where MSMF is the most general unitary matrix describing polarization transformations.

The matrices of the waveguide are given by

−→
MWG =

1 0

0 ei(φ
in
m+φe)


←−
MWG =

1 0

0 e−i(φ
out
m +φe)


(4.5)

where φin and φout denote the phase shifts during the two subsequent passages of the light

through the waveguide, as determined by the modulation voltage applied to the waveguide,
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and φe refers to an additional, wavelength and polarization-dependent phase shift (leading

to PMD).

The effect of the FM is to transform the polarization state of an arbitrary input state of

light Jin with components j1, j2 into the orthogonal state [10]:

FM · Jin = FM ·

j1
j2

 =

 j∗2

−j∗1

 = J⊥in (4.6)

Hence, from equation 4.6, we obtain the identity

FM ·M · Jin = FM

A B

C D

 · Jin

=

 D∗ −C∗

−B∗ A∗

 · FM · Jin (4.7)

and thus

M † · FM ·M · Jin =

A B

C D


†

· FM ·

A B

C D

 · Jin

=

A∗ B∗

C∗ D∗

 ·
 D∗ −C∗

−B∗ A∗

 · FM · Jin

= (A∗D∗ −B∗C∗) · 1 · FM · Jin

= det(M∗) · J⊥in, (4.8)

where M is an arbitrary two-by-two matrix, which may describe wavelength-dependent po-

larization rotations or polarization-dependent loss, and 1 is the two-by-two identity matrix.

Equation 4.8 shows that any polarization transformation is compensated by the FM ; the

output polarization state Jout is always orthogonal to the input state Jin, regardless of M .

Calculating the product of all matrices in equation 4.2, we obtain

MBU = e−i(φSMF+φPMF+φe+φ′m) ·

 cos∆φm −ieiφPMF sin∆φm

−ie−iφPMF sin∆φm cos∆φm

 · FM, (4.9)
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where

φ′m =
φinm + φinm

2

∆φm =
φoutm − φinm

2

φSMF = π − α− β.

Accordingly, for a horizontal input state, we find

Jout = MBU ·

1

0


= e−i(φSMF+φPMF+φe+φ′m) ·

−ieφPMF sin∆φm

cos∆φm


= e−i(φSMF+φPMF+φe+φ′m) ·

eiφPMF 0

0 1

 ·
−isin∆φm

cos∆φm

 (4.10)

Hence, owing to the use of an FM , the polarization and wavelength-dependent phase

shift φe introduced by the waveguide impacts now on the global phase but does not lead to

PMD any more. Furthermore, all (slow) modifications of the polarization modulation due

to changes in temperature or mechanical stress of the SM and PM fibres are automatically

compensated. The output polarization state thus only depends on the modulation of the

waveguide (∆φm) and the phase shift induced by the polarization maintaining fibre (φPMF ).

Two-way polarization modulator

We complemented the basic unit to a polarization modulator by preceding it by a polariza-

tion maintaining circulator (CIR) that allows separating the input and output optical pulses

(see figure 4.4(c)). By applying appropriate, short voltage pulses, which are synchronized

with the propagations of the optical pulse, to the phase modulator, we can generate hori-

zontal (∆φm = π/2), vertical (∆φm = 0), right-hand (∆φm = −π/4), or left-hand circular
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polarization (∆φm = π/4) states. We point out that the existence of the phase introduced

by the PM fibre, φPMF , makes circular polarization states unstable. However, note that

the four generated polarization states always form two mutually unbiased bases, regardless

of the value of this phase, as required for secure QKD. Furthermore, as the change in the

polarization maintaining fibre is slow, it can be compensated by a PS at Bob, allowing for

the establishment of a sifted key with a small QBER.

We obtained a PER of 20 dB for horizontal and vertical polarization states (limited by

the light source used to test the polarization modulator), see figure 4.5, and of 15 dB for left

and right circular polarization. We believe the reduced ratio to be caused by state-dependent

PMD in the circulator, which will be replaced in the near future.

Two-way intensity modulator

Similarly, we built an intensity modulator by preceding the basic unit by a PBS, as shown

in figure 4.4(d). The PBS reflects the vertical component of the impinging light. Hence, by

varying the polarization state of the light at the output of the basic unit, we can vary the

intensity of the vertical component at the output of the PBS.

The intensity extinction ratio, i.e. the ratio between the maximum and minimum inten-

sity at the output of the PBS, exceeds 20 dB (see figure 4.6(a)). Moreover, as the phase,

φPMF , does not impact on the output intensity, our modulator features an outstanding sta-

bility, as depicted in figure 4.6(b). This is important when implementing a decoy state QKD

protocol, which relies on accurate preparation of average photon numbers per faint laser

pulse.

4.1.5 The fibre link

Loss

The link consists of two single-mode dark fibres connecting laboratories at the University of

Calgary (U of C) and the Southern Alberta Institute of Technology (SAIT), see figure 4.7.
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Figure 4.5: Test of the two-way polarization modulator. In the experiment, the light exiting
the modulator was split by a PBS and the power was measured at the two outputs (H and
V) as a function of the modulation voltage. The PER is defined as the ratio between the
power in the two outputs.
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Figure 4.6: Tests of the two-way IM. Panel (a) shows the output power as a function of the
applied voltage pulse to the phase modulator. The modulator features an extinction ratio of
23 dB. Panel (b) depicts the output power as a function of time. For this measurement, the
output power was set to 50% of its maximum value. The total variation in 12 h is less than
±1.5%. This is mostly determined by the power fluctuations of the laser diode, which we
found to be 1.15% in 3 h (note that the latter can be further reduced using external power
control).
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Figure 4.7: Satellite view of Calgary, showing the University of Calgary (U of C) and the
Southern Alberta Institute of Technology (SAIT).

The fibres, which we refer to as channel 1 and channel 2, run through tunnels on the two

campuses, and are buried or run through train tunnels in between the two institutions. They

feature insertion loss of 7.8 and 6.5 dB, respectively. The fibre length is 12.4 km, while the

straight line distance between the two laboratories is 3.3 km. A 1300 nm optical time-domain

reflectometer (OTDR) with a 1 km dead zone eliminator was used to characterize the in-

stalled fibres. Figure 4.8 shows the measured OTDR traces. The figure clearly shows that

the last several kilometres of fibre have bad connections, which result in high transmission

loss in our system. The peaks at the distance of 1 km are induced by the core diameter

mismatch between the tested fibre and the dead zone eliminator, where the latter one is a

multi-mode fibre.

Polarization transformation

We experimentally studied the time evolution of polarization in the installed fibre. In the
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Figure 4.8: OTDR traces of the installed fibres. The horizontal axis denotes the distance
measured from the laboratory at SAIT. The vertical axis denotes the logarithm of the ratio
between the back scattered power detected by the OTDR and a reference power set by the
instrument, where a higher value corresponds to more reflected power.

experiment, a stable polarized light source was launched into the fibre link, where channels 1

and 2 were looped at SAIT. We used a polarimeter to record Stokes parameters of the output

light every second. Figure 4.9(a) presents the results of one week of continuous monitoring

from 16 April 2008 to 24 April 2008. Figure 4.9(b) shows the temperature curve for the

Calgary Airport during the measurement (data from Canada Environment Weather Office).

Comparing figures 4.9(a) and (b), we observe a clear correlation between the variation of

temperature and the fluctuation of polarization. This phenomenon is particularly obvious for

the measurement from 19 April to 23 April, where we observe small polarization variation

during night, and much more pronounced variations during day-time. Figure 4.9(c) is a

zoom-in of the measurement on 19 April (around lunch time), where particularly rapid

polarization fluctuations are observed. Even for this case, we find that the polarization is

stable on a timescale of tens of seconds. This sets an upper limit to the duration of quantum

data between consecutive stabilization cycles.
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4.1.6 Field tests

Setup

A schematic of the complete experimental setup is shown in figure 4.10. A 10 GS s−1

function generator (FG1) with two independent outputs drives the quantum laser diode

(LDQ) and the classical laser diode (LDC) via broadband RF amplifiers (APs). Both laser

diodes produce horizontally polarized optical pulses with a duration of 500 ps and a repetition

rate of 50 MHz. By adjusting the temperature, we could closely match the spectral properties

of the two laser diodes. We obtained center wavelengths of 1548.07 nm and 1548.11 nm, and

spectral widths (fullwidth at half-maximum (FWHM)) of 0.214 and 0.224 nm for LDQ and

LDC, respectively. This is important to ensure that the polarization transformation sensed

by means of the C-frames (generated with LDC) equals the one experienced by the quantum

data (generated with LDQ).

The pulses from LDQ, eventually encoding quantum data at different mean photon num-

bers, propagate through a two-by-two PBS and enter the IM, which is described in detail in

section 4.1.4. To reduce their energy to the single-photon level, a fixed optical attenuator

(ATT) is placed between the FM and the phase modulator (PM). Birefringence and polariza-

tion dependent loss of the attenuator are automatically compensated by the Faraday effect

and therefore a stable attenuation is achieved. At the output of the PBS, the now vertically

polarized weak laser pulses are combined with the horizontally polarized strong pulses from

LDC, which encode the C-frame, to form a complete Q-frame. Quantum and classical data

are then sent through the polarization modulator, which is also presented in section 4.1.4.

The intensity and the polarization modulator are driven by a function generator (FG2) with

a pulse width of 4 ns. Note that the polarization maintaining circulator (CIR) that is part of

the polarization modulator only allows horizontally polarized light to enter, while the pulses

from LDC and LDQ impinge with orthogonal polarization. Therefore, we aligned the axes of

the polarization maintaining fibre at the output of the PBS at 45◦ with respect to the axes
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Figure 4.10: Schematic of the QKD setup.

of the polarization maintaining fibre at the input of the circulator. This alignment makes

the circulator work with both directions of polarization, yet, at the expense of 3 dB loss.

Finally, the polarization modulated data are forwarded to Bob through fibre channel 2.

Alice’s electronic equipment is synchronized using a clock signal at 10 MHz from a clock

generator (CG). Using a function generator, a laser diode (LDS), a photodiode (PD) and a

delay generator (DG), the clock signal (reduced to 1 MHz) is also transmitted to Bob, where

it provides trigger signals for the SPDs, synchronized with the arrival time of the quantum

data.

At Bob’s side, 90% of the optical power encoded into each Q-frame is transmitted through

a 10/90 BS and is then equally divided by a 50/50 BS. For each part, the C-frames are

sensed by a PS (from General Photonics) to compensate for the polarization change in the

transmission line, and the quantum data are detected by a measurement module consisting

of a PBS and two InGaAs-based SPDs. The SPDs are triggered at 1 MHz, and operated

with a gate width of 5 ns, a deadtime of 10 µs and a quantum efficiency of 10%.

In principle, the length of a C-frame is determined by the response time of the PS, which

is 18 ms. However, due to the small duty cycle of the classical pulse sequence in the current

implementation and the low transmission of the fibre link, the average power of the C-frame

is below the detection threshold of the PS. To resolve this problem, we placed a polarization
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maintaining erbium-doped fibre amplifier (EDFA) between LDC and the PBS. The EDFA is

turned off after each C-frame to avoid flooding the SPDs at Bob’s with photons from ampli-

fied spontaneous emission. While the turn-off time is only tens of milliseconds (consistent

with the radiative lifetime of population in the upper laser level), we found the turn-on time

of the EDFA to be as long as 3 s, resulting in 5 s long C-frames. The length of quantum

data is set to 2 s, according to the worst-case polarization stability of the fibre link, which

is discussed in section 4.1.5. From this, we find that our setup currently limits the time for

QKD to 30% of the operation time. Note, however, that the duty cycle of the classical pulse

sequence can easily be increased by several orders of magnitude. In this case, the duration

of a C-frame would be limited by the response time of the PS, and the time for QKD could

exceed 99% of the system operation time.

Measurements

We performed a variety of measurements to assess the performance of our QKD system. For

2-detector measurements, Alice repetitively creates sequences of Q-frames with polarizations

HH, HL, HV, HR, LH, LL, LV, LR, VH, VL, VV, VR, RH, RL, RV and RR. The first letter

indicates the polarization of the C-frame and the second one indicates that of the quantum

data. Bob uses one measurement module to process the frames. The PS compensates

the polarization transformation in the quantum channel for states belonging to the basis

indicated by the first letter, i.e. linear or circular. For 4-detector measurements, Alice

modulates the polarization of the Q-frames in the more complicated order of HH, RH, VH,

LH, RH, HH, LH, VH, HR, RR, VR, LR, RR, HR, LR, VR, HV, RV, VV, LV, RV, HV, LV,

VV, HL, RL, VL, LL, RL, HL, LL and VL. Bob uses two measurement modules to process

the Q-frames. The PS of one module is always activated for odd frame numbers and that of

the other module is always activated for even frame numbers (see figure 4.2). In this way,

the two measurement modules compensate polarization transformation for states encoded in
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the linear, or the circular basis, respectively. We collect the number of trigger events and

counts for all SPDs for each combination of polarization states and different mean number of

photons per qubit. This allows calculating average QBERs and key generation probabilities

(KGPs), where the KGP is defined as the probability of generating a sifted key bit from a

qubit encoded into a weak signal state when Alice and Bob use the same basis:

QBER =
Pwrong

Pwrong + Pcorrect

,

KGP = Pcorrect + Pwrong.

(4.11)

The probabilities for correct (Pcorrect) and wrong sifted key bits (Pwrong) are obtained from ex-

perimental data by dividing the number of correct, or wrong, detection events by the number

of trigger events. We assume that the probability for both detectors to click simultaneously

can be ignored. In our setup, it was at least four orders of magnitude smaller compared to

the probability for a single click. Note that in an actual implementation simultaneous clicks

in two or more detectors have to be replaced by a randomly selected detection event [47, 48].

Assuming that the photon number per laser pulse satisfies a Poissonian distribution,

Pcorrect and Pwrong can be calculated using

Pcorrect = 1−
∞∑
n=0

µne−µ

n!

(
1− Y0

2

)
(1− tηa)n

= 1−
(

1− Y0

2

)
e−µtηa,

Pwrong = 1−
∞∑
n=0

µne−µ

n!

(
1− Y0

2

)
(1− tη(1− a))n

= 1−
(

1− Y0

2

)
e−µtη(1−a).

(4.12)

Y0/2 is the probability for a detector click without Alice sending a photon, which includes

detection events due to dark counts and stray photons. We found this probability in our

setup to be equivalent to the dark count rate. µ is the average photon number of the weak

pulses at Alice’s output, t is the overall transmission, which includes the fibre link and Bob’s

optical components, and η is the quantum efficiency of the SPDs. Finally, a describes the
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Figure 4.11: Average QBER and KGP (in dB) as a function of the mean photon number
per weak laser pulse used to encode the polarization qubits. The squares and circles indicate
the experimental results for the 2-detector and 4-detector measurements, respectively, and
the solid and dashed lines are the corresponding theoretical predictions (no fit). Error bars
(corresponding to one standard deviation) are smaller than the size of each experimental
data point.

PER of the PBS, i.e. the probability for a horizontally polarized photon to be transmitted

through the PBS, normalized to the probability to exit.

The experimental results of the measurements are summarized in figure 4.11, together

with the theoretical predictions. Note that all parameters required to calculate the QBER

and the KGP have been obtained through independent measurements. We see that the ex-

perimental values match the theoretical calculations very well. We also find that the average

QBER of the 4-detector measurement is larger than that of the 2-detector measurement at

the same mean photon number. This is due to an increased dark count probability of the

two additional SPDs, and slightly worse alignment of the PS in the second measurement

module. Furthermore, the 4-detector measurement features a higher KGP as no qubits are

lost at the 50/50 BS. The individual data of the 4-detector measurement with an average

photon number of 0.5 photons per pulse are listed in table 4.1.

Long-term stability of the system
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Figure 4.12: Results of the long-term measurement. (a) Stokes vectors of C-frames with
(blue points) and without (red points) polarization stabilization. (b) Average QBER and
temperature for the same time interval as a function of time.

To study the stability of the system, we performed a long time measurement over 37 h. In

the measurement, Alice sends qubits encoded into weak laser pulses with an average photon

number of 0.5, and Bob implements a 2-detector measurement using measurement module

one. At the end of each C-frame, i.e. after stabilization, Bob records the polarization of

the C-frame with PS1. Meanwhile, the PS (PS2) in the second measurement module moni-

tors the polarization of the C-frame without polarization control. In figure 4.12(a), the red

points indicate the Stokes vectors of the classical pulses measured by PS2, which are ran-

domly distributed on the surface of the Poincaré sphere due to the time-varying polarization

transformation in the transmission line. The blue points depict the measurements made by

PS1, i.e. after polarization control. Even though the result slightly deviates from a single

spot, which is expected in the ideal case, it clearly demonstrates the good long-term stability

of our QKD system.

For a more quantitative analysis, we also recorded the evolution of the QBER over the

same time interval, see figure 4.12(b). The temperature curve for the Calgary Airport (data

from Canada Environment Weather Office) is shown as well. The QBER varies between

2.85% and 3.35% in over 35 h, and the variation is less than 0.1% in the last 15 h.
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Table 4.1: Results of the 4-detector measurement with an average photon number of 0.5
photons per pulse, where pol indicates the polarizations of the Q-frames, det and trg are
the number of photon detections and trigger events recorded by the SPDs, and prob is the
detection probability (in dB). ∗Note added during thesis writing: In the table the probability
is calculated as prob = −10log(det/trg). The difference in the trigger rate between detectors
is due to different deadtimes for each of the detectors due to difference in the after-pulsing
noise.

SPD1 SPD2

pol det trg prob(dB) det trg prob(dB)
HH 1569 13254716 39.27 37639 12504218 25.21
HV 39642 13381789 25.28 1922 13385381 38.43
RR 1243 13160359 40.25 35711 12443131 25.42
RL 41856 13521618 25.09 1979 13505244 38.34
VH 42567 12853157 24.80 950 12863193 41.32
VV 1569 13183509 39.24 34723 12454406 25.55
LL 41800 13514989 25.10 1841 13114840 38.53
LR 959 10908918 40.56 30270 10273810 25.31

SPD3 SPD4

pol det trg prob(dB) det trg prob(dB)
HH 37577 12468543 25.21 1050 12416198 40.73
HV 2121 12145604 37.58 35843 11410147 25.03
RR 35954 12409015 25.38 1605 12351662 38.86
RL 3222 12253689 35.80 36378 11541004 25.01
VH 2410 12817201 37.26 39290 12046285 24.86
VV 36215 12403829 25.35 925 12355805 41.26
LL 2751 12270811 36.49 36547 11534262 24.99
LR 29988 10247919 25.34 1149 10193024 39.48
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4.1.7 Security issues

For any cryptographic system, be it of quantum or classical nature, it is important to care-

fully analyse the actual implementation for weak points that may compromise its principle

security. Applied to QKD, these include deficiencies in the preparation of quantum data at

Alice’s that can be exploited by an eavesdropper to gain information about the sifted key.

We refer to these kinds of attacks as quantum state attacks. Furthermore, Eve may also

attempt to actively sense the classical devices that create or measure the quantum data, or

try to actively impact on the interaction between quantum and classical systems to influence

the outcomes of measurements. We refer to these kinds of attacks as classical system attacks.

Note that, once the deficiencies are found, it may be possible to eliminate them by de-

vising a better optical setup, or to remove the corresponding amount of information that

Eve may have obtained through additional privacy amplification [49]. Yet, we point out

that loopholes may also arise from a careless implementation of privacy amplification, e.g.

improper choice of Hash function, or of insufficient authentication of the classical chan-

nel. Finally, the size of the error corrected key has to be considered when calculating the

appropriate amount of privacy amplification, i.e. to distil a secure key [50, 51].

In the following, we will briefly discuss our current optical setup in view of such weak

points. Yet, a complete security analysis of our system is beyond the scope of this article,

which is the introduction of Q-frames. Note that the existence of loopholes in a particular

QKD setup breaks the unconditional security of this particular system, but does not disprove

that QKD can, in principle, be information theoretic secure.

Quantum state attacks

The use of attenuated laser pulses, as opposed to pairs of entangled photons [10], entails

the possibility that non-orthogonal qubit states (here encoded into the polarization degrees

of freedom) may become distinguishable when taking into account other degrees of freedom
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needed to fully describe the quantum data, e.g. frequency, temporal modes, or transverse

modes. Obviously, in this case, the security offered by QKD would break down. We refer to

these attacks as quantum side channel attacks. Furthermore, as the number of photons in

the attenuated laser pulses is described by a Poissonian distribution, it may be possible for

an eavesdropper to gain information based on photon-number-splitting (PNS) attacks.

Attacks exploiting quantum side channels.

In our QKD system, all four qubit states are produced by the same laser diode, which is

triggered independently of the subsequent action of the polarization modulator or IM. To-

gether with the polarization independent spectral transmission of both modulators and the

attenuator, due to the use of the FMs, this ensures that correlation between polarization

state and spectrum or temporal mode do not exist. However, we recall that the circulator

(CIR) at the output of the polarization modulator adds basis dependent PMD, which man-

ifests as a basis-dependent QBER. This may induce detectable temporal broadening of the

photonic wave packets, i.e. may partially reveal the basis used for encoding the qubit. The

circulator will be replaced in a future, improved setup. Furthermore, as the entire setup

is built with (transverse) single mode optical fibres, correlation between polarization states

and transverse modes, which may be present in a free space system, are ruled out.

PNS attacks and decoy states.

The use of faint laser pulses makes our system principally susceptible to PNS attacks, which

were first mentioned in [52] and have been analysed thoroughly in [53, 9]. A possibility to

remove the threat of the PNS attack is the use of so-called decoy states [25, 27, 26]. This

allows establishing a conservative lower bound for the key that can be created from single

photons emitted at Alice’s, i.e. key that was not subject to the PNS attack. As described

before, our setup has been devised to allow for the implementation of decoy states. In the

56



following, we will examine experimentally the accuracy with which the decoy state method

allows bounding the size of the secret key.

With the GLLP method, the secure key rate per emitted faint pulse with mean photon

number of µ is given by [28]

S ≥ 1

2
[Q1(1−H2(E1))−Qµf(Eµ)H2(Eµ)] , (4.13)

where the factor 1
2

accounts for basis reconciliation, H2(x) = x log2(x)− (1− x) log2(1− x)

denotes the Shannon entropy, Q1, Qµ, E1 and Eµ specify the gains and error rates of signal

states and single photons, respectively, and f(Eµ) is the error correction efficiency which is

assumed to be 1.22 [54].

In the first analysis, we assume that no PNS attack took place during the measurement,

which is a reasonable assumption. Using equations 4.12, we can estimate the gain and error

rate for signal states with mean photon number µ:

Qµ = Pcorrect(µ) + Pwrong(µ)

= 2− (1− Y0/2)(e−µtηa + e−µtη(1−a)),

Eµ =
Pwrong(µ)

Pcorrect(µ) + Pwrong(µ)

=
1− (1− Y0/2)e−µtηa

2− (1− Y0/2)(e−µtηa + e−µtη(1−a))
.

(4.14)

Similarly, the gain and error rate for single photon pulses are given by

Q1 = µe−µ(2− (1− Y0/2)(2− tη)),

E1 =
1− (1− Y0/2)(1− (1− a)tη)

2− (1− Y0/2)(2− tη)
.

(4.15)

Using equations 4.13–4.15 and taking into account the measured values for t, η, a and Y0/2,

we can calculate the secret key rate for different µ, see curve A of figure 4.13.

In the second analysis, which again relies on the assumption of fair loss, we use equa-

tion 4.14 to calculate the gains and error rates for the signal state with mean photon number

µ and the decoy state with mean photon number ν of 0.1. To calculate the gain and error
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Figure 4.13: Comparison of secret key rates versus mean number of photons in the signal
states. Curve A is the secret key rate calculated from the fraction of single photons emitted
at Alices and assuming fair loss (i.e. assuming it is known that all loss is of technological
origin and that there is no PNS attack). Curve B shows the secret key rate calculated via
the decoy state method (using decoy states with mean photon number of 0.1 and vacuum
states) and assuming fair loss. Curve C is the secret key rate obtained via the decoy state
method using experimental data. All calculations assume an infinite sifted key length.
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rate for single photon pulses, we use equations 34, 35 and 37 from [27]:

Q1 ≥ Qν,0
1 =

µ2e−µ

µν − ν2

(
Qνe

ν −Qµe
µ ν

2

µ2
− µ2 − ν2

µ2
Y0

)
,

e1 ≤ eν,01 =
EνQνe

ν − e0Y0

Y L,ν,0
1 ν

,

Y1 ≥ Y L,ν,0
1 =

µ

µν − ν2

(
Qνe

ν −Qµe
µ ν

2

µ2
− µ2 − ν2

µ2
Y0

)
.

(4.16)

The resulting secret key rate follows from equation 4.13. It is shown in curve B of figure 4.13.

Finally, we calculate the secret key rate using the experimentally measured gain and error

rates for signal and decoy states, as opposed to the previous case where they were calculated.

The gain and error rate for single photons are estimated as before using equations 4.16. The

result is plotted in curve C of figure 4.13. Note that the measurement does not rely on the

fair loss assumption.

Comparing the three different curves, we find that the rates estimated from the decoy

state method (curves B and C) is somewhat smaller than the one plotted in curve A. This

is natural as the decoy state method with decoy states of finite photon mean number only

yields a conservative lower bound [27]. As an example, for µ = 0.6, we find the secret key

rate (curves B and C) to be roughly 10% worse than the secret key rate given in curve

A. We also find a reasonably good agreement between the rates estimated and measured

using the decoy state method (curves B and C, respectively). We attribute the remaining

discrepancy to a systematic error in the estimation of the single photon gain Q1, resulting

from a slightly wrong estimation of the transmission in the link, quantum efficiency of the

detectors, or error rate due to wrongly received photons. Factors like fluctuations in the mean

photon number could also have an effect. This systematic error also affects the estimation

of the single photon error rate E1. Furthermore, curves B and C show that the secret key

rate in our QKD system is maximized for signal states with a mean number of photons of

µ ≈ 0.6. This value agrees with estimations in [27] when taking into account the actual

values for dark count rates, transmission, detector quantum efficiency and error rate caused

by wrongly received photons. Indeed, we calculate µopt = 0.62, in very good agreement with
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our experimental results.

To finish this discussion, we emphasize that the secret key rate in an actual implemen-

tation of an information-theoretic secure QKD session must be calculated using the decoy

state method used in the third analysis and must not rely on assumptions about fair loss in

the quantum channel.

Other deficiencies.

We have noted that each faint pulse that encodes a qubit is preceded by another faint pulse,

originating from a reflection on the PBS that is part of the IM (see section 4.1.4). Note that

the number of photons in both pulses is comparable. Obviously, for our assessment of the

eavesdropper’s information to be correct, we have to make sure that this pulse, which also

transits through the polarization modulator, does not encode any polarization information.

Therefore, we have carefully adjusted the electrical trigger signal for the polarization mod-

ulator such that it only acts on the faint pulse, and not on the spurious one.

Classical system attacks

Trojan Horse attacks: As in any QKD system, regardless of whether it employs one-way or

two-way quantum communication, appropriate measures have to be implemented to protect

against Trojan Horse attacks [19]. In these attacks, the eavesdropper injects light through

the optical fibre into Alice’s or Bob’s preparation or measurement device, respectively, and

analyses the back reflection, which may reveal information about the quantum state created

at Alice’s or the measurement basis to be used at Bob’s. In both cases, the security of the key

distribution would be compromised as Eve either knows the state, or knows in which basis to

perform an intercept resend attack without creating errors. In our QKD system, given the

static setup at Bob’s, Trojan Horse attacks have to be considered only at Alice’s. Towards

this end, a polarization independent optical isolator and a spectral filter that absorbs all
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Figure 4.14: Classical post-processing steps.

wavelengths not blocked by the isolator should be placed at the output of Alice’s.

Time-shift attacks: In a time-shift attack [55, 56, 57] the eavesdropper exploits the fact that

the detection efficiency of different detectors may, for a given arrival time of a photon, be

different. It may thus be possible for an eavesdropper to bias the detection probabilities by

actively time-shifting the arrival time of photons and thereby acquire information for each

photon if it was detected in a detector that codes for a bit value 0, or 1. This attack, which

is possible in our current system, can be overcome if Bob randomly rotates the polarization

state of each incoming qubit by 0 or π/2, thereby de-correlating a detection in a particular

detector with a particular bit value. This can be done by placing a rapidly variable λ/2

waveplate in between the PS and the PBSs, at the expense of rendering Bob’s setup ‘active’,

i.e. vulnerable to Trojan Horse attacks (which then have to be protected against, as discussed

above).

4.1.8 Classical post-processing

Once the quantum part of the QKD protocol is finished, Alice and Bob must perform a series

of classical steps to go from the raw key to the secret key used for encryption [10]. The steps

required are shown in figure 4.14. In addition to sifting, error correction is used to ensure

that Alice and Bob have an identical key despite any errors that occur. Privacy amplification

is then used to eliminate any information Eve has obtained about the key, whether through

eavesdropping on the quantum channel or on the classical communication used for error
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correction. These steps must also make use of authenticated communication to prevent Eve

from performing a man-in- the-middle attack. Of these steps, error correction is expected

to become the bottleneck in the QKD system once higher raw key rates are achieved. The

Cascade protocol [7] that was originally developed for QKD is not suitable for high key rates

as it requires many rounds of communication between Alice and Bob and is computationally

expensive [58].

Low-density parity-check (LDPC) codes

LDPC codes were originally developed by Gallager in the 1960s [59] for classical communi-

cations, but their potential performance has only been recently been discovered [60]. LDPC

codes for QKD differ slightly from those used in the classical case as the parity information

is transmitted over a separate classical channel [58].

A LDPC code is defined using an m× n parity check matrix, H, consisting of zeros and

ones. While either Alice’s or Bob’s sifted key may be considered the ‘correct’ key for the

purpose of error correction, this discussion will use Alice’s sifted key, the n bit column vector

α, i.e. one-way, forward error correction. Alice computes a parity vector as follows:

p = Hα (mod2), (4.17)

where the number of bits m in the parity vector is lower bounded by Shannon’s noisy coding

theorem; m = nH2(QBER) with Shannon Entropy H2. Thus, pi indicates whether the

sifted key bits indicated by the ones in the ith row of H contain an even (pi = 0) or odd

(pi = 1) number of ones. Alice transmits p to Bob, whose task is to determine α using H,

p, his sifted key, β, and an initial estimate of the QBER. This estimate can be based on a

characterization of the quantum channel or on the QBER from previous executions of the

protocol. In order to recover α, Bob uses a process known as belief propagation to refine his

initial probabilities for the entries of α based on β and the QBER. Note that in the following

discussion, Bob has full knowledge of his key vector, β, but his knowledge of the Alice’s key
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Table 4.2: Results for rαj=1(i, j).
j βj P0(j) P1(j) rαj=1(i, j) for pi − 0 rαj=1(i, j) for pi − 1
1 1 0.1 0.9 0.82 0.18
2 1 0.1 0.9 0.82 0.18
3 0 0.9 0.1 0.18 0.82

Table 4.3: Results for P ′0(j) and P ′1(j) values.
rαj=1(1, j) rαj=1(2, j) rαj=1(3, j) qαj=0(j) qαj=1(j) P ′0(j) P ′1(j)

0.82 0.82 0.82 0.0006 0.4963 0.0012 0.9988
0.18 0.82 0.82 0.0027 0.1089 0.0238 0.9762
0.18 0.18 0.82 0.0121 0.0239 0.3361 0.6639
0.18 0.18 0.18 0.0551 0.0052 0.9131 0.0869

vector, α is probabilistic. For example, suppose row i of H is a parity check on three bits

received by Bob, β1 = 1, β2 = 1 and β3 = 0, where the expected QBER is 10% (chosen to

prevent very small numbers in this example). The probability that a key bit αj is zero or

one based on the received values and the QBER are denoted P0(j) and P1(j), respectively.

For each of his bits βj , Bob assumes that αj = 1 and computes rαj=1(i, j), which denotes

the probability that the parity check i is satisfied (pi = α1 + α2 + α3 (mod 2)) given this

assumption. Alternatively, rαj=1(i, j) may be viewed as the probability that αj = 1 given

the value of pi and what is known about the other bits of α involved in the ith parity check.

For example, rαj=1(i, 1) may be computed as follows:

rαj=1(i, 1) =


P0(2)P1(3) + P1(2)P0(3), for pi = 0,

P0(2)P0(3) + P1(2)P1(3), for pi = 1.

(4.18)

As can be seen in table 4.2, the probability that the bits retain their received value is high

when pi = 0 since this is consistent with the received values of β. If instead pi = 1, a high

probability for bit flips is obtained since each row assumes that the received values for the

other bits are likely to be correct. This information is useful when combined with the results

of other parity checks.

After doing these computations for each row of H, Bob uses the information from all the
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parity checks involving a particular key bit βj to compute new values of P
′
0(j) and P

′
1(j). If

the jth key bit is involved in three parity checks, Bob computes qαj=0(j) and qαj=1(j), which

represent the probability that αj is zero or one, respectively, based on βj and the QBER,

and that all parity checks involving αj are satisfied:

qαj=0(j) = P0(j)rαj=0(1, j)rαj=0(2, j)rαj=0(3, j), (4.19)

qαj=1(j) = P1(j)rαj=1(1, j)rαj=1(2, j)rαj=1(3, j), (4.20)

where rαj=0(i, j) = 1rαj=1(i, j). Since valid results must be consistent with all parity checks,

P
′
0(j) and P

′
1(j) are obtained by normalizing qαj=0(j) and qαj=1(j). For example, consider

βj = 1, implying P0(j) = 0.1 and P1(j) = 0.9 as shown in table 4.3. Even if one parity check

suggests there is an error in this example, the confidence that βj = 1 (i.e. βj was received

correctly) still increases. With all three parity checks suggesting a bit flip is necessary, a

high confidence is obtained that the received value of βj is incorrect. With two parity checks

suggesting a bit flip is required, the result does not significantly favour either result.

Bob can then select the most likely value for each bit to form β
′
, and compute p

′
=

Hβ
′
(mod 2). If p

′
= p, the protocol is finished. Otherwise, additional iterations of the pro-

tocol are performed. With the additional modification that Bob also computes conditional

probabilities, P
′
0(i, j) and P

′
1(i, j), to use inequation 4.18 during subsequent iterations, this

procedure is generalized as the sum-product algorithm [58, 60].

Hardware LDPC decoding

Interest in LDPC codes stems not only from their potential to perform near the Shannon

limit. Since the computations for each parity check and each key bit are independent, the

structure of the sum-product algorithm lends itself to parallel computation. This makes

sum-product decoding of LDPC codes well suited for high speed implementation in custom

hardware or in reconfigurable devices such as Field Programmable Gate Arrays (FPGA) [61].
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However, floating-point computations are expensive in terms of the amount of logic required.

Thus, it is desirable to implement LDPC decoding using fixed-point arithmetic (equivalent to

integer arithmetic) with as few bits as possible to represent the values. In initial simulations

of fixedpoint decoding, we found that the primary obstacle for a small bit length was the

very small values obtained for the probabilities. This problem manifested as divide by zero

errors during the normalization since both q0(j) and q1(j) had rounded to zero. We overcome

this limitation by modifying the algorithm to set any occurrences of zero in the q(j) values

to the smallest possible nonzero value.

A LDPC code was designed with a 1200×4000 parity check matrix using parameters

similar to [58](QBER = 3%, parity checks on 20 key bits. Note that this QBER also reflects

our experimental results, see section 4.1.5). It has been shown that having the key bits take

part in a variable number of parity checks results in better performance [62]. Thus, H has

a fixed number of ones in each row, known as the row weight, and a variable number of

ones in each column, known as the column weight. The method presented in [62] was used

to determine the column weights by applying a well-known optimization technique with the

constraints ensuring that the design criteria (QBER and code rate) are met. In place of the

arbitrary cost function in [62], we use a function reflecting the computational complexity.

Our code was simulated over 40 iterations, with the number being selected based on tests

that showed very little improvement beyond this point. The results in figure 4.15 show that

24-bit fixed-point and floating-point have very similar decoding performance.

Using VHDL (a hardware description language) code generated in Matlab, we are able to

create code for parallel implementations of sum-product decoding for arbitrary values of H.

While a Register Transfer Level (RTL) simulation of the 1200×4000 LDPC code is possible,

a fully parallel implementation is not possible at this time. A 60×200 LDPC code with a

row weight of 12 that is capable of operating at 50MHz was synthesized using the Artisan

3.0 logic cell library for 0.18 µm CMOS technology (several generations behind state of the
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Figure 4.15: Simulation of the 1200 × 4000 LDPC code using 16-bit fixed-point (− − �),
24-bit fixed-point (− · −, ∗) and floating point (· · · · ·, ◦). The inset shows the region where
the performance begins to drop in more detail.

Table 4.4: Simulation results for 60 × 200 LDPC decoding.
QBER (%) Success rate (%) Mean iterations Sifted key rate (Mb s−1)

2.5 99.00 4.1070 52.9319
3.0 91.65 8.6785 25.0494
3.5 69.80 17.9455 12.1146

art). This code uses 12-bit arithmetic and requires 46 clock cycles (0.92 µs) per iteration of

the algorithm. Simulation results for the performance of this code with a maximum of 40

iterations are given in table 4.4. The design contains 1,860,429 cells with a total cell area of

approximately 47.24 mm2.

Attempts to synthesize a larger LDPC code using the current VHDL code have failed

as the synthesis tool does not have sufficient memory to complete the process. The size

of the design also suggests that a 1200×4000 code would be impractical to implement (as

a comparison, a processor is typically of the order of 100 mm2, including interconnect).
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However, larger codes are preferred because they experience less variance from the mean

QBER and perform better relative to the Shannon limit.

It is important to note that we obtained these results without using any advanced tech-

niques to reduce the size of the design. More efficient multiplier designs or the use of alterna-

tive number systems such as the multidimensional logarithmic number system (MDLNS) [63]

have the potential reduce the hardware required to perform the computations. Larger block

sizes could also be achieved using the partially parallel implementations proposed in [64],

where efficient schedules are used rather than updating all probabilities at once, reducing

the number of computations done in parallel, while mitigating the cost in terms of the run

time.

4.1.9 Conclusion and outlook

We have proposed a novel, fibre-based QKD system employing polarization encoding and

Q-frames, and have demonstrated in a long-term (37 h) QKD proof-of-principle study that

polarization information encoded in the classical C-frames can indeed be used to stabilize

unwanted qubit transformation in the quantum channel. All optical elements in our setup

can be operated at Gbps rates, which is a first requirement for a future system delivering

secret keys at Mbps. In order to remove another bottleneck towards a high rate system,

we are investigating forward error correction based on LDPC codes [59, 60]. Work on the

implementation of a system that distributes a quantum key, building on the here presented

proof-of-concept demonstration, is under way.
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Chapter 5

Analyzing QKD system performance

An important figure of merit of a QKD system is its secret-key rate for given loss in a

quantum channel between two users. Significant effort has been dedicated to maximizing

the secret key rate when implementing QKD systems. Obtaining secret-key rates of giga

bits per second (Gbps) is an important milestone towards matching bit rates of classical

communication systems [65]. To date, QKD systems can generate secret key at rates of

∼ 1 mega bits per second (Mbps) for a distance of 20 km between users [66]. In order to

increase the secret-key generation rate of a QKD system further, it is important to investigate

its performance and identify bottle necks, which could originate at different stages of the

secret key distribution process.

The steps that take part in the distribution of a secret key between Alice and Bob

and that must be optimized are: 1) raw key establishment, 2) sifting, 3) error correction,

4) privacy amplification. Steps 2, 3 and 4 are known as post-processing operations. Here, I

will highlight the data processing and necessary communication between Alice and Bob that

occurs during each step.

To achieve high secret-key rates, the first requirement is to achieve a high raw-key rate,

which requires having a high qubit generation rate at the source and a high detection rate at

the receiver. To generate a qubit the following is required: Alice does a random selection of

the basis and qubit state in which the qubits are prepared. Both choices of basis and qubit

state must be recorded. At the receiver side, Bob must also record the random measurement

basis choice, the detector that registers each photon, as well as the time the detection

happens. The bit values obtained by Alice and Bob after this process is known as raw

key. Alice and Bob need to process the raw key to obtain a secret key. The processing of

69



the raw key is done using an authenticated classical channel between Alice and Bob.

During sifting, Alice and Bob communicate the bases selected to prepare and measure

each bit that forms the raw key, keeping only the events in which both bases coincide. At the

end of this process they each have a sifted key. In an ideal implementation, the bits belonging

to the sifted keys would be perfectly correlated. In a real implementation, however, inevitable

errors will result in differences between the two keys. The differences between Alice’s sifted

key and Bob’s sifted key are eliminated through error correction. It has been shown that

an efficient method for error correction is through the use of so called low-density parity

check (LDPC) matrices as it only requires one-way communication between Alice and Bob

[58]. In LDPC error correction, Alice tells Bob parity information (whether there is an even

or an odd number of bits with value one) about her sifted key. Bob, in turn, compares the

parity bits calculated from his own sifted key, through a previously agreed-upon parity check

matrix, with the information he receives from Alice. The information that Bob receives from

Alice allows him to find the errors in his sifted key and correct them such that, at the end of

the process, his error-corrected key is identical to Alice’s. After error correction, Alice and

Bob share an error-corrected key (identical string of random bits). For detailed information

about LDPC based error correction refer to appendix A.

Finally, to remove any information Eve may have obtained during transmission of quan-

tum data as well as of classical error correction, a process known as privacy amplification

is performed. During privacy amplification, Alice and Bob compress their error-corrected

keys to a shorter key via a hash function (i.e. a function that maps a string of bits to a

shorter string of bits). By using hash functions, the probability that Eve’s compressed key

is the same as Alice’s and Bobs’s is very small (in fact, the probability is 1/2n where n is

the number of bits in the compressed key). Following privacy amplification, Alice and Bob

share a secret key.

In this chapter I present a paper in which we carry out a time-cost analysis of the secret
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key establishment in our QKD system. The system implements the BB84 protocol with

decoy states (see chapter 3) and quantum frames (see chapter 4) and is clocked at 100 MHz.

This system is described in detail in 4. All post-processing is implemented via software. This

work quantifies the scalability of the sifted and error corrected key as a function of the raw

key rate of our system. The study takes into account the data generation, collection, and

processing steps that Alice’s and Bob’s systems must accomplish during sifting and error

correction. We show that in our implementation, data processing is a limiting component to

reach higher secret key rates. From this investigation we state the necessary improvements

for future QKD systems in order to maximize the secret key rate. Through the quantification

of this processes we highlight the importance of moving to hardware-based post-processing

and processing of data in a parallel fashion.

This work was done in collaboration with Xiaofan Mo, Philip Chan, Chris Healey and

Steve Hosier. I contributed to this study in the following stages: I was responsible for the

integration and test of drivers to control the optical components of the system. I carried out

measurements. In this system a home-made single photon detector was employed. I charac-

terized the detector and integrated it in the system to perform the high speed measurements.

Sections 1 and 2 of the manuscript that follows were written by myself and I was involved

throughout the editing process.
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Abstract

We describe the realization of a quantum key distribution (QKD) system clocked at 100 MHz.

The system includes classical post-processing implemented via software, and is operated over

a 12 km standard telecommunication dark fiber in a real-world environment. A time-cost

analysis of the sifted, error-corrected, and secret key rates relative to the raw key rate is

presented, and the scalability of our implementation with respect to higher secret key rates

is discussed.

5.1.1 Introduction

Quantum Key Distribution (QKD) takes advantage of the peculiar quantum properties of

single photons to distribute secret keys [4, 10, 11]. When implemented correctly [67, 56, 68,

69], QKD, in combination with the One-Time Pad, allows two distant parties to communicate

in an information-theoretic secure way over an untrusted but authenticated channel.

A QKD system requires a quantum and a classical channel to distribute quantum infor-

mation, here in form of quantum bits (qubits), and classical information, respectively. To

obtain a secret key, a QKD system must complete the following steps: 1) Generation, faithful

transmission, and measurement of qubits, yielding the raw key. 2) Sifting of the raw key,
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i.e. comparison of the bases used by the sender and receiver to generate and detect each

individual qubit. This is done over the classical channel. Only detection events where the

bases match are kept, resulting in the sifted key. 3) Error correction. The purpose of this

step is to remove all errors in the sifted key due to a noisy channel or eavesdropping. This

procedure requires communication over the classical channel. It yields information about the

quantum bit error rate (QBER) of the sifted key and results in the error-corrected key. 4)

Privacy amplification. The final step in QKD shortens the error-corrected key and thereby

removes all information that Eve might have obtained while eavesdropping. The result is

the secret key. Furthermore, all classical communication required for the establishment of

the secret key has to be authenticated to corroborate the identity of the authorized parties

and to avoid a man-in-the-middle attack.

For given loss in the quantum channel, the relevant figure of merit characterizing a QKD

system is the secret key rate. Significant effort has been devoted over the past several years

to increase this rate [70, 71, 72]. However, with a few notable exceptions reporting actual

rates up to 1 MHz [15, 17], the secret key rate is often calculated from the sifted key rate

assuming a reasonable efficiency for error correction as compared to the Shannon limit [54],

and taking into account a reduction of the error-corrected key during privacy amplification

[28]. While this leads to a rate that has some predictive power, it states an upper bound

that can only be attained if qubits are distributed continuously, key sifting, error correction

and privacy amplification can keep up with the rate at which the raw key is obtained, and

if the memory of the processor(s) in use can cope with the amount of data involved. These

conditions may be difficult to satisfy in an actual system, in particular in the case of systems

clocked at high rates.

In this paper we analyze the performance of our QKD system in view of a high secret

key rate. The goal of the analysis is to determine the limitation on the key rate based on the

time-cost of each of the steps mentioned above. We also propose improvements that we will
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pursue in the near future. The bottlenecks revealed in this analysis, while obtained using our

QKD system, are likely to be relevant for other implementations as well. Hence, we believe

that this study will help other research groups to develop high-rate QKD systems.

5.1.2 Our QKD System

Hardware

Our test took place between the Quantum Cryptography and Communication Research

Laboratory (QCCRL) at SAIT, where Alice is placed, and the Quantum Cryptography and

Communication (QC2) Laboratory at the University of Calgary (UofC), where Bob is lo-

cated. As usual, Alice and Bob denote the sender and receiver of quantum data, respectively.

The transmission loss of the communication channel, a 12 km-long standard telecommunica-

tion fiber featuring many splices, is 6.5 dB. Our QKD system is fiber-based, implements the

BB84 protocol supplemented with two decoy states [11, 25, 26, 27] to detect photon number

splitting attacks [53, 9], and employs polarization encoding. Furthermore, it is characterized

by the use of quantum frames, which consist of alternating sequences of high-intensity laser

pulses (forming classical control frames) and faint laser pulses (encoding quantum data), see

figure 5.1. The classical control frames contain frame number and polarization information;

the latter is used to assess and compensate time-varying birefringence in the communication

channel [73]. The frames also contain information for clock synchronization and, in view

of future integration into network environments, sender and receiver address to allow for

routing.

Figure 5.2 shows a schematic of the optical and electronic components of our QKD

system; a more detailed description of the optical part is given in [73]. Optical pulses of

500 ps duration and 1550 nm wavelength are generated by the quantum laser diode and

are attenuated using a variable attenuator (ATT). To create the required signal and two

decoy states, we use an intensity modulator (IM), generating weak pulses of light with mean

photon numbers of µ, 0.2µ, 0.01µ, respectively (the fixed relation between these three values
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is due to the way the attenuator and intensity modulator are used to generate loss). To

encode the required polarization states, ± 45o linear polarized, and right- and left-circular

polarized states, we use a polarization modulator (PM). Both modulators are configured to

ensure passive compensation of temperature-dependent birefringence and polarization mode

dispersion. On the receiver side, a photodiode is placed behind a 90/10 beamsplitter; it

allows detecing the strong optical pulses, generated by the classical laser diode, that form

the control frames. Next, a 50/50 beamsplitter is placed to randomly select one of the

two polarization bases for qubit measurement. Per basis, a voltage-controlled polarization

controller (PC) and an optical detector (a low-bandwidth powermeter in the current system,

not shown) are used to compensate for time-varying polarization changes in the transmission

line. This procedure relies on feedback from the classical control frames.

Polarization compensation executes whenever the QBER exceeds a certain threshold

(between 3% and 4.5%, setup dependent). We have previously shown that the polarization

stability over our real-world fiber link can vary greatly over time [73]. Thus, for this feedback

to work, the QBER must be updated sufficiently often, i.e. error correction must run on sifted

key bits collected over a sufficiently short time1. In this case the feedback will ensure that the

QBER is kept low when the channel is unstable (then generating only a small amount of raw

key bits), while allowing key generation to run without interruption over several minutes

during extended periods of stability. The time needed for polarization compensation is

determined by the reaction time of the powermeter, which limits the number of detectable

voltage changes per second to one.

Qubit detection is either accomplished using four commercially available single photon

detectors (SPDs) gated at 1 MHz, or using one high-rate, home-made detector [74] that

utilizes the self-differencing technique [75, 76] and allows photon detection up to 100 MHz.

Note that qubit generation is clocked at 100 MHz in both cases. Currently, our QKD system

1In the current setup, the number of sifted key bits to be processed in one execution of error correction
is fixed to 10 kb. The time required to collect this data is setup dependent.
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Figure 5.1: Structure of the quantum frames. a: generation of bit and basis information to
encode qubits; b: data transfer; c: generation of the classical control frame; d: deadtime, e:
generation and transmission of quantum data (qubits); f: deadtime, g: processing time, h:
time for polarization control (when required).

is vulnerable to fake-state attacks [68], but preventive measures against detector vulnerabil-

ities and potential loopholes arising from control information being sent between Alice and

Bob [68, 69] or high-rate operation [77] will be implemented in the near future.

Software

All data is transferred via National Instruments digital I/O cards into or out of the CPUs

with the following specifications; Alice: AMD 64 X2 Dual Core 4600+, 2.4 GHz, 2 GB

RAM, WinXP 32-bit; Bob: Intel Core2 Quad CPU Q8300, 2.5 GHz, 4 GB RAM, Windows

Vista 32-bit. Our system uses Field Programmable Gate Arrays (FPGAs) to control all

active components. The clock rate, 100 MHz, is limited by the rate with which electronic

signals are currently generated by the FPGA and can be transmitted to, and converted by

our home-made drivers that control the laser diodes and modulators. However, the optical

components can generate qubits at a maximum rate of 980 MHz. Our system also includes

classical post-processing (sifting, error correction and privacy amplification) implemented

via software. Error correction is performed using low-density parity check codes (LDPC)

[59, 60, 58], and privacy amplification founds on Toeplitz matrices [78].

Our QKD software is responsible for frame generation (Alice), data acquisition (Bob), key

sifting, error correction, controlling polarization compensation, and writing collected data to

the hard drives. The classical communication required for these tasks is performed using a
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Figure 5.2: Schematics of the optical and some electronic components of our QKD system.
LD: laser diode; ATT: attenuator; IM: intensity modulator; PBS: polarization beam splitter;
PM: phase modulator; BS: beam splitter; PD: photo diode; PC: polarization controller;
SPD: single photon detector; CPU: central processing unit (personal computer); FPGA:
field programmable gate array; I/O: input/output interface. See text and [73] for more
details.

TCP/IP connection established between the two computers over the public Internet. Each

of the post-processing tasks can run independently, and both Alice and Bob run their tasks

on one computer each. The data gathered by the system is analyzed later on a computer

with an Intel i5 CPU 760 @ 2.8GHz, where decoy state analysis and privacy amplification

is performed.

The software is implemented primarily in National Instruments LabVIEW, with more

time-intensive tasks being implemented in C++ libraries that are called as appropriate by

the LabVIEW code. These libraries may execute in parallel with any LabVIEW code that

is not directly involved in controlling their execution. Hence, as more than one task may

be executing at the same time, the elapsed times that we measure for processing tasks do

not necessarily represent the required execution time. In particular, some tasks such as po-

larization compensation are not computationally intensive, but currently require significant

time for the hardware to act. During this time, computationally intensive tasks such as error

correction may execute if there is data available to be processed.
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5.1.3 System Performance

To determine the performance of our QKD system, we increase the raw key rate from 0.2

to 120 kbps, and monitor the sifted and error-corrected key rates. As we will argue below,

the secret key rate is simply related to the error-corrected rate by a factor described in [28].

As an example, the reduction assuming a QBER of 2.6%, µ=0.5 photons per pulse (with

Poissonian photon number distribution), and no PNS attack is 23.5% (see also [73]).

In a first set of experiments, we employ four commercial single photon detectors gated

at 1 MHz. This effectively limits the clock rate of our QKD system to the same value.

To change the raw key rate, we vary µ between 0.40 and 7.0 photons per pulse. Given the

loss of 6.5 dB in the quantum channel, a detector efficiency of ∼10%, as well as additional

attenuation of ∼3.5 dB in Bob’s device, this yields raw key rates between ∼0.2 and 4.8 kbps.

This calculation also takes into account that quantum data is sent only during ∼10% of

the system operation time; this is further discussed below. While this procedure does not

deliver secret keys for large values of µ (e.g. µ > 1), it does allow us to gauge how the

system responds in the event of large raw key rates. However, we point out that there is

a limit to this procedure. Indeed, as µ increases, the probability that multiple detectors

detect photons simultaneously also increases. This leads to larger processing requirements

as only one, randomly selected detection is kept for subsequent steps [48]. In turn, this leads

to an underestimation of the sifted key, and hence error-corrected key rates (this effect was,

however, not noticeable for µ ≤ 7).

To obtain higher raw key rates, we perform a second set of measurements using a single,

home-made SPD [74] that is gated at 100 MHz. We vary µ from 0.30 to 20 photons per pulse.

Obviously, using only one detector does not allow distributing a secret key. Nevertheless,

this setup allows increasing the raw key rate, and hence assessing the system performance in

the event of large rates. More precisely, it delivers one quarter (i.e. 2.24 to 121 kbps) of the

raw key rate we expect in a fully implemented QKD system with four high-rate detectors
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while providing a similar QBER. All key rates listed below and in figure 5.3 refer to the

actually detected (not extrapolated) rates.

Figure 5.1 shows the execution flow and frame structure in our system from Alice’s

perspective. This perspective was chosen since Alice’s timing currently limits the maximum

frame rate. First, the state of all qubits within a quantum frame is determined by a software-

based pseudo-random number generator (a, 225 ms). Note that this solution is temporary -

our final QKD system will employ true (if possible quantum) random number generators for

improved security; this will be discussed in section 4. This data is then transferred to a digital

I/O card (b, 225 ms), which, along with an FPGA, controls our hardware. These devices

generate the classical control frame (c, 960 ns), which includes a frame number, control

information for polarization compensation, and a sender and receiver address that will be

used for quantum packet routing in future work. The header is followed by a deadtime (d, 50

ms), after which the qubits are generated and transmitted (e, 100 ms). A second deadtime

(f, 50 ms) follows. These deadtimes exist to avoid accidentally exposing the single photon

detectors to strong light, which is generated at all times outside of the deadtimes and ’qubit

time’ (e). The second deadtime is followed by an idle time for the hardware, which is used by

the computer for software post-processing and data logging (g, 55-130 ms, depending on the

raw key rate). This time is determined by when the processor becomes available to generate

the data for the next quantum frame. In particular, when the error rate has exceeded a

certain threshold, the overall idle time is extended and then also comprises compensation

for time-varying birefringence of the communication channel (h, averaging to 140 ms per

frame). To summarize, qubits are transmitted on average during 100 ms out of 845-920 ms,

i.e. during 10.9-11.8% of the system operation time.

The sifted and error corrected key rates obtained over the total system operation time

are shown in figure 5.3 as a function of the raw key rate. From figure 5.3 we see that the

error-corrected key rate peaks at 33.488 kbps at a raw key rate of 69.720 kbps, and that the
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Figure 5.3: Sifted and error corrected key rates as a function of the raw key rate. The inset
shows the shaded area in more detail.

sifted key rate does no longer increase linearly with respect to the raw key rate once the latter

exceeds 114.160 kbps. This is due to the fact that the post-processing software is run on the

same computers as the data generation and collection software, and once processing resources

are at their limit, the error correction, and subsequently key sifting, will get less execution

time than is required to process all available data. To show the impact of this effect, error

correction was run independently with simulated data, yielding a maximum error-corrected

key rate of 53.213 kbps at an average QBER of 3.5%. This average QBER is consistent with

what is experienced during operation of the QKD system with the four commercial single

photon detectors and µ = 1. The QBER obtained using the high-rate detector is lower

due to a better ratio between detection efficiency and dark count probability. In addition,

the QBER decreases as µ is increased since the higher detection rates make dark counts

less significant. Thus, the 33.488 kbps rate obtained in the actual system is due to limited

computational resources. Similarly, we also conclude that the sifted key rate is affected by
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process competition.

We have also performed the decoy state analysis (according to the methodology described

in [27]) on the data recorded by our QKD system to establish the maximum amount of

information that may have leaked to an eavesdropper. The execution time to process the

data collected over 15 hours (enough to ignore finite key effects [79, 80]) was found to

be less than a minute, and is thus negligible. Privacy amplification using the Toeplitz

matrix approach has also been shown to require insignificant computational time if a number

theoretic transform is used [15, 78]. Hence, the time required to establish and remove the

eavesdropper’s information does not need to be considered in our time-cost analysis. In

addition, authenticated communication is needed for all classical post-processing steps to

prevent a man-in-the-middle attack [81]. Yet, the impact of authentication on the secret

key rate is negligible as well. Indeed, authentication of Gbps messages in real-time has been

reported [82, 83].

5.1.4 Proposed Improvements

The secret key rate of our QKD system can be improved by increasing the proportion of

time spent transmitting quantum data. Three simple modifications to our close to sequential

execution of tasks stick out. First, the deadtimes (d, f) can be shortened. In principle, these

times can be less than a millisecond. However, as our system is still under development, we

have chosen to maintain a large safety margin in case changes are made that alter the relative

timing at the sender and receiver. Second, we write more information to the hard drives

than is necessary to perform decoy state analysis, privacy amplification, and authentication.

This increases the hardware idle time (g), but allows for a thorough analysis of the system.

The secret key rate can thus be improved by writing only necessary information to file, or

by replacing our current approach with a more efficient method of data transfer. Third,

the powermeters used for polarization compensation have a response time on the order of a

second, and multiple measurements are required to determine the necessary adjustments to
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the polarization controller. As such, the polarization compensation time (h) can be reduced

to a few ms by using fast photodetectors in conjunction with a fast polarization controller.

In addition, we note that the 100 ms time interval for qubit transmission in each frame

(e) is determined by the clock rate of 100 MHz and by the available memory in the digital

I/O card, which allows generating 107 qubits per frame. This limitation is present in our

system for both detector setups, as Alice’s system generates qubits at 100 MHz even when

the detector gate rate is limited to 1 MHz. While reducing Alice’s clock frequency in the case

of the commercial detectors would bring the time used for qubit transmission much closer

to 100% of the system operation time, this would ideally provide only a 8-9 fold increase

in the raw key rate. In comparison, using the fast detector provided more than a 60 fold

increase in raw key rate. In the case of the fast detector setup, it is possible to add more

memory to the I/O card. However, this would result in a proportional increase in the time

required for the data preparation (a), data transfer (b), and key sifting plus error correction

(g) steps. This suggests that the following needs to be explored: a faster interface to the

computer, faster random number generation, as well as more efficient post-processing, for

instance using dedicated hardware that may also take care of authentication.

As used in QKD, LDPC encoding is not computationally intensive, requiring only a

series of parity calculations [58]. Decoding, however, is an iterative process that uses the

received data, parity information, and an initial estimate of the error rate (derived from

previous executions of the protocol) in order to compute better estimates of the probability

that each bit is in error [59, 60]. This iterative process ends successfully when the most

likely result for the corrected data is consistent with the parity information, and failure is

declared if a set maximum number of iterations is reached without meeting this condition.

In order to improve the throughput of the error correction in our system, two approaches are

possible. The computations required for LDPC decoding algorithm are well suited to parallel

implementations. Thus CPU utilization can be improved in our software implementation
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by taking advantage of this fact. Moreover, LDPC decoding is well suited to hardware

implementation [84], and performing the decoding using specialized hardware, whether in

an FPGA or custom integrated circuit, can yield error-corrected key rates of Mbps error-

corrected key rates, as we have shown in [73]. It should also be noted that the error correcting

code used in our experiment was originally designed for use with the commercial detectors.

Since these detectors only provide a small key rate, a short block length of 104 bits was used

for the LDPC code in order to evaluate the QBER, and hence provide feedback to initiate

the polarization control procedure in a timely fashion. The block length of the code can be

increased significantly when using fast detectors, leading to better performance relative to

the Shannon limit. This, in turn, translates to a higher secret key rate since less information

is revealed to the eavesdropper in this process.

Similarly, one should investigate hardware-based key sifting. In particular, executing

sifting, error correction, privacy amplification and authentication within the same FPGA

would avoid time-consuming data transfer into and out of a CPU.

Another concern in our current implementation is the generation of random qubit states

using a software-based, pseudo-random number generator. For a secure system, a true

(possibly quantum) random number generator (RNG) is required. A lot of progress has

been obtained over the past years, and the highest rate for a quantum RNG reported to

date is 50 Mbps [85]. Hence, two RNGs operated in parallel would suffice for our current

system as only ∼106 qubits are generated per second, and each qubit is determined by six

random bits with uniform distribution of zeros and ones2. Yet, to improve the clock rate to

1 GHz, or the fraction of time during which qubits are generated, or both, the amount of

RNGs that have to be operated in parallel would constitute a major challenge. Nevertheless,

given recent progress in high-rate single photon detectors [76], better quantum RNGs may

2Two bits are required to determine each polarization state, and four bits allow a random choice of
vacuum, decoy and signal states with the desired distribution. Furthermore, some randomness is required
for privacy amplification. Note that no random numbers are required at the receiver end due to the passive
basis choice
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become available in the near future and allow for high-rate QKD. Another possibility, which

would already constitute a significant improvement over pseudo-random numbers, is the use

of physical (non-quantum) RNGs for which Gbps rates have been reported [86].

5.1.5 Conclusions

We have demonstrated a QKD system that implements the BB84 protocol supplemented

with decoy states and quantum frames. The system executes software-based key sifting and

error correction in real-time over a real-world fiber optic channel. We have done a time-cost

analysis of all steps required in the generation of a secret key, and proposed improvements

to our current implementation. Furthermore, we have analyzed the scalability of the sifted,

error corrected and privacy amplified key rate with respect to the raw key rate, finding them

to be determined by the sequential execution of the different steps in the key distribution

protocol. Consequently, all processes that take significant time despite optimization have to

be executed parallel to the distribution of qubits using dedicated, possibly custom hardware.

Ignoring communication time, transmission loss and detector efficiency, the secret key rate

would then be limited by the clock rate and the detector gate rate, i.e. 100 MHz in our

current implementation with high-rate detectors.
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Chapter 6

Modelling and implementing a

measurement-device-independent QKD system

Quantum key distribution promises information theoretical security; this means security can

be proven without assumptions about the computational power of the eavesdropper and for

any eavesdropper bounded only by the laws of quantum physics. Security proofs of QKD are,

however, typically done under certain assumptions about the devices used to perform QKD.

Some of these assumptions are difficult to fulfil in experimental implementations and QKD

systems can be subject to hacking attacks in which Eve exploits the leakage of information

about the key through un-monitored side-channels.

To date, a number of proposals and demonstrations of possible side-channel attacks exist

[9, 19, 68, 55, 87]. Different attacks target different vulnerabilities of QKD implementations.

In the following paragraphs I will describe the most relevant side-channel attacks and possible

countermeasures. The first attack is the photon-number splitting attack [9], which was

explained in detail previously in chapter 3. This attack can be implemented if the source

has a non-zero probability of emitting optical pulses that contain more than one photon

(e.g. sources that use weak coherent pulses at the single photon level), instead of perfect

single photons, as is the case in the majority of QKD systems. The photon-number splitting

attack can be overcome if the decoy state protocol is implemented [25, 26, 27], for details

see chapter 3.

A second attack is the so-called Trojan-horse attack [19]. In this attack Eve probes

Alice’s system by sending high intensity pulses into it. Eve can obtain information about

the key through reflections from the optical elements of which Alice’s system is composed of.

This attack can easily be avoided by using an optical isolator, which is an optical element
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that transmits light in only one direction. If the optical isolator is placed at the entrance

of Alice’s laboratory it would allow the transmission of optical pulses out of her system but

would suppress the transmission of light directed towards the system.

Many proposed side-channel attacks exploit vulnerabilities of the single photon detectors

used in QKD implementations [55, 68]. Note that single photon detectors are particularly

exposed element of QKD implementations because external signals to Bob’s laboratory,

regardless of their origin1, must always have an optical access to the photodiode where the

detection occurs. Eve can take advantage of this optical access to send any kind of optical

signals to Bob’s system and attack it. The third side-channel attack I describe exploits the

optical access to Bob’s laboratory and it is called fake state attack. This attack consist

of a combination of an intercept-resend attack and a blinding attack [88]. In the blinding

attack Eve takes control of the single photon detectors by sending high intensity light to

them. Single photon detectors are avalanche photodiodes (APD) that work in the so-called

gated mode. In the gated mode the photodiode is reversed biased above breakdown voltage

for a brief period of time, see figure 6.1a; this period of time is called gate. During the

gate, the detector is sensitive to single photons impinging on the photodiode causing an

electrical current through the device. This current gets amplified in an avalanche effect,

producing a detection signal (also referred to as detection event). In order to suppress excess

noise, the current avalanche is quenched by lowering the voltage below breakdown voltage.

If Eve sends high intensity cw (continuous wave) light to the detector, it will lower the bias

voltage causing it not to gate anymore (see figure 6.1b) and therefore the detector is no

longer sensitive to single photon pulses. This attack is known as blinding attack. Although,

at this point the avalanche photodiode cannot detect single photons, it is still sensitive

to high intensity pulses and an electornic signal whose amplitude is proportional to power

of the impinging light will be produced. Provided the amplitude exceeds a threshold in

the subsequent electronic (generally including a threshold discriminator), a detection event

1These can be qubits emitted by Alice or high intensity pulses emitted by Eve.
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Figure 6.1: Voltage across avalanche photodiode. a) The avalanche photodiodes spend time
biased under breakdown voltage (Vbr); when they are gated above breakdown voltage the
photodiode is sensitive to single photons. b) During the blinding attack, Eve sends high
intensity light to the avalanche photodiode, reducing the bias voltage (Vbias). The detector
is no longer gated and it is not sensitive to single photons. However it remains sensitive to
high intensity pulses.

is produced. Eve can add high intensity pulses to the light used to blind the detectors to

produce the detection events expected by Bob when the single photon detectors are operating

in the expected mode. In a fake state attack Eve performs an intercept-resend attack and

measures Alice’s single photons in one of the two bases used to encode the qubits. Eve then

sends high intensity pulses to Bob according to the result she obtained in her measurement.

Eve can force Bob’s detector to produce a detection event only if his basis choice is the same

as Eve’s, otherwise the optical power is split and the signal arriving to the detector is not

strong enough to produce the detection event. With this attack Eve can learn Alice’s and

Bob’s raw key without leaving a trace. Once Eve knows the raw key she listens to all the

post-processing communication and processes her raw key accordingly to obtain the same

secret key as Alice and Bob. The fake state attack has been demonstrated experimentally

[68] and in view of the amount of information that Eve can obtain about the key it is the

most threatening for current QKD systems. A countermeasure for this attack is to place an

additional photodiode at the entrance of Bob’s laboratory to monitor the input power to the

detectors.
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The fourth side-channel attack also takes advantage of single photon vulnerabilities; it

is called time-shift attack. In this attack the eavesdropper exploits differences between the

quantum detection efficiencies of the single photon detectors employed in an implementation.

In a QKD system, the single photon detectors are gated simultaneously, however due to

unavoidable variations between the electrical wiring or the optical path to the different

detectors, the gate windows of the two detectors do not perfectly overlap. The mismatch

of the two gate windows can be exploited by Eve if she uses an intercept resend attack

in combination with a fake state attack using very short optical pulses. Eve can intercept

Alice’s qubit and measure it. She then adjusts the timing of the signal that she resends

to Bob. By changing the arrival time of the optical signal to the detector she can change

the probability of triggering one or the other detector provided she knows the gate window

mismatch. As Eve controls if one of the two detectors triggers, and each detector has a bit

value associated to it, Even can determine the bit values of Bob’s key. This attack can be

prevented if the detector gate is characterized carefully with a narrow optical pulse in order

to obtain the gate features with the best resolution possible. Bob can also check the timing

of the incoming pulses to his laboratory at random points of the key distribution process to

detect the attack.

Note that, in general, once a side-channel attack is discovered it is typically possible to

detect it or avoid it by improving the technology employed in the QKD implementation.

However, one can never be sure that improved attack strategies of the eavesdropper are

countered by improved technology of the legitimate users. An alternative to technological

updates for every side-channel that is discovered is to develop more robust protocols that

can guarantee the security of the distributed key despite the inevitable imperfections present

in the devices used.

In 2011, Lo and co-workers [89] proposed a protocol that removes all possibilities for side-

channel attacks that take advantage of single photon detector vulnerabilities. The protocol
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is called measurement-device independent QKD. In this protocol a secret key is distributed

between Alice and Bob through Charlie, a third untrusted party located between them.

Alice and Bob each have a source of qubits. Each source produces equally probable, random

and independent qubits chosen among the BB84 states. Alice and Bob send their qubits to

Charlie. In turn, Charlie performs a Bell state measurement (BSM) on the pair of qubits

he receives. The BSM projects both qubits onto one of the maximally entangled Bell states,

(for more information about Bell state measurements refer to chapter 7 and appendix C).

For instance, Charlie announces whenever the qubits have been projected onto the |ψ−〉 =

1√
2
(|01〉 − |10〉) state. Provided Alice and Bob used the same basis to prepare their qubits,

they know that, for the announced events, they have bits with completely anti-correlated

values. Subsequently, Alice and Bob can distil a secret key through classical post-processing.

Note that Charlie is an untrusted third party and could easily perform a side-channel attack

on the single photon detectors, which are in his possession. However, if Charlie performs a

BSM it is fundamentally impossible for him to find out if Alice input a qubit encoded with

a value of zero and Bob a value of one or vice versa - he only learns that Alice and Bob have

anti-correlated values. Hence monitoring detection events does not provide Charlie with

any information about the key because the protocol completely de-correlates the detection

events from the bit value. Charlie could also try to fake detection events or cheat during the

measurement process by not performing a BSM and instead executing another measurement

that could give him information about the key. In this case, Charlie increases the QBER

that Alice and Bob measure, therefore leaving a trace. In the MDI-QKD protocol, Charlie is

effectively post-selecting projections onto maximally entangled states between Alice and Bob.

Consequently, the protocol is equivalent to an entanglement based QKD system performed

in a time-reversed manner, which has been proven to be secure [90].

Additionally, the MDI-QKD protocol is well suited to develop star type quantum net-

works. A star network consists of one central node to which all other nodes are connected. In
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the quantum network Charlie would be located in the central node with the detectors needed

to implement QKD and he would provide connections to any pair of users in the network

that want to share a key. The benefits of this scenario are twofold: first, Charlie does not

have to be a trusted node, second: the implementation of a star quantum network would

require for only one node to be equipped with single photon detectors, which are typically

the most costly devices in a QKD system.

This chapter contains two articles. The first article shows the development of a predictive

model of a MDI-QKD system. The mathematical model predicts the performance of the

system by taking into account imperfections in the devices employed. It reproduces the

measurable parameters of the system such as quantum bit error rate as well as projection

probabilities onto the |ψ−〉 Bell state. The model also allows us to optimize the system

performance as a function of the mean photon number emitted by the users, and allows us

to identify limiting components of the system. This article also includes the experimental

verification of the model.

In the second paper we added to the proof-of-principle demonstration the implementation

of the decoy state protocol. In this proof-of-principle demonstration the mean photon number

emitted by each source has been optimized via the mathematical model presented in the

first paper of this chapter, allowing to optimize the secret key rate for each distance (or loss)

between Alice and Bob. The proof-of-principle demonstration was done over deployed fiber

in the city of Calgary and in a laboratory environment and it shows the possibility to perform

a Bell state measurement with independently generated qubits travelling through deployed

fibers featuring uncorrelated changes of polarization transmission times of the photons.

This work was done in collaboration with Allison Rubenok, Joshua Slater and Philip

Chan. I contributed to these studies during the following stages: all measurements during

the laboratory tests as well as over the deployed system across the city. I contributed to

the location of implementation imperfections through different measurements and tests. I
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also contributed to quantifying the imperfections in the implementation, some of which were

possible to eliminate, this made possible to perform the demonstration at long distances. I

contributed to the development of the model presented in the first paper. I contributed by

writing sections 1, 2 and 3 of the first manuscript and taking part of the editing process as

well as response to the referees for publication for both manuscripts.
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Abstract

We present a detailed description of a widely applicable mathematical model for quantum

key distribution (QKD) systems implementing the measurement-device-independent (MDI)

protocol. The model is tested by comparing its predictions with data taken using a proof-

of-principle, time-bin qubit-based QKD system in a secure laboratory environment (i.e. in

a setting in which eavesdropping can be excluded). The good agreement between the pre-

dictions and the experimental data allows the model to be used to optimize mean photon

numbers per attenuated laser pulse, which are used to encode quantum bits. This in turn

allows optimization of secret key rates of existing MDI-QKD systems, identification of rate-

limiting components, and projection of future performance. In addition, we also performed

measurements over deployed fiber, showing that our system’s performance is not affected by

environment-induced perturbations.

6.1.1 Introduction

From the first proposal in 1984 to now, the field of quantum key distribution (QKD) has

evolved significantly [10, 11]. For instance, experimentally, systems delivering key at Mbps

rates [72] as well as key distribution over more than 100 km [30, 31] have been reported.

From a theoretical perspective, efforts aim at developing QKD protocols and security proofs

with minimal assumptions about the devices used [91]. Of particular practical importance
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are two recently developed protocols that do not require trusted single photon detectors

(SPDs) [89, 92]. One of these, the so-called measurement-device-independent QKD (MDI-

QKD) protocol, has already been implemented experimentally [93, 94, 95, 87]. Hence, it is

foreseeable that it will play an important role in the future of QKD, and it is thus important

to understand the interplay between experimental imperfections (which will always remain

in real systems) and system performance to maximize the latter.

In this work, we derive a widely applicable mathematical model describing systems that

implement the MDI-QKD protocol. The model is based on facts about our [93], and other

existing experimental setups [94, 95, 87], and takes into account carefully characterized im-

perfect state preparation, loss in the quantum channel, as well as limited detector efficiency

and noise. It is tested by comparing its predictions with data taken with a proof-of-principle

QKD system [93] employing time-bin qubits and implemented in a laboratory environment.

Our model, which contains no free parameter, reproduces the experimental data within

statistical uncertainties over three orders of magnitude of a relevant parameter. The excel-

lent agreement allows optimizing central parameters that determine secret key rates, such

as mean photon numbers used to encode qubits, and to identify rate-limiting components

for future system improvement. In addition, we also find that the model accurately repro-

duces experimental data obtained over deployed fibers, showing that our system minimizes

environment-induced perturbation to quantum key distribution in real-world settings.

This paper is organized in the following way: In section 6.1.2 we detail some of the side-

channel attacks (i.e. attacks exploiting incorrect assumptions about the working of QKD

devices) proposed so far and review technological countermeasures. In section 6.1.3 we briefly

describe the MDI-QKD protocol, which instead exploits fundamental quantum physical laws

to render the most important of these attacks useless. Our model of MDI-QKD systems is

presented in section 6.1.4. This section is followed by an in-depth account of experimental

imperfections that affect MDI-QKD performance and a description of how we characterized
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them in our system (section 6.1.5). Section 6.1.6 shows the results of the comparison between

modelled and measured quantities, and section 6.1.7 details how to optimize the performance

of our MDI-QKD system using the model. Finally, we conclude the article in section 6.1.8.
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SPDs
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Figure 6.2: Schematics for MDI-QKD. Charlie facilitates the key distribution between Alice
and Bob without being able to learn the secret key.

6.1.2 Side-channel attacks

A healthy development of QKD requires investigating the vulnerabilities of QKD imple-

mentations in terms of potential side-channel attacks. Side-channels in QKD are channels

over which information about the key may leak out unintentionally. One of the first QKD

side-channel attacks proposed was the photon number splitting (PNS) attack [9] in which

the eavesdropper, Eve, exploits the fact that attenuated laser pulses sometimes include more

than one photon to obtain information about the key. This attack can be detected if the

decoy state protocol [25, 27, 26] is implemented. In the decoy state protocol, Alice varies the

mean photon number per pulse in order to allow her and Bob to distill the secret key only

from information stemming from single photon emissions. More proposals of side-channel

attacks followed, including the Trojan-horse attack [20, 19], for which the countermeasure is

an optical isolator [19], and the phase remapping attack [96], for which the countermeasure

is phase randomization [96]. Later on, attacks that took advantage of SPD vulnerabilities

were also proposed and demonstrated [56, 57, 97, 68]. For example, the time-shift attack [57]

exploits a difference in the quantum efficiencies of the SPDs used in a QKD system. This

attack can be prevented by actively selecting one of the two bases for the projection measure-
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ment, as well as by monitoring the temporal distribution of photon detections [57]. Another

example is the detector blinding attack [68] in which the eavesdropper uses high intensity

pulses to modify the performance (i.e. blind) the SPDs. It can be detected by monitor-

ing the intensity of light at the entrance of Bob’s devices with a photodiode [68, 98, 99].

Nevertheless, due to its power, the blinding attack is currently of particular concern.

It is important to mention that open side-channels do not necessarily compromise the

security of the final key if the information that Eve may have obtained through an attack is

properly removed during privacy amplification. However, as technological fixes (as discussed

above) or additional privacy amplification can only thwart known attacks, it is important

to develop and implement protocols that use a minimum number of assumptions about the

devices used to implement the protocol. An important example is the measurement-device-

independent QKD protocol, which we will introduce in the next section.

6.1.3 The measurement-device-independent quantum key distribution protocol

The MDI-QKD protocol is a time-reversed version of entanglement-based QKD. In this

protocol, the users, Alice and Bob, are each connected to Charlie, a third party, through

a quantum channel, e.g. optical fiber (see Fig. 6.2). In the ideal version, the users have

a source of single photons that they prepare randomly in one of the BB84 qubit states [4]

|0〉, |1〉, |+〉 and |−〉, where |±〉 = 2−1/2(|0〉 ± |1〉). The qubits are sent to Charlie where

the SPDs are located. Charlie performs a partial Bell state measurement (BSM) through a

50/50 beam splitter and then announces the events for which the measurement resulted in

a projection onto the |ψ−〉 = 2−1/2(|0〉A |1〉B − |1〉A |0〉B) state. Alice and Bob then publicly

exchange information about the used bases (z, spanned by |0〉 and |1〉, or x, spanned by |+〉

and |−〉). Associating quantum states with classical bits (e.g. |0〉 , |−〉 ≡ 0, and |1〉 , |+〉 ≡ 1)

and keeping only events in which Charlie found |ψ−〉 and they picked the same basis, Alice

and Bob now establish anti-correlated key strings. (Note that a projection of two photons

onto |ψ−〉 indicates that the two photons, if prepared in the same basis, must have been in
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orthogonal states.) Bob then flips all his bits, thereby converting the anti-correlated strings

into correlated ones. Next, the so-called x-key is formed out of all key bits for which Alice and

Bob prepared their photons in the x-basis; its error rate is used to bound the information an

eavesdropper may have acquired during photon transmission. Furthermore, Alice and Bob

form the z-key out of those bits for which both picked the z-basis. Finally, they perform

error correction and privacy amplification[10, 11] to the z-key, which results in the secret

key.

The advantage of the MDI-QKD protocol over conventional prepare-and-measure or en-

tangled photon-based QKD protocols is that, in the case of Charlie performing an ideal

(partial) BSM as described above, detection events are uncorrelated with the final secret

key bits. This is because a projection onto |ψ−〉 only indicates that Alice and Bob sent

orthogonal states, but does not reveal who sent which state. As a result, Charlie (or Eve)

is unable to gain any information about the key from passively monitoring the detectors.

Furthermore, a measurement that is different from the ideal BSM leads to an increased error

rate and thus to a smaller, but still secret, key once privacy amplification has been applied.

Notably, it does not matter wether the difference is due to experimental imperfections or

to an eavesdropper (possibly Charlie himself) trying to gather information about the states

that Alice and Bob sent by replacing or modifying the measurement apparatus. Hence, all

detector side channels are closed in MDI-QKD.

In the ideal scenario introduced above, Alice and Bob use single photon sources to gen-

erate qubits. However, it is possible to implement the protocol using light pulses attenuated

to the single photon level. Indeed, as in prepare-and-measure QKD, randomly varying the

mean photon number of photons per attenuated light pulse between a few different values

(so-called decoy and signal states) allows making the protocol practical while protecting
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against a possible PNS attack [89, 100]. The secret key rate is then given by [89]:

S = Qz
11

(
1− h2(e

x
11)
)
−Qz

µσfh2(e
z
µσ), (6.1)

where h2 is the binary entropy function, f indicates the error correction efficiency, Q indicates

the gain (the probability of a projection onto |ψ−〉 per emitted pair of pulses 2) and e

indicates error rates (the ratio of erroneous to total projections onto |ψ−〉). Furthermore, the

superscripts, x or z, denote if gains or error rates are calculated for qubits prepared in the x-

or the z-basis, respectively. Similarly, the subscripts, µ and σ, show that the quantity under

concern is calculated or measured for pulses with mean photon number µ (sent by Alice) and

σ (sent by Bob), respectively. Finally, the subscript 11 indicates quantities stemming from

detection events for which the pulses emitted by Alice and Bob contain only one photon

each. Note that Q11 and e11 cannot be measured; their values must be bounded using either

a decoy state method, or employing qubit tagging [9]. However, the latter yields smaller key

rates and distances than the former.

Shortly after the original proposal [89], a practical decoy state protocol for MDI-QKD

was proposed [100]. It requires Alice and Bob to randomly pick mean photon numbers

between two decoy states and a signal state. One of the decoy states must have a mean

photon number lower than the signal state, while the other one must be vacuum. A finite

number of decoy states results in a lower bound for Qx,z
11 and an upper bound for ex11, which

in turn gives a lower bound for the secret key rate in Eq. (6.1). We will elaborate more on

decoy states in section 6.1.7.

6.1.4 The model

Our model takes into account imperfections present in a typical QKD system. Regarding the

sources, located at Alice and Bob, we take into account imperfect preparation of the quantum

2Note that a pulse does not necessarily contain one single photon. In particular, when considering
attenuated light pulses, the number of photons in a pulse will, for example, follow the Poissonian distribution.
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state of each photon. Furthermore, we consider transmission loss of the links between Alice

and Charlie, and Bob and Charlie. And finally, concerning the measurement apparatus

at Charlie’s, we consider imperfect projection measurement stemming from non-maximum

quantum interference on Charlie’s beam splitter, detector noise such as dark counts and

afterpulsing, and limited detector efficiency. See also [101] for another model describing

MDI-QKD performance, but with a more restrictive set of imperfections and not yet tested

against actual experimental data.

In the following paragraphs we present a detailed description of our model. It relies on

the assumption of phase randomized laser pulses at Charlie’s. While Alice and Bob generate

coherent states in our proof-of-principle setup, this assumption is correct as the long fibres

used to connect Alice and Bob with Charlie introduce random global phase variations (we

will discuss the impact of the lack of phase randomization at Alice’s and Bob’s on the secu-

rity of distributed keys in section 6.1.8). We note that, in order to facilitate explanations,

we have adopted the terminology of time-bin encoding. However, our model is general and

can also be applied to MDI-QKD systems implementing other types of encoding [95].

State preparation

In the MDI-QKD protocol, Alice and Bob derive key bits whenever Charlie announces a

projection onto the |ψ−〉 Bell state. We model the probability of a |ψ−〉 projection for

various quantum states of photons emitted by Alice and Bob as a function of the mean

photon number per pulse (µ and σ, respectively) and transmission coefficients of the fiber

links (tA and tB, respectively). We consider photons in qubit states described by:

|ψ〉 =
1√

1 + 2bx,z

(√
mx,z + bx,z |0〉+ eiφ

x,z√
1−mx,z + bx,z |1〉

)
(6.2)

where |0〉 and |1〉 denote orthogonal modes (i.e. early and late temporal modes assuming

time-bin qubits), respectively. Note that |ψ〉 describes any pure state 3 and the presence of

3To the best of our knowledge, this assumption correctly describes all existing experimental implementa-
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the mx,z and bx,z terms in Eq. (6.2), as opposed to using only one parameter, is motivated

by the fact that they model different experimentally characterizable imperfections. In the

ideal case, mz ∈ [0, 1] for photon preparation in the z-basis (in this case, the value of φz is

irrelevant), mx = 1
2

and φx ∈ [0, π] for the x-basis, and bx,z = 0 for both bases. Imperfect

preparation of photon states is modelled by using non-ideal mx,z, φx,z and bx,z for Alice and

Bob. The parameter bx,z is included to represent the background light emitted and mod-

ulated by an imperfect source. Furthermore, in principle, the various states generated by

Alice and Bob could have differences in other degrees of freedom (i.e. polarization, spectral,

spatial, temporal modes). This is not included in Eq. (6.2), but would be reflected in a

reduced quality of the BSM, which will be discussed below.

Conditional probability for projections onto |ψ−〉

A projection onto |ψ−〉 occurs if one of the SPDs after Charlie’s 50/50 beam splitter signals

a detection in an early time-bin (a narrow time interval centered on the arrival time of

photons occupying an early temporal mode) and the other detector signals a detection in a

late time-bin (a narrow time-interval centered on the arrival time of photons occupying a late

temporal mode). Note that, in the following paragraphs, this is the desired detection pattern

we search for when modeling possible interference cases or noise effects. Also, note that we

assume that Charlie’s two single-photon detectors have identical properties. A deviation

from this approximation does not open a potential security loophole (in contrast to prepare-

and-measure and entangled photon based QKD), as all detector side-channel attacks are

removed in MDI-QKD.

We build up the model by first considering the probabilities that particular outputs

from the beam splitter (at Charlie’s) will generate the detection pattern associated with a

projection onto |ψ−〉. The outputs are characterized by the number of photons per output

port as well as their joint quantum state. The probabilities for each of the possible outputs to

tions. See section 5 for more information.
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occur can then be calculated based on the inputs to the beam splitter (characterized by the

number of photons per input port and their quantum states, as defined in Eq. (6.2)). Note

that for the simple cases of inputs containing zero or one photon (summed over both input

modes), we calculate the probabilities leading to the desired detection pattern directly, i.e.

without going through the intermediate step of calculating outputs from the beam splitter.

Finally, the probability for each input to occur is calculated based on the probability for

Alice and Bob to send attenuated light pulses containing exactly i photons, all in a state

given by Eq. (6.2). The probability for a particular input to occur also depends on the

transmissions of the quantum channels, tA and tB. We note that this model considers

up to three photons incident on the beam splitter. This is sufficient as, in the case of

heavily attenuated light pulses and lossy transmission, higher order terms do not contribute

significantly to projections onto |ψ−〉. However, we limit the following description to two

photons at most: the extension to three is lengthy but straightforward and follows the

methodology presented for two photons.

Detector noise: Let us begin by considering the simplest case in which no photons are input

into the beam splitter. In this case, detection events can only be caused by detector noise.

We denote the probability that a detector indicates a spurious detection as Pn. Detector

noise stems from two effects: dark counts and afterpulsing [102]. Dark counts represent

the base level of noise in the absence of any light, and we denote the probability that a

detector generates a dark count per time-bin as Pd. Afterpulsing is an additional noise

source produced by the detector as a result of prior detection events. The probability of

afterpulsing depends on the total count rate, hence we denote the afterpulsing probability

per time-bin as Pa, which is a function of the mean photon number per pulse from Alice

and Bob (µ and σ), the transmission of the channels (tA and tB) and the efficiency of

the detectors (η) located at Charlie (see below for afterpulse characterization). The total

probability of a noise count in a particular time-bin is thus Pn = Pd + Pa. All together, we

100



find the probability for generating the detection pattern associated with a projection onto

the |ψ−〉-state, conditioned on having no photons at the input, specified by “in”, of the beam

splitter, to be :

P (
∣∣ψ−〉 |0 photons, in) = P (

∣∣ψ−〉 |0 photons, out) = 2P 2
n , (6.3)

Here and henceforward, we have ignored the multiplication factor (1-Pn) ∼ 14, which indi-

cates the probability that a noise event did not occur in the early time-bin (this is required

in order to see a detection during the late time-bin assuming detectors with recovery time

larger than the separation between the |0〉 and |1〉 temporal modes). Note that the prob-

ability conditioned on having no photons at the inputs of the beam splitter equals the one

conditioned on having no photons at the outputs (specified in Eq. (6.3) by the conditional

“out”).

One-photon case: Next, we consider the case in which a single photon arrives at the beam

splitter. To generate the detection pattern associated with |ψ−〉, either the photon must be

detected and a noise event must occur in the other detector in the opposite time-bin, or, if

the photon is not detected, two noise counts must occur as in Eq. (6.3). We find

P (
∣∣ψ−〉 |1 photon, in) = ηPn + (1− η)P (

∣∣ψ−〉 |0 photons, out), (6.4)

where η denotes the probability to detect a photon that occupies an early (late) temporal

mode during an early (late) time-bin (we assume η to be the same for both detectors).

Two-photon case: We now consider detection events stemming from two photons entering

the beam splitter. The possible outputs can be broken down into three cases. In the first

case, both photons exit the beam splitter in the same output port and are directed to the

same detector. This yields only a single detection event, even if the photons are in different

4Note that this approximation is, in general, not correct. However, in order to obtain the best performance
from a QKD implementation, the noise level should be as low as possible, i.e. Pn ∼ 0.
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temporal modes (the latter is due to detector dead time. Note that as our model calculates

detections in units of bits per gate, modeling a dead-time free detector is straightforward.).

The probability for Charlie to declare a projection onto |ψ−〉 is then

P (
∣∣ψ−〉 |2 photons, 1 spatial mode, out) =

(1− (1− η)2)Pn + (1− η)2P (
∣∣ψ−〉 |0 photons, out). (6.5)

In the second case, the photons are directed towards different detectors and occupy the

same temporal mode. Hence, to find detections in opposite time-bins in the two detectors,

at least one photon must not be detected. This leads to

P (
∣∣ψ−〉 |2 photons, 2 spatial modes, 1 temporal mode, out) =

2η(1− η)Pn + (1− η)2P (
∣∣ψ−〉 |0 photons, out). (6.6)

In the final case, both photons occupy different spatial as well as temporal modes. In

contrast to the previous case, a projection onto |ψ−〉 can now also originate from the detection

of both photons. This leads to

P (
∣∣ψ−〉 |2 photons, 2 spatial modes, 2 temporal modes, out) =

η2 + 2η(1− η)Pn + (1− η)2P (
∣∣ψ−〉 |0 photons, out). (6.7)

In order to find the probability for each of these three two-photon outputs to occur, we

must examine two-photon inputs to the beam splitter. We note that it is possible for the

two photons to be subject to a two-photon interference effect (known as photon bunching)

when impinging on the beam splitter. As this quantum interference can lead to an entangled

state between the output modes, the calculation must proceed with quantum mechanical

operators. We consider three cases: two photons arrive at the same input of the beam

102



splitter, one photon arrives at each input of the beam splitter and the two photons are

distinguishable, and one photon arrives at each input of the beam splitter and the two

photons are indistinguishable. For ease of analysis, we first introduce some notation:

px,z(0, 0) ≡ (mx,z
1 + bx,z1 )(mx,z

2 + bx,z2 )

px,z(0, 1) ≡ (mx,z
1 + bx,z1 )(1−mx,z

2 + bx,z2 )

px,z(1, 0) ≡ (1−mx,z
1 + bx,z1 )(mx,z

2 + bx,z2 )

px,z(1, 1) ≡ (1−mx,z
1 + bx,z1 )(1−mx,z

2 + bx,z2 )

bx,znorm ≡ 1 + 2bx,z1 + 2bx,z2 + 4bx,z1 bx,z2 (6.8)

where bx,z1,2 and mx,z
1,2 are the parameters introduced in Eq. (6.2); the subscripts label the

photon (one or two) whose state is specified by the parameters. Furthermore, px,z(i, j) is

proportional to finding photon one before the beam-splitter in temporal mode i and photon

two in temporal mode j, where i, j ∈ [0, 1]. Finally, bx,znorm is a normalization factor.

First, considering the situation in which the two photons impinge from the same input

on the beam splitter, one has the state

|ψinput〉 =

(
1√

1 + 2bx,z

(√
mx,z + bx,z â†(0) + eiφ

x,z√
1−mx,z + bx,z â†(1)

))⊗2

|vac〉 , (6.9)

where â†(0) and â†(1) are the creation operators for a photon in the |0〉 or |1〉 state, re-

spectively. Evolving this state through the standard unitary transformation for a lossless,

50/50 beam splitter, described by â† → (ĉ† + d̂†)/
√

2 (where ĉ† and d̂† are the two output

modes of the beam splitter), one finds that with probability 1/2 the two photons exit the

beam splitter in the same output port (or spatial mode) and with probability 1/2 in dif-

ferent ports. Furthermore, with probability A = [px,z(0, 0) + px,z(1, 1)]/2bx,znorm we find the

photons in different spatial modes and in the same temporal mode, and with probability

B = [px,z(0, 1) + px,z(1, 0)]/2bx,znorm we find the photons in different spatial and temporal
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modes. By symmetry, we find the same result if the two photons arrive from the other input

mode of the beam splitter.

Thus the probability that Charlie finds the desired detection pattern is:

P (
∣∣ψ−〉 |2 photons, 1 spatial mode, in) =

1

2
P (
∣∣ψ−〉 |2 photons, 1 spatial mode, out)

+A× P (
∣∣ψ−〉 |2 photons, 2 spatial modes, 1 temporal mode, out)

+B × P (
∣∣ψ−〉 |2 photons, 2 spatial modes, 2 temporal modes, out).

(6.10)

Second, consider the situation in which the two photons come from different inputs, and

are completely distinguishable in some degree of freedom. This can be modelled by starting

with the input state

|ψinput〉 = 1√
1+2bx,z1

(√
mx,z

1 + bx,z1 â†(0) + eiφ
x,z
1

√
1−mx,z

1 + bx,z1 â†(1)
)

⊗ 1√
1+2bx,z2

(√
mx,z

2 + bx,z2 b̂†(0) + eiφ
x,z
2

√
1−mx,z

2 + bx,z2 b̂†(1)
)
|vac〉 , (6.11)

where b̂† is the creation operator for a photon in the second input mode of the beam splitter.

One can then evolve the state with the beam splitter unitary described by â† → (ĉ†+ d̂†)/
√

2

(as before) and b̂† → (−ê† + f̂ †)
√

2, where ĉ† and ê† correspond to the same spatial output

mode but with distinguishability in another degree of freedom, and similarly for the other

spatial output mode described by d̂† and f̂ †. One finds the same result as for the previous

case, described by Eq. (6.10):

P (|ψ−〉 |2 photons, 2 spatial modes, non-interfering, in)

= P (|ψ−〉 |2 photons, 1 spatial mode, in)

≡ P (|ψ−〉 |2 photons, non-interfering, in). (6.12)
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The definition reflects that there is no two-photon interference in both cases.

Finally, consider the case in which the two photons impinge from different inputs are

indistinguishable, and interfere on the beam splitter. This can be modelled by considering

the same input state as in Eq. (6.11), but using a beam splitter unitary described by â† →

(ĉ†+ d̂†)/
√

2 (as before) and b̂† → (−ĉ†+ d̂†)/
√

2. In this case, the probabilities of finding the

outputs from the beam splitter discussed in Eqs. (6.5-6.7) depend on the difference between

the phases φx,z1 and φx,z2 that specify the states of photons one and two, ∆φx,z ≡ φx,z1 − φx,z2 .

Note that, due to the two-photon interference effect, finding the two photons in different spa-

tial modes and the same temporal mode is impossible. We are thus left with the case of having

two photons in the same output port (the same spatial mode), which occurs with probability

C = [px,z(0, 0)+px,z(1, 1)+0.5(px,z(0, 1)+px,z(1, 0))+
√
px,z(0, 1)px,z(1, 0) cos(∆φx,z)]/bx,znorm,

and the case of having the photons in different temporal and spatial modes, which occurs

with probability D = [0.5(px,z(0, 1)+px,z(1, 0))−
√
px,z(0, 1)px,z(1, 0) cos(∆φx,z)]/bx,znorm. This

leads to

P (
∣∣ψ−〉 |2 photons, interfering, in) =

C × P (
∣∣ψ−〉 |2 photons, 1 spatial mode, out) +

D × P (
∣∣ψ−〉 |2 photons, 2 spatial modes, 2 temporal modes, out). (6.13)

Aggregate probability for projections onto |ψ−〉

Now that we have calculated the conditional probabilities of a detection pattern indicating

|ψ−〉 for various inputs to the beam splitter, let us consider with what probability each case

occurs. This requires that we know the photon number distribution of the pulses arriving

at Charlie’s beam splitter from Alice and Bob, which can be computed based on the photon

number distribution at the sources and the properties of the quantum channels. For the

following discussion, we assume that the channels from Alice to Charlie, and from Bob to

Charlie are characterized by the loss tA and tB, respectively, yielding pulses with number
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distribution D and mean photon number, µtA and σtB, respectively. This is equivalent to

assuming that no PNS attack takes place, which was ensured by performing experiments

with the entire setup (including the fiber transmission lines) inside a single laboratory in

which no eavesdropping took place during the experiments. We limit our discussion to

the cases with two or less photons at the input of the beam splitter (but recall that the

actual calculation includes up to three photons). Hence, the cases we consider and their

probabilities of occurrence, PO, are given by:

• 0 photons at the input from both sources: PO = D0(µtA)D0(σtB)

• 1 photon at the input from Alice and 0 photons from Bob: PO = D1(µtA)D0(σtB)

• 0 photons at the input from Alice and 1 photon from Bob: PO = D0(µtA)D1(σtB)

• 2 photons at the input from Alice and 0 photons from Bob: PO = D2(µtA)D0(σtB)

• 0 photons at the input from Alice and 2 photons from Bob: PO = D0(µtA)D2(σtB)

• 1 photon at the input from both sources: PO = D1(µtA)D1(σtB)

where we denote the probability of having i photons from a distribution D with mean number

µ as Di(µ). For each of these cases, we have already computed the probability that Charlie

obtains the detection pattern associated with the |ψ−〉-state for arbitrary input states of the

photons (as defined in Eq. (6.2)). When zero or one photons arrive at the beam splitter,

Eq. (6.3) and Eq. (6.4) are used, respectively. In the case in which two photons arrive

from the same source, Eq. (6.12) is used. Finally, in the case in which one photon arrives

from each source at the beam splitter, Eq. (6.13) would be used in the ideal case. However,

perfect indistinguishability of the photons cannot be guaranteed in practice. We characterize

the degree of indistinguishability by the visibility, V , that we would observe in a closely-

related Hong-Ou-Mandel (HOM) interference experiment [103] with single-photon inputs.
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Taking into account partial distinguishability, the probability of finding a detection pattern

corresponding to the projection onto |ψ−〉 is given by

P (
∣∣ψ−〉 |2 photons, visibility V , in) =

V P (
∣∣ψ−〉 |2 photons, interfering, in)

+(1− V )P (
∣∣ψ−〉 |2 photons, non-interfering, in). (6.14)

Equations 6.3-6.14 detail all possible causes for observing the detection pattern associated

with a projection onto the |ψ−〉 Bell state, if up to two photons at the beam splitter input

are taken into account. We remind the reader that all calculations in the following sections

take up to three photons at the input of the beam splitter into account. To calculate the

gains, Qx,z
µσ , using these equations, we need only substitute in the correct values of µ, σ, tA,

tB, mx,z, bx,z, and ∆φx,z for the cases in which Alice and Bob both sent attenuated light

pulses in the x-basis or z-basis, respectively. The error rates, ex,zµ , can then be computed by

separating the projections onto |ψ−〉 into those where Alice and Bob sent photons in different

states (yielding correct key bits) and in the same state (yielding erroneous key bits). More

precisely, the error rates, ex,zµσ , are calculated as ex,zµσ = px,zwrong/(p
x,z
correct + px,zwrong) where px,zwrong

(px,zcorrect) denotes the probability for detections yielding an erroneous (correct) bit in the x

(or z)-key.

6.1.5 Characterizing experimental imperfections

The parameters used to model our system are derived from data established through indepen-

dent measurements. To test our model, the characterization of experimental imperfections

in our MDI-QKD implementation [93] is very technical at times. It can be broken down

into time-resolved energy measurements at the single photon level (required to extract µ,

σ, bx,z and mx,z for Alice and Bob, as well as dark count and afterpulsing probabilities),

measurements of phase (required to establish φx,z for Alice and Bob), and visibility measure-
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ments. In the following paragraphs we describe the procedures we followed to obtain these

parameters from our system.

Our MDI-QKD implementation

In our implementation of MDI-QKD [93] Alice’s and Bob’s setups are identical. Each setup

consists of a CW laser with large coherence time, emitting at 1550nm wavelength. Time-

bin qubits, encoded into single photon-level light pulses with Poissonian photon number

statistics, are created through an attenuator, an intensity modulator and a phase modulator

located in a temperature controlled box. More precisely, the intensity modulator is used

to tailor pulse pairs out of the cw laser light, the phase modulator is used to change their

relative phase, and the attenuator attenuates these pulses to the single-photon level. The

two temporal modes defining each time-bin qubit are of 500 ps (FWHM) duration and are

separated by 1.4 ns. Each source generates qubits at 2 MHz rate.

We emphasize that our qubit generation procedure justifies the assumption of a pure state

in Eq. (6.2). Indeed, all photons, including background photons due to light leaking through

imperfect intensity modulators, have to be generated by the CW lasers whose coherence

times exceeds the separation between the temporal modes |0〉 and |1〉5. Note that in all

experiments reported to date [93, 94, 95, 87] background photons always add coherently to

the modes describing qubits, making our pure-state description widely applicable.

The time-bin qubits are sent to Charlie through an optical fiber link. The link consisted

of spooled fiber (for the measurements in which Alice, Bob and Charlie were all located in

the same laboratory) or deployed fiber (for the measurements in which the three parties

were located in different locations within the city of Calgary). We remind the reader that

all pulses arriving at Charlie’s are phase randomized, due to the use of long fibers. Charlie

5The separation of photons into genuine qubit photons and background photons is somewhat artificial –
as a matter of fact, there is no way to distinguish background photons from real photons. As already stated
in section 4.1, the distinction is motivated by the need to write down a general expression for all emitted
single-photon qubit states using parameters that can be characterized directly through experiments (these
measurements are further described below).
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Figure 6.3: Time-bin qubits are created at Alice’s and Bob’s through a CW laser (LD),
attenuator (ATT), and frequency shifter (FS) and temperature-controlled intensity (IM)
and phase (PM) modulator. The projective measurements are done at Charlie’s via a beam
splitter (BS) and two single photon detectors (SPDs).

performs a BSM on the qubits he receives using a 50/50 beamsplitter and two SPDs. See

Figure 6.3. Note that, in order to perform a Bell state measurement the photons arriving

to Charlie must be indistinguishable in all degrees of freedom: polarization, frequency, time

and spatial mode. The indistinguishability of the photons is assessed through a Hong-Ou-

Mandel interference measurement [103]. As our system employs attenuated laser pulses, the

maximum visibility we can obtain in this measurement is Vmax = 50% (and not 100% as

it would be with single photons) [104]. In our implementation the visibility measurements

resulted in V = (47 ± 1), irrespective of whether they were taken with spooled fiber inside

the lab, or over deployed fiber.

Time-resolved energy measurements

First, we characterize the dark count probability per time-bin, Pd, of the SPDs (InGaAs-

avalanche photodiodes operated in gated Geiger mode [102]) by observing their count rates

when the optical inputs are disconnected. We then send attenuated laser pulses so that

they arrive just after the end of the 10 ns long gate that temporarily enables single photon

detection. The observed change in the count rate is due to background light transmitted

by the intensity modulators (whose extinction ratios are limited) and allows us to establish

bx,z (per time-bin) for Alice and Bob. Next, we characterize the afterpulsing probability per

time-bin, Pa, by placing the pulses within the gate, and observing the change in count rate
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in the region of the gate prior to the arrival of the pulse. The afterpulsing model we use to

assess Pa from these measurements is described below.

Once the background light and the sources of detector noise are characterized, the values

of mx,z can be calculated by generating all required states and observing the count rates in

the two time-bins corresponding to detecting photons generated in early and late temporal

modes. Observe that mz=1 for photons generated in state |1〉 (the late temporal mode) is

zero, since all counts in the early time-bin are attributed to one of the three sources of

background described above. Furthermore, we observed that mz=0 for photons generated in

the |0〉 state (the early temporal mode) is smaller than one due to electrical ringing in the

signals driving the intensity modulators. Note that, in our implementation, the duration

of a temporal mode exceeds the width of a time-bin, i.e. it is possible to detect photons

outside a time-bin (see Figure 6.4 for a schematical representation). Hence, it will be useful

to also define the probability for detecting a photon arriving at any time during a detector

gate; we will refer to this quantity as ηgate.The count rate per gate, after having subtracted

the rates due to background and detector noise, together with the detection efficiency, ηgate

(ηgate, as well as η, have been characterized previously based on the usual procedure [102]),

allows calculating the mean number of photons per pulse from Alice or Bob (µ or σ, respec-

tively). The efficiency coefficient relevant for our model, η, is smaller than ηgate. Finally, we

point out that the entire characterization described above was repeated for all experimental

configurations investigated (the configurations are detailed in Table 6.2). We found all pa-

rameters to be constant in µσtAtB, with the obvious exception of the afterpulsing probability.

Phase measurements

To detail the assessment of the phase values φx,z determining the superposition of photons

in early and late temporal modes, let us assume for the moment that the lasers at Alice’s

and Bob’s emit light at the same frequency. First, we defined the phase of Bob’s |+〉 state
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Figure 6.4: Sketch (not to scale) of the probability density p(t) for a detection event to
occur as a function of time within one gate. Detection events can arise from a photon
within an optical pulse (depicted here as a pulse in the late temporal mode), or be due to
optical background, a dark count, or afterpulsing. Also shown are the 400 ps wide time-bins.
Within the early time-bin only optical background, dark counts and afterpulsing give rise to
detection events in this case. Note that the width of the temporal mode exceeds the widths
of the time-bins.
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to be zero (this can always be done by appropriately defining the time difference between

the two temporal modes |0〉 and |1〉). Next, to measure the phase describing any other state

(generated by either Alice or Bob) with respect to Bob’s |+〉 state, we sequentially send unat-

tenuated laser pulses encoding the two states through a common reference interferometer.

This reference interferometer featured a path-length difference equal to the time-difference

between the two temporal modes defining Alices and Bob’s qubits. For the phase measure-

ment of qubit states |+〉 and |−〉 (generate by Alice), and |−〉 generated by Bob), first, the

phase of the interferometer was set such that Bob’s |+〉 state generated equal intensities in

each output of the interferometer (i.e. the interferometers phase was set to π/4). Thus,

sending any of the other three states through the interferometer and comparing the output

intensities, we can calculate the phase difference. We note that any frequency difference

between Alice’s and Bob’s lasers results in an additional phase difference. Its upper bound

for our maximum frequency difference of 10 MHz is denoted by φfreq.

Measurements of afterpulsing

We now turn to the characterization of afterpulsing. After a detector click (or detection

event, which includes photon detection, dark counts and afterpulsing), the probability of an

afterpulse occuring due to that detection event decays exponentially with time. The SPDs are

gated, with the afterpulse probability per gate being a discrete sampling of the exponential

decay. This can be expressed using a geometric distribution: supposing a detection event

occurred at gate k = −1, the probability of an afterpulse occuring in gate k is given by

Pk = αp(1 − p)k. Thus, if there are no other sources of detection events, the probability of

an afterpulse occuring due to a detection event is given by
∑∞

k=0 αp(1− p)k.

In a realistic situation, the geometric distribution for the afterpulses will be cut off

by other detection events, either stemming from photons, or dark counts. In addition, the

SPDs have a deadtime after each detection event during which the detector is not gated until
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Figure 6.5: Afterpulse probability per time-bin as a function of the average number of
photons arriving at the detector per gate.

k ≥ kdead (note that time and the number of gates applied to the detector are proportional).

The deadtime can simply be accounted for by starting the above summation at k = kdead

rather than k = 0. However, for an afterpulse to occur during the kth gate following a

particular detection event, no other detection events must have occured in prior gates. This

leads to the following equation for the probability of an afterpulse per detection event:

P (a,det) =
∞∑

k=kdead

(γ × υ × ρ× Pk) (6.15)
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where:

γ = (1− µavg(µ, σ, tA, tB)ηgate)
k−kdead

υ = (1− Pd,gate)k−kdead

ρ =
k−1∏

j=kdead

1− αp(1− p)j

Pk = αp(1− p)k (6.16)

and Pd,gate denotes the detector dark count probability per gate (as opposed to per time-bin),

and µavg(µ, σ, tA, tB) expresses the average number of photons present on the detector during

each gate as follows:

µavg(µ, σ, tA, tB) =
(µ+ bA)tA + (σ + bB)tB

2
, (6.17)

where bA and bB characterize the amount of background light per gate from Alice and Bob,

respectively, and the factor of 1
2

comes from Charlie’s beam splitter. The terms in the sum of

Eq. (6.15) describe the probabilities of neither having an optical detection (γ), either caused

by a modulated pulse or background light, nor a detector dark count (υ) in any gate before

and including gate k, and not having an afterpulse in any gate before gate k (ρ), followed

by an afterpulse in gate k (Pk). Equation (6.15) takes into account that afterpulsing within

each time-bin is influenced by all detections within each detector gate, and not only those

happening within the time-bins that we post-select when acquiring experimental data.

The afterpulse probability, Pa,gate, for given µ, σ, tA and tB can then be found by multi-

plying Eq. (6.15) by the total count rate

Pa,gate = (µavg(µ, σ, tA, tB)ηgate + Pd,gate + Pa,gate)P (a,det). (6.18)
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This equation expresses that afterpulsing can arise from prior afterpulsing, which explains

the appearance of Pa,gate on both sides of the equation. Equation (6.18) simplifies to

Pa,gate =
(µavg(µ, σ, tA, tB)ηgate + Pd,gate)P (a,det)

1− P (a,det)
. (6.19)

Finally, to extract the afterpulsing probability per time-bin, Pa(µ, σ, tA, tB), we note that we

found that the distribution of afterpulsing across the gate to be the same as the distribution

of dark counts across the gate. Hence,

Pa(µ, σ, tA, tB) = Pa,gate
Pd

Pd,gate
. (6.20)

Fitting our afterpulse model to the measured afterpulse probabilities, we find α = 1.79×10−1,

p = 2.90 × 10−2, and Pd
Pd,gate

= 4.97 × 10−2 for kdead = 20. The fit, along with the measured

values, is shown in Figure 6.5 as a function of the average number of photons arriving at the

detector per gate µavg(µ, σ, tA, tB).

A summary of all the values obtained through these measurements is shown in Table 6.1.

Table 6.1: Experimentally established values for all parameters required to describe the gen-
erated quantum states, as defined in Eq. (6.2), as well as two-photon interference parameters
and detector properties.
Parameter Alice’s value Bob’s value
bz=0 = bz=1 (7.12± 0.98)× 10−3 (1.14± 0.49)× 10−3

bx=− = bx=+ (5.45± 0.37)× 10−3 (1.14± 0.49)× 10−3

mz=0 0.9944± 0.0018 0.9967± 0.0008
mz=1 0 0
mx=+ = mx=− 0.4972± 0.011 0.5018± 0.0080
φz=0 = φz=1 = φx=+ [rad] 0 0
φx=− [rad] π + (0.075± 0.015) π − (0.075± 0.015)
Parameter Value
|φfreq| [rad] < 0.088
V 0.94± 0.02
Pd (1.83± 0.77)× 10−5

ηgate 0.2
η 0.145
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6.1.6 Testing the model, and real-world tests

Comparing modelled with actual performance

To test our model, and to verify our ability to perform, in principle, QKD with deployed

(real-world) fiber, we now compare the model’s predictions with experimental data obtained

using the QKD system characterized by the parameters listed in Table 6.1. We performed

experiments in two configurations: inside the laboratory using spooled fiber (for four different

distances between Alice and Bob ranging between 42 km and 103 km), and over deployed

fiber (18 km). The first configuration allows testing the model, and the second configurations

shines light on our system’s capability to compensate for environment-induced perturbations,

e.g. due to temperature fluctuations. For each test, three different mean photon numbers

(0.1, 0.25 and 0.5) were used. All the configurations tested (as well as the specific parameters

used in each test) and the results obtained are listed in Table 6.2. In Figure 6.6 we show

the simulated values for the error rates (ez,x) and gains (Qz,x) predicted by the model as a

function of µσtAtB. The plot includes uncertainties from the measured parameters, leading to

a range of values (bands) as opposed to single values. The figure also shows the experimental

values of ez,x and Qz,x from our MDI-QKD system in both the laboratory environment and

over deployed fiber.

Considering the data taken inside the lab, the modelled values and the experimental

results agree within experimental uncertainties over three orders of magnitude. This shows

that the model is suitable for predicting error rates and gains. In turn, this allows us to

optimize performance of our QKD systems in terms of secret key rate (see section 6.1.7). In

particular, the model allows optimizing the mean photon number per pulse that Alice and

Bob use to encode signal and decoy states as a function of transmission loss, and identifying

rate-limiting components.

Furthermore, the measurement results over deployed fibre are also well described by

the same model, indicating that this more-difficult measurement worked correctly. The
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Table 6.2: Measured error rates, ex,zµσ , and gains, Qx,z
µσ , for different mean photon numbers, µ

and σ (where µ = σ), lengths of fiber connecting Alice and Charlie, and Charlie and Bob,
`A and `B, respectively, and total transmission loss, l. The last set of data details real-world
measurements using deployed fiber. Uncertainties are calculated using Poissonian detection
statistics.
Fiber µ = σ `A `B total loss Qxµσ Qzµσ exµσ ezµσ

[km] [km] l [dB]
0.49(2) 1.045(4)× 10−4 5.57(8)× 10−5 0.272(2) 0.037(3)

Spool 0.254(9) 30.98 11.75 13.6 3.20(2)× 10−5 1.47(3)× 10−5 0.277(2) 0.040(4)
0.101(4) 4.84(6)× 10−6 2.72(6)× 10−6 0.278(5) 0.073(6)
0.49(2) 3.92(2)× 10−5 2.02(1)× 10−5 0.261(2) 0.046(1)

Spool 0.25(1) 40.80 40.77 18.2 9.87(9)× 10−6 5.1(1)× 10−6 0.270(4) 0.047(5)
0.099(4) 1.57(3)× 10−6 9.2(3)× 10−7 0.281(9) 0.084(8)
0.50(2) 1.37(1)× 10−5 1.07(2)× 10−5 0.275(3) 0.054(4)

Spool 0.24(1) 51.43 32.19 22.7 3.73(4)× 10−6 3.01(8)× 10−6 0.269(5) 0.071(7)
0.100(6) 6.0(1)× 10−7 4.07(9)× 10−7 0.30(1) 0.103(7)
0.50(5) 4.96(4)× 10−6 2.94(3)× 10−6 0.280(4) 0.068(3)

Spool 0.25(1) 61.15 42.80 27.2 1.50(2)× 10−6 7.1(2)× 10−7 0.282(7) 0.091(6)
0.103(5) 2.45(9)× 10−7 1.31(6)× 10−7 0.28(2) 0.14(2)
0.50(2) 3.01(1)× 10−4 1.667(8)× 10−4 0.273(2) 0.0362(7)

Deployed 0.26(1) 12.4 6.2 9.0 8.78(6)× 10−5 5.01(4)× 10−5 0.263(3) 0.043(1)
0.100(4) 1.45(2)× 10−5 7.3(1)× 10−7 0.276(5) 0.055(3)

increased difficult across real-world fiber arises due to the fact that BSMs require incoming

photons to be indistinguishable in all degrees of freedom (i.e. arrive within their respective

coherence times, with identical polarization, and with large spectral overlap). As we have

shown in [93], time-varying properties of optical fibers in the outside environment (e.g.

temperature dependent polarization and travel-time changes) can remove indistinguishability

in less than a minute. Active stabilization of these properties is thus required to achieve

functioning BSMs and, in fact, three such stabilization systems were deployed during the

MDI-QKD measurements presented here (more details are contained in [93]). That our

measurement results agree with the predicted values of the model demonstrates that the

impact of environmental perturbations on the ability to perform Bell state measurements is

negligible (which is the same conclusion drawn in [93]).
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Figure 6.6: Modelled and measured results. Figure a) shows the plot for the error rates in
the z-basis (green band) and in the x-basis (blue band) as a function of the mean photon
number per pulse sent by Alice (µ) and Bob (σ) multiplied by the channel transmissions (tA
and tB). Figure b) shows the plot of the gains as a function of µσtAtB. The z-basis is shown
in green and the x-basis is shown in blue. For both figures the results of the measurements
done in the laboratory are shown with squares (blue or green) and the measurements done
over deployed fiber are shown with diamond (red and purple). The difference in gains and
error rates in the x- and the z-basis, respectively is due to the fact that, in the case in
which one party sends a laser pulse containing more than one photon and the other party
sends zero photons, projections onto the |ψ−〉 Bell state can only occur if both pulses encode
qubits belonging to the x-basis. The Bell state projection cannot occur if both prepare
qubits belonging to the z-basis (we ignore detector noise for the sake of this argument). This
causes increased gain for the x-basis and, due to an error rate of 50% associated with these
projections, also an increased error rate for the x-basis.
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6.1.7 Optimization of system performance

Decoy-state analysis

To calculate secret key rates for various system parameters, which allows optimizing these

parameters, first, it is necessary to compute the gain, Qz
11, and the error rate, ex11, that stem

from events in which both sources emit a single photon. We consider the three-intensity

decoy state method for the MDI-QKD protocol proposed in [100], which derives a lower

bound for the secret key rate using lower bounds for Qx,z
11 and an upper bound for ex11. Note

that we assume here that the the only effect of imperfectly generated qubit states on the

secret key rate that we consider here is that it increases the error rates (further considerations

require advancements to security proofs, which are under way [100, 105]) increases of error

rates.

We denote the signal, decoy, and vacuum intensities by µs, µd, and µv, respectively, for

Alice, and, similarly, as σs, σd, and σv for Bob. Note that µv = σv = 0 by definition. This

decoy analysis assumes that perfect vacuum intensities are achievable, which may not be

correct in an experimental implementation. However, note that, first, intensity modulators

with more than 50 dB extinction ratio exist, which allows obtaining almost zero vacuum

intensity, and second, that a similar decoy state analysis with non-zero vacuum intensity

values is possible as well [101]. For the purpose of this analysis, we take both channels to

have the same transmission coefficients (that is tA = tB ≡ t), according to our experimental

configuration, and Alice and Bob hence both select the same mean photon numbers for each

of the three intensities (that is µs = σs ≡ τs, µd = σd ≡ τd, and µv = σv ≡ τv). Additionally,

for compactness of notation, we omit the µ and σ when describing the gains and error rates

(e.g. we write Qz
ss to denote the gain in the z-basis when Alice and Bob both send photons

using the signal intensity). Under these assumptions, the lower bound on Qx,z
11 is given by

Qx,z
11 ≥

D1(τs)D2(τs)
(
Qx,z
dd −Qx,z

0 (τd)
)
− D1(τd)D2(τd)

(
Qx,z
ss −Qx,z

0 (τs)
)

D1(τs)D1(τd)
(
D1(τd)D2(τs)− D1(τs)D2(τd)

) , (6.21)
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where the various Di(τ) denote the probability that a pulse with photon number distribution

D and mean τ contains exactly i photons, and Qx,z
0 (τd) and Qx,z

0 (τs) are given by

Qx,z
0 (τd) = D0(τd)Q

x,z
vd + D0(τd)Q

x,z
dv − D0(τd)

2Qx,z
vv , (6.22)

Qx,z
0 (τs) = D0(τs)Q

x,z
vs + D0(τs)Q

x,z
sv − D0(τs)

2Qx,z
vv . (6.23)

The error rate ex11 can then be computed as

ex11 ≤
exddQ

x
dd − D0(τd)e

x
vdQ

x
vd − D0(τd)e

x
dvQ

x
dv + D0(τd)

2exvvQ
x
vv

D1(τd)2Qx
11

, (6.24)

where the upper bound holds if a lower bound is used for Qx
11. Note that Qx,z

11 , Qx,z
0 (τd),

Qx,z
0 (τs) and ex11 (Eqs. (D.2-D.5)) are uniquely determined through measurable gains and

error rates.

Optimization of signal and decoy intensities

For each set of experimental parameters (i.e. distribution function D, channel transmissions

and all parameters describing imperfect state preparation and measurement), the secret key

rate (Eq. (6.1)) can be maximized by properly selecting the intensities of the signal and decoy

states (τs and τd, respectively). Here we consider its optimization as a function of the total

transmission (or distance) between Alice and Bob. We make the assumptions that both the

channel between Alice and Charlie and the channel between Bob and Charlie have the same

transmission coefficient, t, and that Alice and Bob use the same signal and decoy intensities.

We considered values of τd in the range 0.01 ≤ τd < 0.99 and values of τs in the range

τd < τs ≤ 1. An exhaustive search computing the secret key rate for an error correction

efficiency f = 1.14 [15] is performed from 2 km to 200 km total distance (assuming 0.2

dB/km loss), with increments of 0.01 photons per pulse for both τs and τd. For each point,

the model described in section 6.1.4 is used to compute all the experimentally accessible
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Figure 6.7: a) Optimum signal state intensity, τs, and b) corresponding secret key rate as
a function of total loss in dB. The secondary axis shows distances assuming typical loss of
0.2 dB/km in optical fiber without splices. The optimum values for µs for small loss have to
be taken with caution as in this regime the model needs to be expanded to higher photon
number terms.

quantities required to compute secret key rates using the three-intensity decoy state method

summarized in Eqs. (D.2-D.5).

In our optimization, we found that, in all cases, τd = 0.01 is the optimal decoy intensity.

We attribute this to the fact that τd has a large impact on the tightness of the upper bound

on ex11 in Eq. (D.5) (this is due to the fact that all errors in the cases in which both parties

sent at least one photon, which increases with τd, are attributed to the case in which both

parties sent exactly one photon). Figure 6.7 shows, as a function of total loss (or distance),

the optimum values of the signal state intensity, τs, and the corresponding secret key rate, S,

for decoy intensities of τd ∈ [0.01, 0.05, 0.1], as well as for a perfect decoy state protocol (i.e.

using values of Qz
11 and ex11 computed from the model, as detailed in the preceding section).

Rate-limiting components

Finally, we use our model to simulate the performance of the MDI-QKD protocol given

121



improved components. We consider two straightforward and modest modifications to the

system: replacing the InGaAs single photon detectors (SPDs) with superconducting single

photon detectors (SSPDs) [106], and improving the intensity modulation (IM). For various

combinations of these improvements, the optimized signal intensities and secret key rates

for µd = 0.05 are shown in Figure 6.8. First, using state-of-the-art SSPDs in [106], the

detection efficiency (η) is improved from 14.5% to 93%, and the dark count probability (Pd)

is reduced by nearly two orders of magnitude. Furthermore, the mechanisms leading to

afterpulsing in InGaAs SPDs are not present in SSPDs (that is Pa = 0). This improve-

ment results in a drastic increase in the secret key rate and maximum distance as both the

probability of projection onto |ψ−〉 and the signal-to-noise-ratio are improved significantly.

Second, imperfections in the intensity modulation system used to create pulses in our im-

plementation contribute significantly to the observed error rates, particularly in the z-basis.

Using commercially-available, state-of-the-art intensity modulators6 allow suppressing the

background light (represented by bx,z in general quantum state given in Eq. (6.2)) by an

additional 10-20 dB, corresponding to an extinction ration of 40 dB. Furthermore, we con-

sidered improvements to the driving electronics that reduces ringing in our pulse generation

by a factor of 5, bringing the values of mx,z in Eq. (6.2) closer to the ideal values. As seen in

Figure 6.8, this provides a modest improvement to the secret key rate, both when applied to

our existing implementation, and when applied in conjunction with the SSPDs. Note that in

the case of improved detectors and intensity modulation system the optimized τs for small

loss (under 10 dB) is likely overestimated due to neglected higher-order terms.

6.1.8 Discussion and conclusion

We have developed a widely applicable model for systems implementing the Measurement-

Device-Independent QKD protocol. Our model is based on facts about the experimental

setup and takes into account carefully characterized experimental imperfections in sources

6For instance, EOSpace sells intensity modulators with 50 dB extinction ratio.
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Figure 6.8: a) Optimum signal state intensity, τs, and b) corresponding secret key rate as a
function of total loss in dB. The secondary axis shows distances assuming typical loss of 0.2
dB/km in optical fiber without splices. The optimum values for µs for small loss, are not
shown as the model needs to be expanded to higher photon number terms in this regime.

and measurement devices as well as transmission loss. It is evaluated against data taken

with a real, time-bin qubit-based QKD system. The excellent agreement between observed

values and predicted data confirms the model. In turn, this allows optimizing mean photon

numbers for signal and decoy states and finding rate-limiting components for future improve-

ments. We believe that our model, which is straightforward to generalize to other types of

qubit encoding, as well as the detailed description of the characterization of experimental

imperfections will be useful to improve QKD beyond its current state of the art.

To finish, let us emphasize that tests of a model that describes the performance of a QKD

system in terms of secret key rates has to happen in a setting in which eavesdropping can be

excluded (i.e. within a secure lab and using spooled fibre) – otherwise, the measured data,

which depends on the (unknown) type and amount of eavesdropping, may deviate from the

predicted performance and no conclusion about the suitability of the model can be drawn.

Interestingly, this implies that neither phase randomization, nor random selection of qubit

states or intensities of attenuated laser pulses used to encode qubit states is necessary to test
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a model, as their presence (or absence) does not impact the measured data. However, it is

obvious that these modulations are crucial to ensure the security of a key that is distributed

through a hostile environment. We note that in this article, all effects of imperfections in the

system on the measured quantities are still attributed to an eavesdropper, and accounted for

in the calculation of the secret key rate as well in the optimization of system parameters.
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6.2 Real-world two-photon interference and proof-of-principle quantum key

distribution immune to detector attacks
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Abstract Several vulnerabilities of single photon detectors have recently been exploited

to compromise the security of quantum key distribution (QKD) systems. In this letter we

report the first proof-of-principle implementation of a new quantum key distribution proto-

col that is immune to any such attack. More precisely, we demonstrated this new approach

to QKD in the laboratory over more than 80 km of spooled fiber, as well as across differ-

ent locations within the city of Calgary. The robustness of our fibre-based implementation,

together with the enhanced level of security offered by the protocol, confirms QKD as a re-

alistic technology for safeguarding secrets in transmission. Furthermore, our demonstration

establishes the feasibility of controlled two-photon interference in a real-world environment,

and thereby removes a remaining obstacle to realizing future applications of quantum com-

munication, such as quantum repeaters and, more generally, quantum networks.

Quantum key distribution (QKD) promises the distribution of cryptographic keys whose

secrecy is guaranteed by fundamental laws of quantum physics[10, 11]. Starting with its in-

vention in 1984[4], theoretical and experimental QKD have progressed rapidly. Information

theoretic security, which ensures that secret keys can be distributed even if the eavesdropper,

Eve, is only bounded by the laws of quantum physics, has been proven under various assump-

tions about the devices of the legitimate QKD users, Alice and Bob[33, 28]. Furthermore,

experimental demonstrations employing quantum states of light have meanwhile resulted in
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key distribution over more than 100 km distance through optical fiber[30] or air[31], QKD

networks employing trusted nodes[15], as well as in commercially available products[12, 13].

However, it became rapidly clear that some of the assumptions made in QKD proofs

were difficult to meet in real implementations, which opened side channels for eavesdropping

attacks. The most prominent examples are the use of quantum states encoded into atten-

uated laser pulses as opposed to single photons [9], and, more recently, various possibilities

for an eavesdropper to remote-control or monitor single photon detectors [56, 57, 68, 97].

Fortunately, both side channels can be removed using appropriately modified protocols. In

the first case, randomly choosing between so-called signal or decoy states (quantum states

encoded into attenuated laser pulses with different mean photon numbers) allows one to

establish a secret key strictly from information conveyed by single photons emitted by the

laser[25, 26, 27]. (We remind the reader that an attenuated laser pulse comprising on average

µ photons contains exactly one photon with probability P1(µ) = µe−µ [9].) Furthermore, the

recently proposed measurement-device independent (MDI) QKD protocol[89] (for closely re-

lated work see [92]) additionally ensures that controlling or monitoring detectors, regardless

by what means, does not help the eavesdropper to gain information about the distributed

key. Note that, while the two most prominent side channels are removed by MDI-QKD,

others remain open and have to be closed by means of appropriate experimental design (see

appendix D).

The MDI-QKD protocol is a clever time-reversed version of QKD based on the distribu-

tion and measurement of pairs of maximally entangled photons[7]: In the idealized version,

Alice and Bob randomly and independently prepare single photons in one out of the four

qubit states |ψ〉A,B ∈ [|0〉 , |1〉 , |+〉 , |−〉], where |±〉 = 2−1/2(|0〉 ± |1〉). The photons are then

sent to Charlie, who performs a Bell state measurement, i.e. projects the photons’ joint state

onto a maximally entangled Bell state[42]. Charlie then publicly announces the instances in

which his measurement resulted in a projection onto |ψ−〉 ≡ 2−1/2
(
|0〉A⊗|1〉B−|1〉A⊗|0〉B

)
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and, for these cases, Alice and Bob publicly disclose the bases (z, spanned by |0〉 and |1〉,

or x, spanned by |±〉) used to prepare their photons. (They keep their choices of states

secret.) Identifying quantum states with classical bits (e.g. |0〉 , |−〉 ≡ 0, and |1〉 , |+〉 ≡ 1)

and keeping only events in which Charlie found |ψ−〉 and they picked the same basis, Alice

and Bob now establish anti-correlated key strings. (Note that a projection of two photons

onto |ψ−〉 indicates that the two photons, if prepared in the same basis, must have been in

orthogonal states.) Bob then flips all his bits, thereby converting the anti-correlated strings

into correlated ones. Next, the so-called x-key is formed out of all key bits for which Alice

and Bob prepared their photons in the x-basis; its error rate is used to bound the informa-

tion an eavesdropper may have acquired during photon transmission. Furthermore, Alice

and Bob form the z-key out of those bits for which both picked the z-basis. Finally, they

perform error correction and privacy amplification[10, 11] to the z-key, which results in the

secret key.

As in the entanglement-based protocol, the time-reversed version ensures that Eve cannot

gain information by eavesdropping photons during transmission or by modifying the device

that generates entanglement – either the source of photon pairs or the projective two-photon

measurement, respectively – without leaving a trace[107, 90]. Furthermore, the outstanding

attribute of the MDI-QKD protocol is that it de-correlates detection events (here indicating

a successful projection onto the |ψ−〉 Bell state) from the values of the x- and z-key bits

and hence the secret key bits. In other words, all side channels related to the detection

setup, regardless whether actively attacked or passively monitored, do not help Eve gain

information about the secret key.

Unfortunately, the described procedure is currently difficult to implement for two reasons,

first of which is the lack of practical single photon sources. However, it is possible to replace

the true single photons by attenuated laser pulses of varying mean photon number (i.e. signal

and decoy states, as introduced above), and to establish the secret key using information
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only from joint measurements at Charlie’s that stem from Alice and Bob both sending

single photons[100]. This procedure results in the same security against eavesdropping as

the conceptually simpler one discussed above. The secret key rate, S, distilled from signal

states, is then given by[89]:

S ≥ Qz
11

(
1− h2(e

x
11)
)
−Qz

µσfh2(e
z
µσ), (6.25)

where h2(X) denotes the binary entropy function evaluated on X, and f describes the

efficiency of error correction with respect to Shannon’s noisy coding theorem. Furthermore,

Qz
11, e

x
11, Q

z
µσ, and ezµσ are gains (Q – the probability of a projection onto |ψ−〉 per emitted

pair of pulses) and error rates (e – the ratio of erroneous to total projections onto |ψ−〉)

in either the x- or z-basis for Alice and Bob sending single photons (denoted by subscript

“11”), or for pulses emitted by Alice and Bob with mean photon number µ and σ (denoted

by subscript “µσ”), respectively. While the latter are directly accessible from experimental

data, the former have to be calculated using a decoy state method [89, 100] (see appendix

D).

Second, a crucial element for MDI-QKD as well as future quantum repeaters and networks

is a Bell state measurement (BSM). However, this two-photon interference measurement has

not yet been demonstrated with photons that were generated by independent sources and

have travelled through separate deployed fibers (i.e. fibers that feature independent changes

of propagation times and polarization transformations). To implement the BSM one requires

that these photons be indistinguishable, i.e. arrive simultaneously within their respective

coherence times, with equal polarization, and feature sufficient spectral overlap. Yet, due

to time-varying properties of optical fibers in a real-world environment, significant changes

to photons’ indistinguishability can happen in less than a minute, as depicted in Fig. 6.9.

Furthermore, the carrier frequencies of the signals generated at Alice’s and Bob’s generally

vary. These instabilities make real-world Bell state measurements without stabilization by

means of active feedback impossible.
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Figure 6.9: (a) Drift of differential arrival time. Variation of arrival time difference of atten-
uated laser pulses emitted at Alice’s and Bob’s after propagation to Charlie. (b) Variation
in the overlap of the polarization states of originally horizontally polarized light (emitted by
Alice and Bob) after propagation to Charlie. Both panels include temperature data (crosses),
showing correlation between variations of indistinguishability and temperature. In addition,
despite local frequency locks, the difference between the frequencies of Alice’s and Bob’s
lasers varied by up to 20 MHz per hour (not shown).

Hence, to enable MDI-QKD and pave the way for quantum repeaters and quantum net-

works, we developed the ability to track and stabilize photon arrival times and polarization

transformations as well as the frequency difference between Alice’s and Bob’s lasers during all

measurements (for more information see appendix D). In order to ensure the indistinguisha-

bility of photons arriving at Charlie’s and to allow, for the first time, Bell state measurements

in a real-world environment, we developed and implemented three stabilization systems (see

Fig. 6.10): fully-automatic polarization stabilization, manual adjustment of photon arrival

time, and manual adjustment of laser frequency. Note that automating the frequency and

timing stabilization systems is straightforward, particularly if the active control elements are

placed in Charlie’s setup.

We verified that we could indeed maintain the indistinguishability of the photons by

frequently measuring the visibility, VHOM , of the so-called Hong-Ou-Mandel dip[103] (a two-

photon interference experiment that is closely related to a BSM). On average we found
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Figure 6.10: Aerial view showing Alice (located at SAIT Polytechnic), Bob (located at the
University of Calgary (U of C) Foothills campus) and Charlie (located at the U of C main
campus). Also shown is the schematic of the experimental setup. Optically synchronized
using a master clock (MC) at Charlie’s, Alice and Bob (not shown; setup identical to Alice’s)
generated time-bin qubits at 2 MHz rate encoded into Fourier-limited attenuated laser pulses
using highly stable continuous-wave lasers at 1552.910 nm wavelength, temperature-stabi-
lized intensity and phase modulators (IM, PM), and variable attenuators (ATT). The two
temporal modes defining each time-bin qubit were of 500 ps (FWHM) duration and were
separated by 1.4 ns. The qubits travelled through 12.4 and 6.2 km of deployed optical fibers
to Charlie, where a 50/50 beam splitter followed by two gated (10 µs deadtime) InGaAs
single photon detectors (SPD) allowed projecting the bi-partite state onto the |ψ−〉 Bell
state. (This projection occurred if the two detectors indicate detections with 1.4±0.4 ns
time difference.) The MC, polarization controller (POC) and Alice’s frequency shifter (FS)
are used to maintain indistinguishability of the photons upon arrival at Charlie. These three
feedback systems are detailed in appendix D. The individual setups for measurements using
spooled fiber (arrangement (i)) are identical.130



Setup Fiber `A lA `B lB total length total loss
[km] [dB] [km] [dB] ` [km] l [dB]

1a Spool 22.85 4.6 22.55 4.5 45.40 9.1
1b Spool 30.98 6.8 34.65 6.9 65.63 13.7
1c Spool 40.80 9.1 40.77 9.1 81.57 18.2
2 Deployed 12.4 4.5 6.2 4.5 18.6 9.0

Table 6.3: Length and loss (`A, lA, `B, lB) of the individual fiber links used to connect Alice
and Charlie, and Charlie and Bob, respectively, for all tested setups. The table also lists the
total length ` and total loss l = lA + lB (in dB). The last line details measurements outside
the laboratory with deployed fiber.

VHOM=47±1%, which is close to the maximum value of 50% for attenuated laser pulses

with a Poissonian photon number distribution[104], and thereby confirm that real-world

two-photon interference is possible.

To assess the feasibility of MDI-QKD, we implemented a proof-of-principle demonstration

of MDI-QKD using the decoy state protocol proposed by Wang[100]. This protocol requires

that Alice and Bob choose between three different mean photon numbers: two non-zero values

referred to as signal and decoy as well as vacuum. We performed our experiments over four

different distances (henceforth referred to as setups) comprising two different arrangements

(see Fig. 6.10): (i) Alice, Bob and Charlie are located within the same lab, and Alice and Bob

are connected to Charlie via separate spooled fibers of various lengths and loss. (ii) Alice,

Bob and Charlie are located in different locations within the city of Calgary, and Alice and

Bob are connected to Charlie by deployed fibers of 12.4 and 6.2 km length, respectively. The

fiber lengths and loss in each setup are listed in Table 1.

For each setup, we prepared all 4 combinations of Alice and Bob picking a state from

the z-basis (i.e. |ψ〉A,B ∈ [|0〉 , |1〉], where |0〉 and |1〉 denote time-bin qubits[42] prepared

in an early or late temporal mode), and all 4 combinations of picking a state from the x-

basis (i.e. |ψ〉A,B ∈ [|+〉 , |−〉]). Using a detailed model of our MDI-QKD system[108], we

calculated the signal and decoy intensities that maximize the secret key rate produced by
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the decoy-state method for each setup. For our decoy intensity we generated attenuated

laser pulses containing on average µ = σ = 0.05± 5% photons and for our signal intensities

we used a mean photon number between 0.25 and 0.5 (the optimal value depends on loss).

For each of the four distance configurations listed in Table 1, and for each of the 16 pairs

of qubit states, we performed measurements of all 9 combinations of Alice and Bob using

the signal, decoy or vacuum intensity. We recorded the number of joint detections in which

one detector indicated an early arriving photon (or an early noise count), and the other

detector indicated a late arriving photon (or a late noise count), which, for time-bin qubits,

is regarded as a projection onto the |ψ−〉-state[42]. Depending on the observed detection

rates, measurements took between 2 and 35 minutes. This data yields the gains, Qz
µσ and

Qx
µσ, and error rates, ezµσ and exµσ, a subset of which is plotted in Fig. 6.11a. A complete list

of gains and error rates is presented in appendix D.

We then computed secret key rates according to Eq. 6.25 after extracting Qz
11 and

ex11 using Wang’s decoy state calculation[100] and assuming an error correction efficiency

f=1.14[15]. As shown in Fig. 6.11b, all our measurements, both outside and inside the lab-

oratory, and using up to 80 km of spooled fiber between Alice and Bob, output a positive

secret key rate. Furthermore, using our model[108], we estimate that our setup allows secret

key distribution up to a total loss of 18±4.8 dB, which is in agreement with our QKD results.

Assuming the standard loss coefficient for telecommunication fibers without splices of 0.2

dB/km, this value corresponds to a maximum distance between Alice and Bob of 90±24

km. Note that moving from our proof-of-principle demonstration to the actual distribution

of secret keys requires additional developments, which are detailed in appendix D.

In summary, we have demonstrated that real-world quantum key distribution with prac-

tical attenuated laser pulses and immunity to detector hacking attacks is possible using

current technology. Our setup contains only standard, off-the-shelf components, its develop-

ment into a complete QKD system follows well-known steps[15], and the extension to higher
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Figure 6.11: (a) Measured error rates ezµσ and exµσ for Alice and Bob either both using signal
intensity or both using decoy intensity as a function of total loss, l = lA + lB (in dB). We
note that every other combination of intensities used in the decoy-state analysis requires
Alice or Bob (or both) sending vacuum, and thus the error rate is 50% and not plotted. (b)
Experimentally obtained and simulated secret key rates as a function of total loss, l = lA+ lB
(in dB), with lA ∼= lB, for optimized mean photon numbers. Experimental secret key rates
are directly calculated from measured gains and error rates using the decoy state method[100]
(see appendix D for details). In both panels, the secondary x-axis shows distance assuming
loss of 0.2 dB/km. Diamonds depict results obtained using deployed fibers (see Fig. 6.10a);
all other data was obtained using fiber on spools. Uncertainties (one standard deviation) were
calculated for all measured points assuming Poissonian detection statistics. We stress that
the simulated values, computed using our model[108], do not stem from fits but are based
on parameters that have been established through independent measurements. Monte-Carlo
simulations using uncertainties in these measurements lead to predicted bands as opposed
to lines (for more details see appendix D).
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key rates using state-of-the-art detectors [109, 106] is straightforward. We also point out that

MDI-QKD is well suited for key distribution over long distances, and we expect that further

developments will rapidly push the separation between Alice and Bob beyond its current

maximum of 250 km[30]. Finally, we remind the reader that the demonstrated possibility for

Bell state measurements in a real-world environment and with truly independent photons

also removes a remaining obstacle to building a quantum repeater, which promises quantum

communication such as QKD over arbitrary distances.

Note added: We note that related experimental work has recently been reported in

http://arxiv.org/abs/1207.0392 and http://arxiv.org/abs/1209.6178.
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Chapter 7

Efficient Bell state measurement

A Bell state measurement (BSM) projects an arbitrary input state of two qubits onto the

complete set of maximally entangled states, also known as the Bell basis:

∣∣ψ±〉 = (|01〉 ± |10〉)/
√

2, (7.1)∣∣φ±〉 = (|00〉 ± |11〉)/
√

2.

In the simplest case, if the input state is one of the Bell states, only one measurement out-

come is possible. If the input state is a completely mixed state the probability of projecting

onto a given Bell state is 25%.

Bell state measurements are key elements in quantum communication and, in combina-

tion with other quantum resources (e.g. qubits and entanglement), are used to implement

applications that are not possible to implement in classical communication systems. These

applications include: measurement-device independent quantum key distribution [89]; quan-

tum teleportation, i.e. the transfer of an unknown quantum state between two distant

locations without having to transmit the carrier of the quantum state [110]; entanglement

swapping, which is the teleportation of an entangled state [111] and superdense coding, which

allows a party to communicate two bits of information in a single qubit [112]. For a detailed

explanation of how the BSM plays a role on each of these applications refer to chapter 6 or

appendix C.

All the listed applications can be implemented with single photon sources, attenuated

laser pulses including decoy states or sources of entangled photons and linear optics. Un-

fortunately it has been shown that using linear optics and no auxiliary photons and the

assumption of ideal detectors (including photon number resolving detectors) a perfect BSM

is not possible. A perfect BSM means that the measurement outputs unambiguous and
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deterministic results, i.e. all four Bell states can be distinguished and the measurement is

successful in every trial. In fact, the success probability of the BSM, labeled as ηBSM , is

limited to 50% [47]. This means that 50% of the time, the result will be inconclusive.

A BSM is typically implemented using a beam splitter with two output ports followed

by optical elements and single photon detectors that allow the discrimination of orthogonal

qubit modes, see figure 7.1. This scheme allows for the unambiguous identification of two

Bell states. For example, a projection onto the state |ψ−〉 is characterized by the output of

the two photons in two orthogonal qubit modes (|0〉 and |1〉) and through the two different

ports of the beam splitter. A projection onto the state |ψ+〉 is characterized by the output of

the two photons in two orthogonal qubit modes through the same port of the beam splitter.

However, the states |φ−〉 and |φ+〉 will lead to the output of the two photons in the same mode

and through the same output port of the beam splitter and hence can not be distinguished

from each other. Similarly, if the states |φ−〉 and |φ+〉 can be unambiguously distinguished,

the projection onto the states |ψ+〉 and |ψ−〉 give inconclusive results, etc. Thus, typical

implementations of BSMs are restricted to a 50% success probability. A further limitation

to the success probability arises from the quantum efficiency of the single photon detectors

used to implement the measurement. This is because two single photon detectors must

detect a photon simultaneously. As a result, the efficiency of a BSM scales as η2
det, where

ηdet is the quantum efficiency of each detector. The typical efficiency of a commercial single

photon detector for telecommunication wavelength is 15%. If these detectors are used to

implement a BSM, then the success probability of the measurement cannot be larger than

1.1%. This means that if two qubits are incident on a Bell state measurement apparatus,

only 1.1 percent of the time the qubits will be detected and the measurement outcome can be

identified. Experimentally, the implementation of a perfect BSM (i.e. a measurement that

identifies all four states and has a 100% success probability) is particularly appealing because

of all the applications that can benefit from it. The identification of all four Bell states can
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50/50 BS

Detector 1 Detector 2

Figure 7.1: Typical Bell state measurement experimental setup. The figure shows a pair
of photons incident on a 50/50 beam splitter (BS) followed by two single photon detectors
(detector 1 and detector 2). This experimental setup is used to perform BSM on time-bin
qubits. Polarization qubits require additional polarization beam splitters.

approach unit probability if auxiliary entangled photons are used, for more details refer to

appendix C. A high success probability is achieved by employing single photon detectors

with a high quantum efficiency.

When considering time-bin qubits, a typical implementation of a BSM consists of a beam

splitter whose outputs are followed by two single photon detectors that can discriminate

between different temporal modes, see figure 7.1. Note that in order to identify a |ψ+〉

projection, the detection pattern is given by subsequent detections in both time-bins in a

single detector, therefore the recovery time of the detector must be shorter than the time-bin

separation of the qubit. However, typical single photon detectors do not have a sufficiently

short recovery time to allow for the |ψ+〉 projection and hence only the |ψ−〉 state can be

identified. As only one Bell state can be identified, the success probability of the BSM is

reduced from 50% to just 25% for detectors with ideal quantum efficiency.

In this chapter I present work on the implementation of a BSM for time-bin qubits at

telecommunication wavelengths in which the measurement can unambiguously identify the

Bell states |ψ−〉 and |ψ+〉. The demonstration employs novel single photon detectors that

feature small dead-times, which allows for the identification of the |ψ−〉 and |ψ+〉 Bell states.

Additionally, the high quantum efficiency of the detectors, around 75% allows for a success

probability that is 30 times greater than what has been previously demonstrated.
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Abstract

We experimentally demonstrate a high-efficiency Bell state measurement for time-bin qubits

that employs two superconducting nanowire single-photon detectors with short dead-times,

allowing projections onto two Bell states, |ψ−〉 and |ψ+〉. Compared to previous implemen-

tations for time-bin qubits, this yields an increase in the efficiency of Bell state analysis by

a factor of thirty.

7.1.1 Introduction

Bell state measurements (BSMs) play a key role in linear optics quantum computation and

many quantum communication protocols, e.g. quantum repeaters [113], quantum teleporta-

tion [110], dense coding [112] and some quantum key distribution protocols [89]. A complete

BSM allows projecting any two-photon state deterministically and unambiguously onto the

set of four maximally-entangled Bell states, i.e.
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∣∣φ±〉 =
1√
2

(|00〉 ± |11〉)

and ∣∣ψ±〉 =
1√
2

(|01〉 ± |10〉).

Unfortunately, it has been shown that a complete BSM is impossible when using linear optics

and no auxiliary photons: the probability for a BSM to succeed (henceforward referred

to as efficiency, ηBSM) in the case of two photons in completely mixed input states (e.g.

two photons that are members of different entangled pairs) is, in principle, limited to 50%

[47]. The standard approach to Bell state analysis uses a 50/50 beam splitter followed

by single-photon detectors that allow (possibly using additional external optical elements)

discriminating between orthogonal qubit states |0〉 and |1〉 (see figure 7.2). This approach

allows one to unambiguously project onto |ψ−〉 and |ψ+〉.

BS

Alice
BSM

Bob
BS

PBSSPD SPD
SPDSPDBobAlice

a bBSM

ρA ρBρA ρB

1 2
1

2

3

4

Figure 7.2: Experimental setup used to perform BSMs for a) polarization qubits and b)
time-bin qubits. Density matrices ρA and ρB characterize the states of the photons emitted
at Alice’s and Bob’s, respectively. Optical components: beam splitter (BS) and single photon
detectors (SPD).

For instance, when implementing a BSM for polarization qubits, a projection onto |ψ−〉

occurs if the two photons exit the beam splitter through two different ports and are detected

in orthogonal polarizations, leading to detections in detectors 1 and 4, or detectors 2 and

3 (for an illustration see Fig. 7.2a). Furthermore, projections onto |ψ+〉 happen if the two

photons exit the beam splitter through the same port and, as before, are detected in orthog-

onal polarization states. This leads to detections in detectors 1 and 2, or detectors 3 and 4

(see Fig. 7.2a). Other coincidence detections correspond to projections onto product states
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|H〉 |H〉 ≡ |0〉 |0〉 and |V 〉 |V 〉 ≡ |1〉 |1〉. Hence, this scheme allows achieving the maximum

efficiency value of 50% if one considers single photon detectors with unity detection efficiency.

Assuming realistic detectors with efficiency ηdet, the BSM efficiency is reduced to

ηBSM =
1

2
η2
det. (7.2)

In addition to polarization, another widely used degree of freedom to encode qubits is time.

In this case photons are generated in a superposition of two temporal modes |early〉 ≡ |0〉

and |late〉 ≡ |1〉 – so-called time-bin qubits. Time-bin qubits are particularly well suited

for transmission over optical fiber (and thus generally encoded into photons at telecommu-

nication wavelength), and have been used for a large number of experiments [43, 114, 115],

including experiments that require projections onto Bell states [116, 117, 118, 93, 94]. BSMs

with time-bin qubits generalize the scheme introduced above for polarization qubits: a pro-

jection onto the singlet |ψ−〉 state occurs if one of the two detectors registers a photon in

the early time bin and the second detector registers a photon in the late time bin (see Fig.

7.3b). On the other hand, a projection onto |ψ+〉 happens if a detector registers one photon

in the early time bin, and the same detector detects the second photon in the late bin (see

Fig. 7.3c).

However, a problem arises if the detection of a photon is followed by dead-time during

which the detector cannot detect a subsequent photon. For example, for commercial InGaAs-

based single photon detectors (SPDs), which are widely used for quantum communication

applications including BSM with time-bin qubits, this dead-time is typically around 10 µs1.

This dead-time is necessary to suppress afterpulsing due to trapped carriers that are released

after a detection and cause subsequent detection signals [120]. As the difference between

early and late temporal modes has always been orders of magnitude smaller than the dead-

1To the best of our knowledge, the exceptions are [94], where frequency conversion and Si-APDs were
employed, and [76, 119], where InGaAs-based SPDs with dead-times of 2 ns and 10 ns and quantum detection
efficiencies of ≈10% have been reported. However, none of the last-mentioned detectors have been used for
BSMs with time-bin qubits.
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time of the employed detectors, commercial InGaAs SPDs have usually restricted BSMs

with time-bin qubits to projections onto |ψ−〉, reducing the maximum efficiency of the BSM

from 50% to 25%. The only exception is [121], where the unambiguous projections onto

three Bell states with theoretically maximum probability of 5/16≈31% was proposed and a

proof-of-principle demonstration reported. Taking a typical detection efficiency for InGaAs

SPDs of 15% into account, the highest efficiency of a BSM for time-bin qubits is currently

thus only around 1%. This includes the demonstrations reported in [94, 76, 119] and [121].

t t

Detector 1 Detector 2

tt

Detector 1 Detector 2
50/50 BS

Detector 1 Detector 2

tt

Detector 2Detector 1

t t

Detector 2Detector 1

|ψ− |ψ+

Figure 7.3: a) General setup for Bell state measurement for time-bin qubits using linear
optics and single photon detectors (SPD). b) Detection pattern for projections onto |ψ−〉
and (c) |ψ+〉.

In this paper we present an efficient BSM for time-bin qubits encoded into telecommu-

nication photons with projections onto the |ψ−〉 as well as the |ψ+〉 Bell state. Towards this

end, we employ two superconducting nanowire single photons detectors (SNSPDs), which,

in addition to short dead-times, feature system detection efficiencies of 76%. This leads to

an increase of ηBSM by a factor of thirty compared to previous implementations, which is

an important improvement in view of future applications of quantum information processing

involving many BSMs, e.g. quantum repeaters.

The remainder of this article is structured as follows. In section 7.1.2 we describe the

single-photon detectors employed to perform the measurements, and in section 7.1.3 we

present the details of the experimental setup. The results of our measurements are presented
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and discussed in section 7.1.4. Finally, in section 7.1.6, we present our conclusions and

outlook.

7.1.2 Superconducting single photon detectors with short dead-times

Recent years have seen great progress in the development of single-photon detectors for

telecommunication wavelengths. Arguably, the best detectors today are based on the tran-

sition of a superconducting nanowire into the resistive state [122], and many benchmark

results have been reported with these SNSPDs. This includes dead-times as small as 10 ns

[123, 124], and quantum efficiencies up to 93% at 1550 nm [106]. Furthermore, unlike InGaAs

SPDs, which require gating, SNSPDs are inherently free running, show no afterpulsing, and

feature very low dark count rates on the Hz level [106].

We employ SNSPDs that have been developed and fabricated at the National Institute for

Standards and Technology (NIST) and the Jet Propulsion Laboratory (JPL). The detectors

are based on one, or two mutually orthogonal, tungsten silicide (WSi) nanowire meanders (we

refer to the two different detectors as detector 1 and 2, respectively – see Fig 7.4 a for a sketch

of detector 2. The detector with two meanders features a detection efficiency that is highly

insensitive to photon polarization [125], whereas the single meander version experiences up

to 10% variation in efficiency at different polarizations. The two SNSPDs are mounted on an

adiabatic diamagnetic refrigeration (ADR) stage inside a pulse-tube cooler, and are operated

at a temperature around 800 mK. The setup for characterizing and operating the detectors

is sketched in Fig. 7.4a. The SNSPDs are represented by a kinetic inductance Lk and load

resistance Rl, which, in general, is equal to the impedance of the output coaxial cable. A

sample of the detection signal is shown in Fig. 7.4b. The detector quantum efficiencies were

measured at 1550 nm wavelength to be 77.5± 0.7% and 76.2± 0.9% for detectors 1 and 2,

respectively.

To assess the detector dead-times, we illuminate the SNSPDs with weak continuous wave

(cw) light and log the time ∆t between subsequent detections, as illustrated in Fig. 7.4b.
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Figure 7.4: Detector setup and signal. a) Electrical diagram of the SNSPD setup. The
Rb = 10 kΩ bias resistor translates the 60 mV bias voltage into a Ib = 6 µA bias cur-
rent, which is directed to the superconducting detectors via the DC-port of the bias-T.
The RF-port of the bias-T directs the photon detection signal through two amplifiers and a
low-pass-filter (LPF) to a comparator, which generates a TTL output signal. The parallel
connected voltmeter measures the voltage drop over the SNSPD and allows verifying that
it is in the superconducting state. The panel also shows a sketch of an SNSPD consisting
of two meanders. b) Single photon detection signals of detector 2 immediately after the
amplifiers (marked by an x in figure a). A few detection inter-arrival times ∆t are indicated
for illustration.

Histograms of these inter-arrival detection times reveal the minimum time separation τ

between detection events – during this time, the SNSPDs cannot detect another photon

either because of the intrinsic time it takes the detector to return to its superconducting

state or because of a pulse pile-up in which the signal does not cross the discriminator level

between two consecutive incident photons and thus only the first detection event is registered.

The measurements, with a 50 Ω coaxial cable attached to the detectors, shown in Fig. 7.5

by the solid lines, gives a dead-time τ on the order of 30 ns for detector 1 and 100 ns for

detector 2. This dissimilarity of dead-time is due to the difference in kinetic inductance of
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Figure 7.5: Detection dead-times. Histograms of detection inter-arrival times for SNSPD
1 and 2 in the left and right panel, respectively. Solid lines correspond to the setup with
Rl = 50 Ω (given by the impedance of the coaxial cable), while the dashed line shows the
result when a Rl = 300 Ω resistor is connected to detector 2 inside the cryostat. For Rl=50 Ω
we find τ ≈ 30 ns for detector 1 and τ ≈ 100 ns for detector 2. The dead-time of detector 2
is reduced to around 40 ns when using Rl=300 Ω.

the detectors [123]. Hence, to allow projections onto the |ψ+〉 state using detector 2, the

time-bin separation would have to be on the order of 100 ns.

As argued above, it is desirable to reduce the SNSPD dead-time. Previous studies have

shown τ ∝ Lk/Rl, and as the kinetic inductance is related to the inherent geometry and

material properties of the SNSPD (which cannot be easily modified), we focus on increasing

Rl as a means of reducing τ [126]. To that end we put a 300 Ω resistor in series with SNSPD

detector 2. The resistors are regular ceramic surface-mount resistors and are connected to

the SNSPDs after a 10 cm long coaxial cable. The resulting inter-arrival time statistics is

plotted as a dashed line in Fig. 7.5. We see that the new dead-time of detector 2, τ ′, is

significantly reduced to around 40 ns. One might conclude that an additional increase of the

load resistance would further reduce the dead-time. However, we anticipate that with larger

values of Rl the detector would begin to latch (i.e. not return to the superconducting state

after the detection of a photon). This is supported by the observation that the factor of 6
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increase in Rl only results in a factor of 2.5 decrease in the dead-time.

7.1.3 Experimental setup

Our experimental setup is similar to that described in [93]; it is depicted in Fig. 7.6: A

stabilized cw laser emits polarized light at 1550 nm. The light is split by a polarization

maintaining finer-optic beam splitter, and travels to two different stations, which we will

refer to as Alice (A) and Bob (B). At each station, light is sent through intensity modulators

that carve 0.5 ns long pulses, which, after appropriate attenuation, form time-bin qubit

states encoded into laser pulses with mean photon number well below one. For instance, |0〉

corresponds to an attenuated laser pulse in an early temporal mode, |1〉 corresponds to a laser

pulse in a late temporal mode, and |+〉 ≡ (|0〉+|1〉)/
√

2 is generated by opening the intensity

modulator twice in a row, generating photons in a coherent superposition of early and late

temporal modes. The subsequent phase modulator allows applying a π phase shift to the

late temporal mode, which results in generating |−〉 ≡ (|0〉− |1〉)/
√

2. Qubits are created at

a repetition rate of 5 MHz, and the two temporal modes are separated by 75 ns. Finally, each

qubit (one generated at Alice’s and one at Bob’s) is sent through a polarization controller

and 20 km of spooled fiber, which introduce random global phase shifts, and arrive at the

Bell state analyzer where the BSM is performed using a beam splitter and two SNSPDs.

Detection statistics is collected using a time-to-digital converter for various combinations of

mean photon numbers per qubit generated at Alice’s and Bob’s, and is recorded on a PC.

It is important to recall that, for a BSM, the two photons impinging on the beam splitter

must be indistinguishable in all degrees of freedom: polarization, arrival time, and frequency.

Frequency indistinguishability is particularly important when working with |±〉 time-bin

qubit states, as a frequency difference ∆ν translates into a difference ∆φ between the phases

characterizing the superposition of the two time-bin qubit states according to ∆φ = 2π∆νt0,

where t0 denotes the temporal separation between |0〉 and |1〉. While a constant phase

difference (due to a constant frequency difference) can be compensated for during qubit
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preparation, having time varying phase differences becomes problematic once the variation

of the phase difference exceeds a few degrees. Consequently, the time-bin separation is not

only constrained by the dead-time of the detectors, but also by the frequency stability of

the light sources (assuming independent sources). For example, for our time-bin separation

of t0=75 ns, the two lasers must be frequency stable at least within ∼185 kHz over the

duration of a measurement to keep the phase error under 5o. Unfortunately, lasers with such

frequency stability are currently not commercially available. To circumvent this problem,

we used only one laser in our experiment, which allowed Alice and Bob to generate time-bin

qubits with stable phase relation. Finally, to ensure indistinguishability in polarization and

arrival time, we implemented feedback control as described in [93].
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Figure 7.6: Schematic of the experimental setup employed for a BSM with time-bin qubits.
LD, laser diode; PMBS, polarization maintaining beam splitter; IM, intensity modulator;
PM, phase modulator; PBS, polarization beam splitter; POC, polarization controller; PD,
photodiode; BS, beam splitter; AWG, arbitrary waveform generator; ATT, variable optical
attenuator; SNSPD, superconducting nanowire single-photon detector. The lasers LDC and
LDP are used for timing and polarization feedback control, respectively, which is further
explained in [93].
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7.1.4 Results

To characterize the reliability and efficiency of our Bell state analyzer, we work within the

framework of the measurement-device-independent quantum key distribution (MDI-QKD)

protocol [89], in which the establishment of an entangled channel by means of a BSM allows

the establishment of correlated data. Conversely, the possibility to generate highly correlated

bits using an MDI-QKD type setup allows one to draw conclusions about the quality of the

BSM. To demonstrate efficient Bell state measurements with time-bin qubits, Alice and Bob

prepare various combinations of qubit states, encoded into attenuated laser pulses with one

out of three possible mean photon numbers (0.11, 0.05 and 0) and with both qubits belonging

to the same basis (e.g. |0〉A |0〉B, |0〉A |1〉B, |+〉A |+〉B, |−〉A |−〉B, etc.), and send them to

the Bell state analyzer. We define the z -basis to be spanned by |0〉 and |1〉, and the x -basis

to be spanned by |+〉 and |−〉. For each combination of states and mean photon numbers,

we record the number of projections onto |ψ+〉 and |ψ−〉.

7.1.5 Error rates

An important criterion for assessing the possibility for BSMs with time-bin qubits are error

rates, which, for each basis and Bell state, are given by the number of erroneous projections

(e.g. projections onto |ψ−〉 if the two input states were identical) divided by the total

number of projections onto that Bell state. Towards this end, qubits should be encoded into

true single photons. As we use attenuated laser pulses instead, which feature Poissonian-

distributed photon numbers, we use a decoy state protocol [100] to assess upper bounds e11

for the error rates that we would have measured had we used true single photon inputs.

These rates are listed in table 7.1 below.

The results are close to ideal, in particular regarding the error rate for the z-basis, which

exceeds the ideal outcome of 0% by only 0.44% and 0.80% for projections onto |ψ−〉 and

|ψ+〉, respectively. This is a very good result, especially given that Alice and Bob are
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Table 7.1: Bounded error rates ez11 and ex11 for two single photon inputs (one at Alice’s and
one at Bob’s) with both photons prepared in the z and x basis, respectively. The rates are
extracted from the measured data using a decoy state method [100].

Error rates Projections onto |ψ−〉 Projections onto |ψ+〉
(%) (%)

ez11 0.44±0.07 0.80±0.07
ex11 3.6±0.8 6.7±0.8

separated by 40 km of spooled fiber. The remaining errors are due to (almost negligible)

background light leaking through Alice’s and Bob’s intensity modulators (featuring 50 dB

extinction ratio) and detector dark counts (around 10 Hz, including detector counts due to

blackbody radiation). For the x-basis, the error rates exceed the ideal outcome of 0% by

3.6% and 6.7% for the |ψ−〉 and |ψ+〉 projections, respectively. We attribute the increment

in the error rates compared to those of the z-basis to phase errors occurring during the

preparation of the |−〉-state, and to a poorer performance of the decoy state method, i.e.

a larger gap between the bound on e11 and its actual value. The latter is due to errors in

the raw data arising from multi-photon contributions (e.g. two photons arriving from Alice

and zero photons from Bob) [93], which partially propagate into the calculated bound for ex11.

Efficiency

While error rates allow assessing if the BSM is functioning correctly, an equally important

measure is the efficiency of the Bell state analyzer. As in the previous section, we use the

decoy state protocol [100] to find a lower bound on the number of projections onto |ψ+〉 and

|ψ−〉 that originate from the emission of single photons at Alice’s and Bob’s. The number

of such projections per clock cycle, Qx,z
11 (where x, z denotes the basis in which the qubits

have been prepared), then allows us to calculate the BSM efficiency for each basis and Bell
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state using

Qx,z
11 = P1(µ)P1(µ)t2ηx,zBSM . (7.3)

Here, P1(µ) refers to the probability of emission of a single photon per (Poissonian dis-

tributed) source, t denotes to the transmission between Alice or Bob and the Bell state

analyzer, and ηx,zBSM is the basis-dependent efficiency of the BSM. The results for ηBSM are

listed in table 7.2.

Table 7.2: Bell state measurement efficiencies extracted from measured data using a decoy
state method [100].

Efficiency for projections Efficiency for projections Total efficiency (%)
Basis onto |ψ−〉 (%) onto |ψ+〉 (%)
z 13.6±0.2 14.5±0.2 28.1±0.4
x 14.5±0.4 15.3±0.4 29.8±0.8

We note, first, that the values for the total efficiencies per basis differ by only 1.7%,

confirming that we can perform all projections with almost equal probability. In particular,

this shows that the detectors have indeed fully recovered after 75 ns. Second, we find that

the efficiency averaged over the x, y and z bases (where we made the physically motivated

assumption that the efficiency in the y-basis, which we did not measure, equals the one

measured in the x-basis), ηBSM , corresponds to that estimated using Eq.7.2 and taking into

account the measured detector quantum efficiencies:

ηBSM =
1

3

(
ηbsm,z + 2ηbsm,x

)
= (29.3± 0.4)% (7.4)

≈ 1

2
η2
det =

(
29.5± 0.4

)
%.

Furthermore, we point out that the efficiency is a factor of ≈ 30 higher than what has

previously been obtained with time-bin qubits. Finally, we note that our average BSM
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efficiency is only 2.3% below the theoretical maximum of 5/16≈31% (assuming detectors

with 100% efficiency) achievable with previously implemented schemes [121].

7.1.6 Conclusions and Outlook

We have described and demonstrated how to perform efficient Bell state analysis with time-

bin qubits using linear optics and no additional photons. By employing SNSPDs with short

dead-times, it is possible to project not only onto the |ψ−〉, but also onto the |ψ+〉 Bell state.

Together with the high quantum efficiency of the SNSPDs, this improved the efficiency of

Bell state measurements with time-bin qubits from ≈1% to ≈29%, which falls only a few

percent short of the previous theoretical maximum of 31%. Additionally, the low noise of

the superconducting detectors yields a very small error rate.

Bell state measurements are key ingredients for applications of quantum information pro-

cessing, including linear optics quantum computing, quantum repeaters, and measurement-

device-independent quantum key distribution, and our results are interesting in view of

improving (or allowing) implementations. However, to take full advantage of the increased

efficiency, detector dead-times need to be decreased, for instance using detector arrays [127],

to allow reducing the spacing between temporal modes used to encode time-bin qubits.
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Chapter 8

Quantum private queries

Uncertainty in quantum mechanics has proven to be successful to achieve information theo-

retic security for key distribution. The question of whether security improvements to other

2-party cryptographic primitives1 can be achieved with a quantum approach was raised

some time ago. In this chapter, we will focus on an application of the oblivious transfer

(OT) cryptographic protocol so called quantum private queries. It involves the interaction

of two parties: a user and a database provider, who holds an N -element database. The user

is interested in retrieving an element from the database without letting the database know

which element was retrieved. On the other hand, the database is interested in keeping the

database secret from the user and revealing only the element the user is interested in. Note

that in this scenario the two parties (user and database) are adversaries and do not trust

each other. This differs from the QKD scenario in which Alice and Bob trust each other and

instead a third party, Eve, is considered the adversary.

Classically, the oblivious transfer protocol (or private queries) is performed either under

the assumption of limited computational power of the adversary [128], or through third

trusted parties (e.g. servers) [129]. Unfortunately, information theoretic security was proven

impossible for the quantum version of oblivious transfer [130]. In the impossibility proof,

the user and database are assumed to have unrestricted computational power, including the

access to a quantum computer. The impossibility proof applies for a perfectly concealing

protocol, i.e. the user only learns one element of the database and the database does not

learn any information about what element the user learned. However, quantum oblivious

transfer can offer practical degrees of security [131] if:

1These include secret sharing, coin flipping and bit commitment.
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1. Non-perfect conditions are considered. For example if the user only learns

probabilistic information about the database, or if the database can learn

some information about the user’s query.

2. A universal quantum computer is not available. This is a reasonable assump-

tion since quantum computing is still in early stage of development.

Under these conditions, the quantum version of oblivious transfer has an advantage over its

classical counterpart. Specifically, third trusted parties are not necessary to implement the

protocol. Furthermore, there is no assumption needed on the classical computational power

of the adversary.

Different protocols to implement quantum private queries have been proposed [131, 132,

133]. The security of all the suggested quantum protocols is based on cheating sensitivity,

which means that the database can try to learn which element the user is interested in,

but in doing so it can be caught cheating. The first quantum oblivious transfer protocol

proposed [131] involves a user sending a quantum query or a decoy state to the database.

The problem in this protocol is that due to inevitable loss in the quantum channel, the user

has to send quantum states a number of times, giving the database a chance to use the loss to

his advantage. Note that, just as for QKD, the requirements to make the quantum private

queries protocol implementable in deployed systems are loss and channel noise tolerance.

This protocol is neither loss nor noise tolerant, hence it is not a viable option for real world

use.

Subsequent oblivious transfer protocols [132, 133] had a different approach to the problem

of quantum private queries. In these protocols, the database and the user aim at sharing

an oblivious key. The database knows the entire oblivious key and the user only knows n

bits of it but the database does not know which bits the user knows. The N elements of

the database are then encoded with the oblivious key and sent to the user, who is able to

decode the number of elements n known from the oblivious key, see figure 8.1.
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Figure 8.1: The left hand side of the picture shows how the database encodes the database
elements using an oblivious key. The right hand side of the pictures shows the oblivious key
of the user and the encoded database that the user receives. At the end of the protocol the
user only knows with certainty few bits (blue color), while for the other bits the user only
has partial information (gray color).

The database emits non-orthogonal quantum states in order to establish an oblivious key

with the user. The quantum states are transmitted to the user who performs a measurement

on them. The user then has to announce which states were received and measured, making

the protocol loss tolerant. Note that the user does not have any information about the

quantum states received, so there is no gain for him/her in lying about the results at this

stage of the protocol. The use of non-orthogonal quantum states prevents the user from

getting conclusive results in every measurement as deterministic and unambiguous state

discrimination is fundamentally impossible in this case. From this point of the protocol the

user does not give any feedback to the database until the oblivious key has been established.

The uncertainty about the bit values that the user obtains from inconclusive measurements

is propagated through the rest of the key in order to obtain the oblivious key. This protocol,

however, does not consider the case of noisy channels. Hence, it can not be used in deployed

systems.

In the work I present in this chapter, we developed an error correction protocol to make

the previously introduced oblivious transfer protocol fault tolerant. This adds quantum

private queries to the few communication protocols that are loss and noise tolerant. Fur-

thermore, we also performed an experimental implementation of oblivious transfer with our

error correction scheme to show its functionality. We also propose and analyze simple attacks

that the database and the user can implement against each other. In addition, we emphasize
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how the implementation of error correction contributes to the privacy of both the database

and the user.

This work was done in collaboration with P. Chan, X.F. Mo, C. Simon and W. Tittel. I

contributed to these studies in the following stages: modified the QKD system presented in

chapters 4 and 5 in order to implement the oblivious transfer protocol, data measurement,

discussions of data analysis and taking part of the editing process of the manuscript.
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8.1 Performing private database queries in a real-world environment using

a quantum protocol
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Abstract In the well-studied cryptographic primitive 1-out-of-N oblivious transfer, a

user retrieves a single element from a database of size N without the database learning

which element was retrieved. While it has previously been shown that a secure implemen-

tation of 1-out-of-N oblivious transfer is impossible against arbitrarily powerful adversaries,

recent research has revealed an interesting class of private query protocols based on quan-

tum mechanics in a cheat sensitive model. Specifically, a practical protocol does not need to

guarantee that database cannot learn what element was retrieved if doing so carries the risk

of detection. The latter is sufficient motivation to keep a database provider honest. However,

none of the previously proposed protocols could cope with noisy channels. Here we present a

fault-tolerant private query protocol, in which the novel error correction procedure is integral

to the security of the protocol. Furthermore, we present a proof-of-concept demonstration

of the protocol over a deployed fibre.

Uncertainty in quantum mechanics can be used to provide security in cryptographic

applications, allowing quantum cryptographic protocols to relax the typical assumptions
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required for security (e.g. an adversary with limited computational power), or even avoid

them altogether. The use of quantum information has proven extremely successful for key

distribution,for which quantum key distribution (QKD)[4, 10, 11] can allow two parties

to communicate over a public channel with information theoretic security (i.e. security

against an adversary with arbitrarily powerful computational capability, including quan-

tum computers). The application of quantum information theory to other cryptographic

tasks is an interesting topic both because of the insight offered into capabilities of quan-

tum versus classical information coding, and because of the possibility of developing new

practical cryptographic protocols with improved security. Indeed, there are various pro-

posals and experimental demonstrations of quantum cryptographic primitives such as secret

sharing[134, 135], coin-flipping[4, 136, 137], bit commitment[138, 139], and oblivious transfer

(OT)[131, 140, 141, 132, 133, 139].

When considering cryptographic protocols for deployment, a protocol must ultimately

satisfy the following two criteria:

1. Security: The protocol must have a rigorous security analysis based on rea-

sonable assumptions about the adversaries. A strong justification must exist

for believing that these assumptions are true.

2. Implementability: The protocol must be implementable with existing technolo-

gies, and must function in the presence of loss and noise (which are inevitable

in a realistic implementation).

However, initially proposed protocols often do not meet both requirements, and in partic-

ular often do not consider loss and/or noise in the quantum channel. Indeed, of the above

mentioned protocols, only the bit commitment and OT protocols of ref. [141, 138, 139] are

simultaneously loss- and noise-tolerant, and thus are candidates for real-world implementa-

tion.

In the case of oblivious transfer, it has been shown that if both parties possess a universal
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quantum computer it is impossible to simultaneously guarantee that the user, Ursula, can

reliably retrieve only a single element while ensuring that the database provider, Dave, has

absolutely no knowledge of which element was retrieved[130]. However this does not mean a

practical protocol cannot exist. First, note that the security criterion allows for reasonable

assumptions about the computational capabilities of the dishonest party (e.g. restricting

the adversary from having a universal quantum computer). Indeed, classical OT protocols

also rely on one of two assumptions — that at least some fraction of the intermediaries

used to perform the query are trustworthy[129, 142], or that the adversary has limited

classical computational resources[128]. In particular, a quantum protocol has been proposed

based on the assumption that the adversary has limited noisy quantum storage[141, 139]

(which precludes the adversary from possessing a universal quantum computer). However,

new developments (e.g. improvements in computational methods[143, 144] or in quantum

memory[145, 146, 36, 147, 148, 149], respectively) may make these assumptions difficult

to justify in the long term. Second, it may be acceptable in practice to relax security

conditions of OT — that is, one can allow the user to learn more information from the

database, and/or the database may be able to gain some information about the query. Several

quantum protocols have been proposed in this vein based on a cheat sensitive model[131, 140,

132, 133], in which the database provider is kept honest by the possibility of being caught

cheating. (This type of security can be sufficient if users wish to purchase information

privately from a database who spends significant effort gathering and analyzing data, e.g.

to make recommendations to investors, as the database must maintain a high quality of

service[132].) In this setting, the protocol need not prevent the database from gaining any

information about the user’s query, hence protocols may exist in which the assumptions

are easier to justify, or in which no assumptions are required at all. A brief comparison

of the properties of the above mentioned protocols for OT and private queries, as well as

the protocol we present in this work is given in Table 8.1, and we review these protocols in
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further detail in appendix E.
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Table 8.1: Comparison of the ability of various protocols for private queries to meet the two criteria for deployment (security
and implementability). Note that the cheat sensitive security model may offer the possibility for security with no additional
conditions since the impossibility proof [130] may not apply.

Security Implementability
Protocol Security Model Conditions For Which Security is

Known to Hold
Loss-tolerant Fault-tolerant

Classical
information

computational[128] standard adversary has limited classical and
quantum computational capability

N/A N/A

trusted[129, 142] standard trusted intermediaries are available N/A N/A

Quantum
information

noisy-storage[141, 139, 150] standard parameters of the adversarys quantum
memory (e.g. decoherence as a function
of time) are known

yes yes

GLM[131] cheat sensitive no additional conditions no no
QKD based[132, 133] cheat sensitive specific attacks discussed in refs. [132,

133]
yes no

our protocol cheat sensitive specific attacks discussed in this work yes yes
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In this work, we propose a private query protocol based on the protocols of ref. [132, 133],

retaining the advantages of those works while addressing the remaining obstacle to meeting

the implementability criterion. This is accomplished using a novel error correction algorithm,

in which the algorithm and its associated parameters are tailored to provide the desired level

of security in the private query protocol. Furthermore, we note that the novel error correction

procedure used to provide fault-tolerance also provides additional opportunities for Ursula

to verify Dave’s honesty, thus enhancing the cheat sensitive property of the protocol. Hence,

we show that error correction is not simply necessary to meet the implementability criterion,

but is integral to the security criterion as well.

8.1.1 Results

As in ref. [132, 133], we implement a cheat sensitive private query protocol based on the

SARG04 Quantum Key Distribution (QKD) protocol[29]. The functionality of the protocol

can be described as implementing probabilistic n-out-of-N OT — that is, Ursula will, on

average, learn the value of n̄ bits (where n̄ is small) of the database with high confidence

(for brevity, we often simply describe such bits as being known to Ursula). She will also

have probabilistic knowledge of other bits of the database (i.e. she can guess their value

with better than 50% probability). In this scheme, a private query on an N -bit database is

made possible using an N -bit oblivious key (for simplicity, we consider each element of the

database to be a single bit) generated by the quantum protocol, in which the goal is to en-

sure that Ursula knows, on average, n̄ bits of the oblivious key, whose positions are unknown

to Dave. In the following sections, we give a description of the protocol for generating an

oblivious key and using it to perform private queries, give an overview of the error correction

procedure, and then conclude with a brief discussion on security.

Description of the protocol.

A detailed description of the honest protocol for performing a private query is as follows (see
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Figure 8.2 for a graphical representation of the protocol):

1. Dave generates two long strings of classical bits uniformly at random, and

records their values. Each string should be ≈ kN
t

bits in length, where k is

a parameter determined by the previously agreed-upon error correction pro-

cedure (to be discussed later), N is the length of the database, and t is the

transmission of the link between Ursula and Dave.

2. Dave uses each pair of classical bits generated above to choose a quantum

state from a set of four previously agreed upon non-orthogonal states (shown

in Figure 8.2), and prepares qubits accordingly. A random bit from the first

string determines whether the state is prepared in the 0-basis (spanned by |ψ0〉

and |φ0〉) or the 1-basis (spanned by |ψ1〉 and |φ1〉), and the corresponding

random bit in the second string determines whether the ψ or φ state in each

basis is chosen. The first random string forms Dave’s raw key, for which the

bit values correspond to the bases in which he prepared the qubits.

3. Dave sends the qubits encoded into single photons to Ursula using a possibly

lossy and noisy quantum channel.

4. Ursula makes projection measurements using either the 0- or 1-basis, chosen

uniformly at random, and records the measurement bases and the results. Ur-

sula publicly announces the cases in which she detected a photon, and Ursula

and Dave both discard all the events in which Ursula failed to detect the pho-

ton. The protocol proceeds to the next step once Ursula has succeeded in

detecting kN photons. Dave keeps the corresponding kN bits from his raw

key to form his sifted key.

5. Dave publicly announces his second string of random bits (used to select

whether he encoded the qubits into a ψ or φ state), which, combined with
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knowledge from Ursula’s measurements (and, for the moment, assuming a

noiseless channel), allows her to conclusively identify whether the state was

encoded in the 0- or 1-basis with probability pc = sin2(θ)
2

. Note that when

Ursula’s measurements yielded inconclusive results, which occurs with prob-

ability pi = 1 − pc, she gains probabilistic information about the basis. This

information can be quantified by the probability that she incorrectly identifies

the basis, ei = cos2(θ)
1+cos2(θ)

. A noisy channel will affect the probabilities pc, pi,

and ei, as well as result in a non-zero error rate for conclusive measurements,

denoted ec. Like Dave, Ursula associates classical bit values to the quantum

states based on the basis, and forms her sifted key using the most likely values

of the bits given her measurement results.

6. Dave divides his sifted key into N k-bit blocks, and computes each bit of his

oblivious key as the parity of the k bits in each block (the parity is 0 if an even

number of the k bits is 1, and 1 otherwise). He publicly announces which bits

form each block. In addition, according to a previously agreed upon error-

correcting code, he also sends the parities of several subsets of the k bits to

Ursula. Using this information, along with her sifted key and knowledge of

whether the measurements were conclusive or inconclusive, Ursula computes

the most likely value of each oblivious key bit, as well as the probability that

this value is incorrect, denoted ek. The error-correcting code is selected such

that Ursula will only have a high confidence (or low ek) in n̄ bits on average,

where n̄ is typically a few bits. If Ursula does not learn any bits of the protocol

(due to its probabilistic nature), the protocol must be restarted.

7. Ursula selects a shift value that aligns one of the bits she knows in the oblivious

key to the bit in the database that she wants to know. She communicates this

shift value classically to Dave, who applies the shift to his oblivious key, and
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then uses it to encrypt the database using the one-time-pad[3]. He then sends

the encrypted database to Ursula, who can only decrypt the bits for which

she knows the corresponding oblivious key bit. If Ursula knows multiple bits

of the oblivious key she will learn multiple bits of the database. However, the

shift only allows her to select the location of a single bit of the database, with

the remaining learned bits distributed randomly.

Error-correcting codes for private queries.

Let us now examine step 6 of the protocol in more detail. Our error correction procedure

(see Supplementary Information for a full description) is inspired by syndrome decoding of

error-correcting codes such as Hamming codes[151], which can operate on a few bits at a

time. However, it is important to note that in the context of private queries error correction

is integral to determining how much information Ursula learns about the oblivious key,

creating unique requirements that made it necessary to investigate and design novel error-

correcting codes and error correction procedures. In particular, the goal when designing

an error-correcting code for private queries is not to simply maximize the probability of

successful decoding as it is in standard communications applications. Rather, a specific

success probability is desired in order to ensure that Ursula only learns a few bits of the

oblivious key. Furthermore, to prevent Ursula from learning a large amount of probabilistic

information about the remaining bits of the key, it is desirable to keep ek as high as possible

in those cases in which decoding does not succeed.

In addition there are two main technical differences between error correction in private

queries and in communications. First, note that in order to recover the value of the oblivious

key bit, Ursula need only determine the parity of the k-bits, and not the individual values

of the k bits as would typically be the case for error correction. Hence, the error correction

procedure seeks the most likely parity of the k-bit block, and successful decoding does not

depend on having a high probability of identifying the correct values of the k-bit block as long
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as it is possible to identify whether an even or odd number of errors occurred. Second, the

input bits can be divided into those with low error rate (conclusive measurements), and those

with very high error rate (inconclusive measurements). We note that it is the interaction of

this latter property with the short block lengths used (k ≤ 10) that allows uncertainty to be

maintained after error correction, thereby limiting the amount of information that Ursula

learns about the database.

The error-correcting codes used in this work are tailored based on the experimental pa-

rameters (i.e. conclusive and inconclusive probabilities, pc and pi and the associated error

rates ec and ei) in order to achieve the goals discussed above. In order to quickly evaluate

error-correcting codes, we define two thresholds, tU and tD. When ek ≤ tU, Ursula con-

siders the oblivious key bit to be known. When ek ≤ tD, Dave considers Ursula to have

significant partial information about that bit. These thresholds should be selected based

on the requirements of the application. In this work, we use tU = 10−3 and tD = 1
3
. In

order to reduce the probability of error in Ursula’s oblivious key bit below her threshold

(i.e. ek ≤ tU), the error correction process must sufficiently reduce ek when her quantum

measurements succeeded in obtaining a large amount of information about the k bits (i.e.

when most or all measurements were conclusive). However, the error correction will also

reduce ek if several measurements were inconclusive. Hence, the error rate for inconclusive

measurements, ei, is of particular importance to the fraction of bits for which ek ≤ tD. With

this in mind, a smaller angle between states (characterized by θ as shown in Figure 8.2)

has, in addition to those benefits noted in ref. [133] (i.e. reduced quantum communication,

improved database security, and better control over the number of bits Ursula learns), the

benefit of reducing the partial information from inconclusive measurements. However, there

is a trade-off between these benefits and the fact that the error rate for conclusive measure-

ments is also increased due to a reduced signal-to-noise ratio, making it more difficult to

achieve ek ≤ tU. A detailed description of the selection of our error-correcting codes is given
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in the Supplementary Information.

Security of the protocol.

Let us now discuss how the steps in the above protocol contribute to security, beginning

with a discussion of user privacy. User privacy is protected by the cheat sensitive property

of the protocol, which allows a dishonest database to be detected. This property stems from

step 4 of the protocol as Ursula randomly selects between two possible (non-commuting)

measurements and does not announce which measurement she performed. Her security thus

stems from the complementarity principle as her interpretation of her measurement results

is dependent on her choice of measurement basis, with the protocol designed such that the

classical bit value she assigns to each result is perfectly correlated with her basis choice

(see step 5 and the Supplementary Information for more details). In the case that Dave is

honest (and for the moment, assuming a noiseless system), Ursula’s classical bit values for

conclusive measurements will also be perfectly correlated with the classical bit values Dave

used to select which quantum states he encodes. If Dave is dishonest, and supposing he can

send a state such that Ursula’s measurement is conclusive regardless of which measurement

basis she chooses (a realistic attack is analyzed in the Supplementary Information), Ursula’s

interpretation of her measurements remain unchanged, hence her classical bit values are still

perfectly correlated to her choice of basis. Since this choice is never revealed to Dave, he does

not know which bit value she obtains. This leads to the cheat sensitivity in the protocol, as

the dishonest database may be detected during error correction (since he sends parity values

uncorrelated with Ursula’s classical bit values), or after completion of the protocol since he

may send incorrect query results. Furthermore, note that the error correction procedure

in step 6 only involves one-way communication from Dave to Ursula, hence Dave gains no

information regarding the results of the error correction procedure.

On the other hand, Ursula’s limited knowledge about the oblivious key stems from the
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superposition principle in quantum mechanics. Specifically, note that in step 2 Dave prepares

qubits in non-orthogonal states, and that Ursula can thus not deterministically distinguish

between these states. As such, Ursula’s measurements only give her limited information,

even after Dave reveals some information about which state he sent in step 5. Furthermore,

note that Ursula must declare which bits were lost during transmission (or detection) in

step 4, prior to receiving classical information indicating whether a ψ or φ state was sent.

This makes the protocol loss-tolerant while ensuring that Ursula cannot choose which bits

to keep based on whether her measurements were conclusive or inconclusive, even if she uses

a heralded quantum memory to delay her measurements until after step 5. Note that in step

6, Ursula does have the ability to restart the protocol if the results are unfavorable as Dave

cannot verify whether she indeed learned no bits of the oblivious key. However, choosing an

error-correcting code such that n̄ is a few bits ensures that the probability for Ursula to not

know any bits is very low, and allows Dave to abort the protocol after a small number of

declared failures by Ursula (preventing her from repeatedly declaring failure until she obtains

a very favorable result).

Furthermore, a dishonest user may gain an advantage by deviating from the honest pro-

tocol. It has been shown that Ursula could perform an unambiguous state discrimination

(USD) measurement[152, 153] in order to slightly improve her probability of conclusive mea-

surements, which allows her to learn a few additional bits of the oblivious key[132]. However,

this comes at the expense of gaining no information about the bit value (i.e. ei = 0.5) when

the USD measurement gives inconclusive results. While this probabilistic information was

not previously considered useful[132, 133], it is an important input to the error correction

process. Thus, the effectiveness of this attack is reduced in the presence of error correction,

and our analysis in the Supplementary Information shows that in some cases performing

a USD measurement actually reduces the number of bits of the oblivious key that Ursula

learns as compared to the honest measurements. Note that only individual USD measure-
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ments have been considered, and coherent attacks (e.g. an optimized USD measurement on

the k qubits that form each oblivious key bit) remain an interesting open question.

We also note that Ursula and Dave are adversarial in nature in the protocol, and thus

may not cooperate when estimating the error rate in order to select an appropriate error-

correcting code. An error-correcting code that is not well suited to the actual error rate in

the system will either result in Ursula learning too few or too many bits of the oblivious

key, but does not impact user security. Hence the database does not have any motivation

to falsify the error rate, but the user would like the database to think the error rate is

larger than it is in reality, leading to the selection of an error-correcting code that gives her

more information. In our analysis (detailed in the Supplementary Information), we find that

Dave can ensure that he has a reasonable level of security by determining the error rate

of devices under his control (potentially by intentionally introducing noise) and selecting

an error-correcting code accordingly. In addition, even if Ursula’s devices introduce some

additional error that Dave does not account for in his security analysis, the protocol is still

successful for her.

Experimental and simulated performance of our protocol.

We performed an experimental demonstration of private queries over a 12.4 km fiber link be-

tween the University of Calgary and SAIT Polytechnic, using our BB84[4] QKD system[73]

(with a small modification to the hardware to set θ = 35.6◦ ± 0.49◦ — all other differences

between our protocol and BB84 QKD are in the classical post-processing). Our experimen-

tal setup is shown in Figure 8.3 (see ref. [73] for a detailed description). Note that our

demonstration uses weak coherent pulses rather than single photons, and hence database

privacy requires the assumption that Ursula is not able to exploit pulses containing mul-

tiple photons (adapting the protocol for weak coherent pulses, e.g. using decoy states as

in QKD[25, 26, 27, 154], remains an open question, and we discuss this possibility further
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Figure 8.3: Diagram of the experimental setup. The database (Dave) uses a computer and
field-programmable gate-array (FPGA) to control the generation of polarization qubits via an
attenuated laser diode (LD1 and ATT) and polarization modular (PM). Quantum frames[73]
(sequences of strong light for timing and stabilization) are generated by a second laser diode
(LD2) and merged using a polarizing beam-splitter (PBS). Light is transmitted from Dave to
Ursula through a 12.4 km dark fiber link with 4.5 dB loss between SAIT Polytechnic and the
University of Calgary. Ursula splits off 10% of the incoming light (90/10 BS) to a photodiode
(PD) used to detect the quantum frames. The 50/50 BS is used to passively select a random
measurement basis. The apparatus for each basis consists of a polarization controller (PC),
a PBS, and two single photon detectors (SPD) to make the projection measurement. Upon
detecting a quantum frame, Ursula’s FPGA triggers the SPDs and initiates data collection
by the computer, or polarization compensation, as appropriate.
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in the Supplementary Information). We consider a database size of N = 106 and, based

on measured error rates for our system, an error-correcting code with k = 10 was selected,

thus requiring 107 measured qubits per query. Note that we did not consider k > 10 due

to computational constraints when searching for the best possible construction of the error-

correcting code. A total of 11 queries was performed using a mean number of photons per

pulse of µ = 0.95± 0.047 to show that the protocol can function at the single photon level.

In this setting, our system took approximately 4.5 hours to accumulate the 107 bits of data

needed for one private query. In order to quickly collect statistics, we repeated the experi-

ment with mean number of photons per pulse increased to µ = 9.5 ± 0.47, performing 104

queries. While the multi-photon emissions at this µ are likely to compromise the security of

the protocol if Ursula monitors the pulses outside Dave’s laboratory, this value corresponds

to ∼ 0.95 photons per pulse at the detectors, ensuring that multi-photon detection events do

not skew the detection statistics. The measured parameters that determine the performance

of the protocol are shown in Table 8.2 (note that the experimentally measured parame-

ters at both mean photon numbers are the same to within one standard deviation), along

with parameters for a theoretical simulation of what could be achieved using state-of-the-art

detectors[106, 155]. These detectors allow for significantly reduced noise (they feature dark

count rates ≈ 100 Hz), and, in the case of ref. [106], detection efficiencies up to 93%. With

the improved signal-to-noise ratio, we select the parameters of the protocol to be θ = 25◦

and k = 9.

The experimental and simulated results for these codes are shown in Table 8.3. The

simulated results corresponding to our experiment are derived from Monte Carlo simulations

taking into account the variation in the parameters shown in Table 8.2. Figure 8.4 compares

the distribution of the results over the 104 queries performed in the µ = 9.5 ± 0.47 case

with the simulation results, showing good agreement between the two. Note that in both

experimental cases, no errors were observed in the bits learned by Ursula (i.e. for which
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Table 8.2: Parameters for the private query protocol as measured in our experiment with
standard detectors, and simulated for low-noise detectors. The value of θ (including standard
deviation) is measured using classical light. For the probabilities of conclusive measurements,
pc, and error rates for conclusive and inconclusive measurements, ec and ei, the standard error
expected based on Poissonian counting statistics for the 107 bits in each query is negligible
compared to the observed variations across the queries performed. The observed standard
deviations are attributed to time-varying error in the alignment of the measurement bases
at the receiver as a result of channel instability. Note that the measurement results for the
µ = 9.5 ± 0.47 case show more variation in the parameters than for the µ = 0.95 ± 0.047
case due to short-term fluctuations that are averaged out by the long data collection time
needed to acquire the 107 bits per query in the µ = 0.95± 0.47 case.

standard detectors low-noise detectors
µ (photons) 0.95± 0.047 9.5± 0.47 1

θ (◦) 35.6± 0.49 35.6± 0.49 25
pc (%) 16.1± 0.29 16.1± 0.93 9.22
ec (%) 4.4± 0.59 4.6± 0.38 1.91
ei (%) 41.24± 0.08 41.3± 0.64 45.12
k (bits) 10 10 9

ek ≤ 10−3), with a total of 45 bits learned in 11 queries when µ = 0.95± 0.047 and 405 bits

learned in 104 queries when µ = 9.5± 0.47.

In addition, our simulation results show that the primary obstacle to improving database

security in the protocol is noise in the system, which can be greatly reduced by state-of-the-

art single photon detectors. These detectors can also improve the rate at which queries can

be performed by almost an order of magnitude because of their higher detection efficiencies.

Further improvement of this rate is straightforward, as QKD systems can easily be adapted

to perform this protocol. A state-of-the-art BB84 QKD system has shown that data can be

accumulated at a rate of 106 to 107 bits per second, depending on the distance between Ursula

and Dave[66]. For the parameters in our experimental demonstration, this would allow one

private query to be performed every few seconds. The amount of data required can also be

reduced by repeating a short oblivious key over a longer database and then applying a shift

as before to allow Ursula to select the desired bit. This would allow queries to be performed

more often, or equivalently, allow queries to be performed on a larger database in the same

amount of time. However, this comes at the expense of database security, as the user is able
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Figure 8.4: Histograms for the information gained by the user in the 104 queries performed in
the µ = 9.5±0.47 case. a) The number of bits learned by the user. b) The percentage of the
database of which the user learns significant partial information. In both figures error bars
for the experimental results represent one standard deviation assuming Poissonian counting
statistics, and the blue crosses show the expected distribution obtained from Monte Carlo
simulations.

Table 8.3: Experimental and simulated results for the quantum private queries. The following
figures of merit are used: the average number of bits learned by the user per query, n̄, the
average proportion of the database where the user has significant partial information (i.e.
ek ≤ tD), m̄, and the failure probability (i.e. that the user learns zero bits), P0.

µ = 0.95± 0.047 µ = 9.5± 0.47 low-noise
experimental simulated experimental simulated simulated

n̄ (bits) 4.1± 2.4 3.2± 1.1 3.9± 3.1 3.5± 1.9 4.35
m̄ (%) 6.1± 0.25 6.1± 0.25 6.3± 1.4 6.3± 1.3 0.96
P0 (%) 9.1± 9.1 8.8 8.7± 2.9 9.4 1.29

to learn additional bits for each repetition of the key (though not in locations of her choice, as

only a single shift value is communicated). We also note that a modification to the protocol

of ref. [132] has recently been proposed that reduces the amount of quantum communication

required[156], however applying this modification to our protocol is not straightforward.

8.1.2 Discussion

We have proposed and demonstrated, over deployed optical fibres, a quantum protocol for

private queries using the cheat sensitive model. This first demonstration of private queries in

a real-world setting was made possible by the development of a protocol which integrates a
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novel error correction procedure. Our analysis of this protocol has shown that error correction

plays a pivotal role in the security, both in terms of controlling how much information the

user learns, and in providing the ability for Ursula to detect a dishonest database. While

our security analysis is currently limited to several specific attacks, it is important to note

that the error correction should be viewed as an important tool for tailoring the amount of

information learned by the user, and hence may be adaptable to a more general scenario

where Ursula makes more powerful measurements. In this general view, database security

stems from the fact that quantum mechanics allows a protocol to be designed where the user

cannot extract full information about the quantum states sent, and error correction allows

the extracted information to be processed into an oblivious key with the desired distribution

of information for private queries. Furthermore, quantum mechanics allows such a private

query protocol to be set up such that the correlation between Ursula and Dave’s classical

raw key bits is destroyed if Dave can control which bits of the oblivious key Ursula learns.

Hence, the methods presented in this work should provide a strong basis for the further

development of cheat sensitive quantum protocols.
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Chapter 9

Conclusions and Outlook

9.1 Conclusions

This thesis has focused on the implementation of two different QKD protocols on two inde-

pendent QKD systems as well as the implementation of the quantum private queries protocol,

all of them over deployed fiber.

A first QKD system implementing the BB84 protocol allowed us to develop and test

tools that, in principle, can be used to integrate any QKD system into existing optical-fiber

networks. The same system is used to perform an analysis of the scalability of the key

generation rate at different stages of the process of key distribution. From this study we

found that a hardware based operation of sifting, error correction and privacy amplification

must be implemented to improve the secret key generation rate.

The second QKD system implemented the recently proposed measurement-device inde-

pendent QKD (MDI-QKD) protocol [89]. The benefit of the MDI-QKD protocol is that

the detectors employed do not have to be trusted. This constitutes a huge advantage over

prepare and measure QKD protocols as many hacking attacks exploit single photon detec-

tors. As part of our MDI-QKD implementation, we demonstrated, for the first time, a Bell

state measurement over deployed fiber. Additionally, novel single photon detectors were

used to study the possibility of a high-efficiency Bell state measurement. Bell state mea-

surements play an important role in a number of quantum communication applications (e.g.

MDI-QKD, quantum repeaters, quantum teleportation). As Bell state measurements are

limited to a 50% success probability for ideal detectors [47], the overall success probability

of different applications that use Bell state measurements can benefit from the most efficient

implementations available for these measurements.
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Finally, the quantum private queries protocol was implemented using a modified version

of our BB84 QKD system. An error correction protocol to make the protocol noise tolerant

was developed and allowed us to demonstrate quantum private queries in the real world for

the first time.

9.2 Outlook

One of the main goals of the quantum communication community is to establish quantum

networks that can implement high speed quantum cryptography over existing infrastructure

between many parties over long distances. Several quantum networks have been demon-

strated, however, they operated over short distances and assumed that all of the nodes

trusted each other. The quantum frames tool described in chapter 4 can potentially solve

this problem by including routing information. Another potential solution is implement

a ”star-topology” network using MDI-QKD. In this network, only a central node requires

single photon detectors (the most expensive devices in a QKD system) and would connect

different parties within the network. The central node does not have to be trusted, due to

the specific features of the MDI-QKD protocol.

Measurement-device independent QKD overcame potential security flaws associated with

devices used for measuring in QKD systems. It is naturally highly desirable to extend this

idea and create a QKD system that does not need to make assumptions about any of the

devices used by Alice and Bob. Several such protocols, known as device independent QKD,

have been proposed [91, 24]. These protocols rely on fundamental concepts of quantum

mechanics like Bell inequalities to guarantee the security of the distributed key. Although

an experimental implementation of device independent QKD in the real world has not been

performed yet due to the large gap between the theoretical requirements and the experimental

possibilities, significant effort is being directed towards making this gap smaller.

In current QKD implementations, the noise in single photon detectors places a limit on
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the distance at which it is possible to distribute a secret key. The access to low noise and

more efficient single photon detectors like the ones demonstrated recently [106] opens the

possibility to implement QKD at longer distances (up to ∼300 km). However, for more than

a few hundred kilometres distance better detectors do not suffice and it becomes necessary

to use entanglement based QKD in combination with quantum repeaters [113]. The goal

of a quantum repeater is to distribute entanglement over long distances. This is done by

dividing the long quantum channel in smaller links, called elementary links. Two sources

of entangled photons are found within each elementary link. Each source emits a pair of

entangled photons. Using entanglement swapping, which makes use of Bell measurements,

it is possible to distribute entanglement across the elementary link. Multiple elementary

links can be concatenated in order to distribute entanglement across an arbitrary distance.

The implementation of MDI-QKD is a first step towards a repeater as MDI-QKD requires

the demonstration of a Bell state measurement with photons created independently. As

such, the MDI-QKD scheme can easily be upgraded as the improved repeater technology

becomes available. Quantum repeaters must also be supplemented with quantum memories,

as the probability of simultaneously having entangled photons at the end of multiple ele-

mentary links is small. Currently, there is a lot of research done on quantum memories and

implementation of quantum repeaters [113].

While many challenges still remain, the field of quantum communication continues to

mature and move closer to being a powerful tool in real-world situations.
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Appendix A

Error Correction

All QKD protocols developed so far require post-processing of the sifted key. The sifted key

is the string of bits that originate from photons in which Alice and Bob have used the same

basis to prepare and measure qubits. If Alice and Bob were using a perfect noiseless quantum

channel, the bits in their respective sifted keys would be perfectly correlated. However, noise

in the channel or eavesdropping can cause errors that translate into differences between

Alice’s and Bob’s sifted keys. In order to obtain a secret key, Alice and Bob must first share

perfectly correlated keys, which is achieved by the process of error correction.

To perform error correction, Alice and Bob use an authenticated classical channel, which

is additional to the quantum channel. Alice sends information about her sifted key through

the classical channel to Bob. In turn, Bob performs operations to his own sifted key according

to the information received to match Alice’s sifted key. Note that alternatively Alice could

match her sifted key to Bob’s, in which case Bob sends the error correction information to

Alice.

A.1 Low-density parity check matrices

Throughout this thesis, error correction is performed using so called low-density parity check

(LDPC) matrices [60, 58]. The benefits of LDPC matrices over alternative methods of error

correction are: first, LDPC matrices require only one-way communication, which means that

only one of the parties must transmit classical information to the other party in order to

perform error correction. Second, LDPC matrices perform close to the Shannon limit for

error rates of a few percent. Error rates that are typical in QKD implementations are on

the order of one percent. This contrasts with classical communication systems in which
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error rates are on the order of 10−6. Performing close to the Shannon limit means that the

amount of information that Alice has to send to Bob to perform error correction is close to

the minimum amount of information necessary to correct errors in a channel as established

by Shannon [23]. The amount of information needed to perform error correction is relevant

because it has a direct impact on the secret key rate of the QKD system. This will be

discussed in the paragraphs below.

The correlation between Alice’s sifted bits and Bob’s sifted bits are described using a

binary symmetric channel: if the sender emits a bit 0, the receiver obtains a bit 0 with

probability 1−E and a bit 1 with probability E, where E is the probability of having a bit

flip. A bit 1 emitted by the sender will arrive at the receiver with probability 1 − E as bit

1 and with probability E as 0. The channel is described mathematically by the following

equations:

P (0|0) = 1− E

P (1|0) = E

P (0|1) = E

P (1|1) = 1− E. (A.1)

To perform error correction via LDPC matrices, Alice and Bob divide their sifted key into

blocks (typically of ∼4000 bits). Alice uses a block of her sifted key, represented by a vector

~α, and an LDPC matrix H of dimensions m × n (in which m < n) to calculate a parity

information vector ~p in the following way:

~p = H~α. (A.2)

Alice sends the parity information to Bob through the classical channel. The matrix H

consists of zeros and ones and it is constructed such that each row of the matrix contains a

low number of non-zero elements (on average 5). The vector ~α is an n-bit column vector, in

which n indicates the size of the block employed. Each element pi of the vector ~p indicates
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Table A.1: Probability of each bit of Bob’s sifted key to be 0 or 1.
bit j P0(j) P1(j)

1 0.05 0.95
0 0.95 0.05
1 0.05 0.95

if the sifted bits specified by the ith row in the matrix H contain an even (p = 0) or odd

(p = 1) number of ones.

In turn, Bob receives the parity information ~p, knows the matrix H in advance and tries

to reproduce vector ~α by using his own sifted key ~β and taking into account the quantum

bit error rate, so that:

H~β′ = ~p, (A.3)

in which ~β′ is the corrected key and satisfies ~β′ = ~α. The quantum bit error rate can be

estimated by disclosing a subset of the sifted key or from previous runs of the implementation.

For example, assume Bob and Alice share a sifted key consisting of three bits. Assuming

Bob’s three sifted bits are (1,0,1) and the quantum bit error rate is 5%, table A.1 shows the

resulting probabilities P0(j) and P1(j). To do this Bob calculates the probability for each bit

in his sifted key to be one (P1(j)) or zero (P0(j))
1, taking into account ~p and the quantum

bit error rate, e. Bob then uses the parity information about the relevant block of qubits

he received from Alice, ~p. Continuing with the example, for simplicity, lets assume that the

parity vector that Bob receives consists of a single element p = 0 and it is the combination

of the three sifted bits. The possible combinations of bit values with parity 0 are: (1,0,1),

(1,1,0), (0,1,1), (0,0,0). Bob can then calculate the probability of each of those combinations

based on the table A.1 (see table A.2).

In general the parity vector contains m elements. Bob uses the parity information in-

volving a particular sifted bit to calculate the probability that he has the correct value for

1Note that P0(j) + P1(j) = 1.
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Table A.2: Computation of the probability of occurrence for each combination of bits.
combination of bits Probabilities

1,0,1 0.95*0.95*0.95 = 0.857
1,1,0 0.95*0.05*0.05= 0.002
0,1,1 0.05*0.05*0.95 = 0.002
0,0,0 0.05*0.95*0.05 = 0.002

that bit. The algorithm is repeated until the probability for each element is 0 + ε or 1 − ε.

If a predetermined number of rounds is reached and the probability for each element is not

close to 0 or 1, then failure is declared. Therefore, the quantum bit error rate of a system is

actually found after the error correction process is completed.

An important question to ask is: how much parity information does Alice have to send

to Bob so that he can correct his sifted key? The rate of information from Alice to Bob is

given by [23]:

I(A : B) = h2(A)− h2(B|A), (A.4)

in which h2(A) refers to the Shannon entropy, h2(B|A) refers to the conditional entropy

and I(X : Y ) is the mutual information between Alice and Bob, all defined in chapter 2.

Since the message Alice sends to Bob is composed of bits 0 and 1 with uniform probability

distribution, then

h2(A) = −p(0)log2(p(0))− (1− p(0))log2(1− p(0))

= −1

2
log2

(1

2

)
−
(

1− 1

2

)
log2

(
1− 1

2

)
= 1. (A.5)
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Calculating h2(B|A), we obtain:

h2(B|A) = −
∑
A

p(A)
∑
B

p(B|A)log2(p(B|A))

= −p(0)
(
p(0|0)log2(0|0) + p(1|0)log2(1|0)

)
− p(1)

(
p(1|1)log2(1|1) + p(0|1)log2(0|1)

)
= −1

2

[
(1− e)log2(1− e) + elog2(e)

]
− 1

2

[
(1− e)log2(1− e) + elog2(e)

]
= −(1− e)log2(1− e)− elog2(e)

= h2(e). (A.6)

Therefore,

I(A : B) = 1− h2(e), (A.7)

in which e indicates the quantum bit error rate. Note that Alice sends the m parity bits

through the classical channel, and Eve learns m bits per block due to error correction. Alice

and Bob will only have n−m secure bits left per block, in which n is the size of the block of

sifted key. The rate of information transfer (number of information bits over total number

of bits transmitted) is then R = (n−m)/n. For an ideal error correction code the number

of parity bits that Alice needs to send to Bob are given by equation A.7:

n−m
n

= 1− h2(e),

m = nh2(e). (A.8)

The quantum bit error rate in the example given above was e = 5% and the block size

considered was n = 4000 bits. The number of parity bits needed for error correction is at

least m = 1146 bits.

As the name indicates, error correction allows Alice and Bob to remove all errors that

originate from transmission of the qubits or due to eavesdropping. The implementation of

error correction makes QKD noise tolerant, which is one of the requirements to execute a

protocol in real-world conditions.
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Appendix B

Security proofs

The first proposal of QKD was published in 1984 by Bennet and Brassard (BB84) [4]. The

security of QKD is based on the fact that measuring a quantum system disturbs its state. An

advantage of QKD over traditional key distribution1 is the provable security of the key that

Alice and Bob share before it is used to encode private information. Despite the intuition

behind the security of QKD, a rigours mathematical proof showing its security was not given

until 1996 by Mayers [157]. Since then, a variety of security proofs have been published for

the BB84 protocol, and to a lesser degree for other QKD protocols. Each of these security

proofs make a number of assumptions about things like the type of attack performed by

the eavesdropper, whether the key is finite or infinite in size, the use of imperfect or perfect

devices, etc. In this appendix I will give a brief definition of the types of attacks that an

eavesdropper can perform against a QKD system. I will then sketch two different security

proofs that assume infinitely long keys (i.e. keys composed of an infinite amount of bits).

B.1 Types of attacks

Attacks by an eavesdropper can be divided into three categories [158, 11]:

a) Individual attacks : the attacker Eve interacts with each qubit through independent

auxiliary systems (probes). She then performs a measurement on each probe separately after

the interaction. For individual attacks, it is assumed that Eve measures her probe before

classical post-processing. This type of attack does not introduce correlations between the

qubits.

b) Collective attacks : the attacker Eve interacts with each qubit with an independent

1Referred to as classical key distribution in the quantum information community.
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probe, just as in individual attacks, but can also keep her probes in a quantum memory until

the end of classical post-processing. At the end of classical post-processing Eve optimizes for

her measurement taking into account additional information acquired during error correction

and privacy amplification. This kind of attack does not introduce correlations between the

qubits.

c) Coherent attacks : This is the most general attack Eve can perform on the qubits.

A coherent attack can involve many variations, including the modification of the attack

according to the result of intermediate measurements. In this case, Eve’s probe interacts

with all qubits which creates a high-dimensional quantum state, which Eve then measures.

In this type of attack it is considered that Eve introduces correlations between the qubits.

B.2 Security proofs

Before 1999, security proofs that considered individual attacks had been developed, however,

there is no reason to believe an eavesdropper will limit herself to individual attacks, hence

a security proof that considered collective and coherent attacks was necessary. Triggered by

the work of Mayers [157], Lo and Chau developed a QKD protocol based on entanglement

distillation and proved its security against collective attacks [159]. Entanglement distillation

is a process in which m pairs of maximally entangled states are obtained from a larger

group, n, of partially entangled states. Lo and Chau’s security proof makes use of the fact

that, if Alice and Bob share maximally entangled pairs of photons, these photons can not

be entangled with any other system such as Eve’s probe. This is known as the monogamy

of entanglement. Hence, if Alice and Bob obtain a string of bits from measurements on

maximally entangled states, then the eavesdropper cannot have any information about their

bit string. The problem with the protocol from Lo and Chau is that it calls for a quantum

computer that performs entanglement distillation to ensure security, making it currently

impractical.
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B.2.1 Shor & Preskill, 2000

Shor and Preskill [33] proposed two modifications to the protocol by Lo and Chau in order

to remove any requirement for a quantum computer and reduce it to BB84. They first

modified Lo and Chau’s protocol using the equivalence between entanglement distillation

and quantum error correction [159]. One can see this equivalence in the goal of quantum

error correction, which is to allow the transmission of n qubits with maximum fidelity from

Alice to Bob through a noisy channel. Shor and Preskill’s proof has the following assumption:

the eavesdropper never introduces more than t errors per block of qubits. If Alice can encode

her qubits in a t-error correcting code, then the errors can be corrected during decoding.

Therefore, if an upper bound on t is placed by sampling the channel, it is possible to have

a secure protocol. The steps to the first modified protocol by Shor and Preskill are the

following2:

Lo-Chau protocol: first modification

1. Alice creates 2n entangled pairs, for example, in the state |φ+〉 = 1√
2
(|00〉+ |11〉).

2. Alice randomly selects n of the 2n entangled pairs, the n pairs will serve as check bits for

Eve’s interference.

3. Alice selects a random 2n-bit string b, and performs a Hadamard transform3 on the second

qubit of each pair for which b is 1.

4. Alice sends the second qubit of each pair to Bob. Bob receives the qubits and announces

it.

5. Alice announces b and which n qubits serve as check bits.

6. Bob performs Hadamard on the qubits in which b is 1.

7. Alice and Bob each measure their n check qubits in the |0〉, |1〉 basis, and publicly share

the results. If more than t of these disagree, they abort the protocol.

2The following description follows [21] closely
3The action of a hadamard transformation on the qubits |0〉 and |1〉 is H |0〉 = |+〉 and H |0〉 = |−〉. A

Hadamard is unitary, H†H = I.
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8. Alice and Bob perform entanglement distillation on the remaining n qubits, obtaining m

nearly perfect entangled states (in which m < n).

9. Alice and Bob measure the m entangled pairs in the |0〉, |1〉 basis to obtain a shared

secret key.

Shor and Preskill noted that, the measurement Alice performs at step 7 can be performed

at any time during the protocol. This is because her measurement does not change the state

that Bob has. When Alice performs a measurement on her qubit, the entangled state is

collapsed to a single qubit. Additionally, Shor and Preskill noted that an eavesdropper

cannot tell the difference between a particle belonging to an entangled pair and a source

emitting a completely mixed state. Recall that individual states of entangled particles are

described by completely mixed states. This can be seen by examining the density operator

of a Bell state (e.g.|φ+〉):

ρAB =
( |00〉+ |11〉√

2

)(〈00|+ 〈11|√
2

)
. (B.1)

If we then trace out the first qubit, the reduced density operator for the second qubit is

given by:

ρB = trA

( |00〉 〈00|+ |11〉 〈00|+ |00〉 〈11|+ |11〉 〈11|
2

)
=
|0〉 〈0|〈0|0〉+ |1〉 〈0|〈1|0〉+ |0〉 〈1|〈0|1〉+ |1〉 〈1|〈1|1〉

2

=
I

2
, (B.2)

which is identical to the density matrix of a completely mixed state:

ρ =
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| = I

2
. (B.3)

In step 1, Alice can simply prepare n qubits |0〉 and |1〉 and n entangled states instead of 2n

entangled states. Alice sends both, qubits and entangled photons to Bob in a random order.

In this case Eve can not discriminate if Alice has sent a qubit or a photon belonging to an

entangled state. From a practical point of view, Alice can prepare mixed states, which are
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easy to implement. The mixed states can be used to distill a key between Alice and Bob

while the entangled states are used as check qubits in order to verify the presence of Eve.

Additionally, the measurements Alice performs in steps 8 and 9 are equivalent to col-

lapsing the n maximally entangled state into random qubits encoded in a random quantum

error correction code. The qubits are transmitted to Bob and, while in transmission, they

can flip (e.g. |0〉 → |1〉), known as bit flip or the relative phase between qubits can change

(e.g. |0〉 + |1〉 → |0〉 − |1〉), known as phase flip, due to noise or eavesdropping. However,

remember that the assumption is that the error rate is less than t and it can be fixed with a

quantum error correction code. Thus, instead of sending n maximally entangled pairs, Alice

can equivalently randomly choose an X (|±〉 = (|0〉 ± |1〉)/2) or Z (|0〉 , |1〉) basis encod-

ing and a key k and encode the key in a quantum error correcting code and send Bob the

encoded qubits. The encoding of a message, in the context of quantum error correction, is

done by adding some redundant information to the message. In this approach, even if the

information in the encoded message changes due to noise or eavesdropping, there will be

enough redundancy in the encoded message such that it is possible to decode it (recover the

message). In this way all the information in the original message is transmitted. The second

modification to the protocol is the following:

Lo-Chau protocol: second modification

1’. Alice creates n random check bits, a random m bit string and two random n bit strings x

and z. She encodes the key |k〉 in the so called Calderbank-Shor-Steane code (CSSx,z) code.

2’. Alice randomly selects n positions (out of 2n) and puts the check qubits in these positions

and the encoded qubits in the remaining positions.

3. Alice selects a random 2n-bit string b, and performs a Hadamard transform on the qubit

for which b is 1.

4. Alice sends the qubits to Bob. Bob receives the qubits and publicly announces this fact.

5’. Alice announces b and x, z (used for decoding) and which n qubits are to provide check
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bits.

6. Bob performs Hadamard on the qubits in which b is 1.

7’. Bob measures the n check qubits in the |0〉, |1〉 basis, and publicly share the results with

Alice. If more than t of these disagree, they abort the protocol.

8’. Bob decodes the remaining n qubits from CSSx,z

9’. Bob measures his qubits to obtain the shared secret key k.

A property of the quantum error correcting code (CSS code) used is that the error

correction for bit flips is decoupled from the phase flip error correction. But Alice and

Bob only measure in the Z basis (|0〉 , |1〉) so they do not need information about phase

errors, they only need to correct bit flips. Alice can send only bit flip decoding information.

However, note that decoding, fixing bit flips and then measuring the Z basis is equivalent to

performing classical error correction, in which the measurement is carried out first and the

correction is performed afterwards. And in fact, this is exactly the BB84 protocol, in which

the Hadamard operation, H, has been replaced by a random selection basis between X and

Z. Shor and Preskill used this analogy to further modify their protocol and reduce it to the

well known BB84 protocol.

BB84 protocol

1. Alice creates two 4n random bit strings a and b.

2. Alice creates 4n qubits, in which a determines the bit values, and b the bases Z or X.

3. Alice sends the 4n qubits to Bob.

4. Bob receives the qubits, measures either in the Z or X basis (chosen uniformly and at

random), and announces that he received the qubits.

5. Alice announces b.

6. Alice and Bob perform key sifting and discard all events in which their bases do not

match. This results in a 2n bit of sifted key.

7. Alice randomly selects n (or less) bits that serve as check bits, and announces the selection.
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8. Alice and Bob calculate the QBER. If the error rate is too high (more thant t errors) they

abort the protocol. Otherwise they share n bits.

9. Alice and Bob perform error correction and privacy amplification, leading to m secret

bits.

The modification of the Lo and Chau’s protocol and its reduction to the BB84 protocol

allowed Shor and Preskill to prove the security of the BB84 protocol against coherent attacks.

A figure of merit of any QKD protocol is its secret key rate. Shor and Preskill showed that

the secret key rate for the BB84 protocol (assuming perfect single photons) is:

R = 1− h2(δ)− h2(δ), (B.4)

in which δ refers to the quantum bit error rate, h2() is the Shannon entropy, the second term

refers to the eavesdropping performed during error correction (classical eavesdropping) and

the third term refers to the eavesdropping done during transmission of the qubits (quantum

eavesdropping). The equations can be rewritten as:

R = 1− 2h2(δ), (B.5)

in which the term 2h2(δ) is just the cost of privacy amplification.

B.2.2 Gottesman, Lo, Lütkenhaus and Preskill (GLLP), 2004

The security proof presented in the previous section applies in a scenario in which the devices

used to implement QKD are perfect. The next relevant security proof for the BB84 protocol

was developed by Gottesman, Lütkenhaus, Lo and Preskill and it is usually referred as the

GLLP security proof [28]. The proof takes into account specific imperfections in the devices

used in QKD implementations. Just as in the previous case, the security proof applies to

infinitely long keys. The conditions under which this proof is done are:

• Sources : GLLP considered sources that emit weak, phase randomized, co-

herent states (instead of perfect single photons), which contain multi-photon
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pulses with non-negligible probability. The multi-photon events can be used

by an eavesdropper to perform a photon number splitting attack to obtain

information about the key.

• Detectors : the authors considered basis-dependent detectors efficiencies. This

means that the probability that a qubit is successfully detected depends on

the basis in which the qubit is encoded.

Note that in this proof the flaws considered in the source or measuring devices are limited

but it is also considered that the adversary controls the apparatus within that limit, (e.g.

detector noise). The proof is developed around two kinds of qubits. Expected qubits or

untagged qubits and tagged qubits. Tagged qubits are those that can reveal information

to Eve, therefore they are not secure for QKD. Untagged qubits are secure for QKD. In

BB84, qubits emitted by single photon sources are untagged, while weak coherent sources

emit a fraction of qubits that can be tagged by Eve. When the fraction of tagged qubits and

imperfect detectors are considered, the secret key rate for the BB84 protocol is:

R = (1−∆)− h2(δ)− (1−∆)h2

( δ

1−∆

)
(B.6)

in which δ is the quantum bit error rate, ∆ is the fraction of tagged qubits received by Bob.

This fraction is given via the multi-photon probability of the source, pmulti, and the total

signal detection probability for Bob, pexp, as

∆ =
pmulti
pexp

. (B.7)

Equation B.6 can be rewritten as:

R = Q1[1− h2(e1)]−Qµh2(eµ), (B.8)

in which Q refers to the rate of qubits emitted by Alice and detected by Bob, e refers to

the quantum bit error rate, the subscript 1 indicates optical pulses containing single photons
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and the subscript µ indicates the mean photon number per pulse. From this security proof

it is possible to show that, if one considers one-way classical communication between Alice

and Bob, the upper bound of the error rate eµ for the distribution of a secret key is 11%.

Further developments of security proofs showed that the bound found for collective attacks

also applies for coherent attacks [11].
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Appendix C

Bell state measurements

C.1 Applications of quantum communication employing Bell state measure-

ments

In the following paragraphs I will describe in detail the applications of quantum communi-

cation that employ Bell state measurements (BSM).

C.1.1 Quantum teleportation

Teleportation can be defined as the transmission of an unknown quantum state between two

distant parties without transmission of the photon in which the unknown quantum state

is encoded. To perform quantum teleportation, a pair of photons in one of the maximally

entangled state are used, in this example I label these photons as B and C and I will use

the state |ψ−〉. The arbitrary quantum state (α |0〉A + β |1〉A, where |α|2 + |β|2 = 1) to be

teleported is encoded in a third photon, labeled photon A. Photon A and one of the entangled

photons, for example photon B, are transmitted to a station where a BSM is performed, see

figure C.1. The state of the three-qubit system is given by:

|ψ〉ABC = (α |0〉A + β |1〉A)⊗ 1√
2

(|01〉BC − |10〉BC). (C.1)

This can be rewritten by expressing photons A and B in the Bell basis:

|ψ〉ABC =
1√
2

(∣∣φ+
〉
AB
⊗ (α |1〉C − β |0〉C) +

∣∣φ−〉
AB
⊗ (α |1〉C + β |0〉C) (C.2)

−
∣∣ψ+

〉
AB
⊗ (α |0〉C − β |1〉C)−

∣∣ψ−〉
AB
⊗ (α |0〉C + β |1〉C)

)
.

We can see from equation C.2 that when a BSM is carried out, the initial quantum state

from photon A is transmitted to photon C up to a bit flip, a π phase flip or a combination
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Figure C.1: Quantum teleportation. A photon A in a unknown quantum state is transmitted
to a BSM setup, which consists of a beam splitter and a pair of single photon detectors
(SPD). A source of entanglement produces a pair of photons labeled B and C. Photon B is
sent towards the BSM, while photon C is sent towards a distant location to which the state
of photon A is teleported.

of these two. In order to recover the original state from photon A, a unitary transformation

of the state of photon C is necessary. These transformations are a phase flip (Z) or a bit flip

(X), given by the Pauli matrices:

Z =

 1 0

0 −1

 (C.3)

and,

X =

 0 1

1 0

 (C.4)

respectively.

We can see from equation C.2 that the resulting state in photon C depends on the pro-

jection resulting from the BSM. The result of the BSM is transmitted to the photon C via a

classical communication channel. This information determines which unitary transformation

is needed to apply to photon C to recover the original quantum state from photon A. Note

that the requirement to transmit classical information to recover the original quantum state

prevents teleportation from transmitting information faster than the speed of light. It is also

important to note that quantum teleportation does not violate the no-cloning theorem [160]

as the target quantum state (α |0〉 + β |1〉) only exists in location C once the teleportation

process is finished and all traces of the original state are removed from photon A.
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Entanglement source

Entanglement swapping

Figure C.2: Entanglement swapping. A source of entangled photons produces a pair of
photons labeled A and B. A second source of entanglement produces photons C and D.
Photons B and C are sent towards a central station where their joint state is projected onto
a Bell state. Photons A and D are sent in opposite directions. The result of the BSM is
transmitted to photons A and D. A unitary transformation can be applied to photon A or
photon D. As a result, photons A and D are in the entangled state onto which photons B
and C were projected. Note that without the unitary transformation photons A and D are
also entangled, however, in a different state.

C.1.2 Entanglement swapping

Entanglement swapping is very similar to quantum teleportation in that it can be seen as

the teleportation of entanglement. In entanglement swapping, two sources of entanglement

separated by some distance produce two maximally entangled photon pairs. Photons A and

B are produced by the first source, e.g. in state |ψ−〉 while photons C and D are produced

by the second source, e.g. in state |ψ−〉. The state of the system is described by:

|ψ〉ABCD =
∣∣ψ−〉

AB
⊗
∣∣ψ−〉

CD
=

1√
2

(|01〉AB − |10〉AB)⊗ 1√
2

(|01〉CD − |10〉CD). (C.5)

Photons B and C are transmitted to a central station where a BSM is performed while

photons A and D are transmitted in opposite directions, see figure C.2.

A convenient basis change can be made to re-write equation C.5 as:

|ψ〉ABCD =
1

2

(∣∣ψ+
〉
AD

∣∣ψ+
〉
BC
−
∣∣ψ−〉

AD

∣∣ψ−〉
BC

(C.6)

−
∣∣φ+
〉
AD

∣∣φ+
〉
BC

+
∣∣φ−〉

AD

∣∣φ−〉
BC

)
.

From equation C.6 we can see that a BSM performed on photon B and C will result in

an entangled state between photons A and D. Similarly to quantum teleportation the result
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of the Bell state measurement is transmitted via classical communication towards photons

A and D. A unitary transformation is applied to photons A and D according to the result

of the Bell-state measurement. Photons A and D could be separated by a longer distance

than the distance between the entanglement sources. Therefore entanglement swapping can

be used to propagate entanglement through long distances [111].

C.1.3 Superdense coding

Assume that two parties, Alice and Bob, are far away from each other and they want

to communicate. Superdense coding allows Alice to send two bits of information using

only one qubit. This is possible if initially Alice and Bob agree on the correspondence

between quantum state and pairs of bits, where the bits that can be transmitted are 00,

01, 10 and 11. If Alice and Bob begin by sharing one maximally entangled state, say

|φ+〉AB = 1√
2
(|00〉AB + |11〉AB), Alice can apply a unitary transformation of the form UA⊗IB

to her qubit and then send her qubit to Bob. The transformation she applies to her qubit

depends on the two bit values she wants to send in the following way:

00 : |ψ〉AB →
1√
2

(|00〉AB + |11〉AB)

01 : |ψ〉AB →
1√
2

(|00〉AB − |11〉AB)

10 : |ψ〉AB →
1√
2

(|10〉AB + |01〉AB)

11 : |ψ〉AB →
1√
2

(|01〉AB − |10〉AB) (C.7)

After receiving Alice’s qubit, Bob must perform a Bell state measurement in order to

distinguish which of the four Bell states was sent and thus obtain the information about the

classical bits transmitted [111].
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C.2 Exceeding the 50% limit of a Bell state measurement

The efficiency of quantum communication applications relying on Bell state measurements

is experimentally limited. The problem lies in the impossibility to unambiguously distin-

guish all four Bell states using only linear optics and no auxiliary photons [47], leading to

inconclusive results in at least half of the measurements. The work presented in chapter

7 demonstrates the possibility to distinguish |ψ−〉 and |ψ+〉 for time-bin qubits and it was

shown that, in order to obtain a BSM with a high success probability, it is necessary to

employ highly efficient single photon detectors. In order to distinguish all four Bell states,

different methods have been proposed [161, 162].

The evolution of the maximally entangled states through a 50/50 beam splitter which is

described by the transformation:

ain →
1√
2

(aout + bout), (C.8)

bin →
1√
2

(bout − aout), (C.9)

is given by: ∣∣ψ+
〉
→ 1

2
(|0a1a〉+ |0b1b〉), (C.10)∣∣ψ−〉 → 1

2
(|0a1b〉 − |1a0b〉), (C.11)∣∣φ+

〉
→ 1

2
(|0a0a〉+ |0b0b〉+ |1a1a〉+ |1b1b〉), (C.12)∣∣φ−〉 → 1

2
(|0a0a〉+ |0b0b〉 − |1a1a〉 − |1b1b〉), (C.13)

where the ket |0〉 and |1〉 indicate orthogonal modes used to encode the qubit states and

the subscripts a and b indicate the output port of the beam splitter. From the first two

expressions above, we can see that the evolution of the states |ψ+〉 and |ψ−〉 is characterized

by orthogonal qubit modes at the output of the beam splitter through the same port for

state |ψ+〉 or in different ports for state |ψ−〉. In the case of states |φ+〉 and |φ−〉 the output

results in having the same mode for both qubits, leaving the beam splitter through the same

output port. This makes the latter two states indistinguishable.
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A proposal by Grice [161] uses interference in order to distinguish aditionally between

the states |φ+〉 and |φ−〉. In this case, the BSM employs auxiliary photons that are in the

maximally entangled state |φ+〉. The auxiliary photons are interfered with the state to be

discriminated in a setup that employs four beam splitters, see figure C.3. In this scheme, the

modes at the input of the four beam splitter setup undergo the following transformations:

a′in →
1

2
(aout + ibout + icout − dout),

b′in →
1

2
(iaout + bout − cout + idout),

c′in →
1

2
(iaout − bout + cout + idout),

d′in →
1

2
(−aout + ibout + icout + dout) (C.14)

a’ in c’ in

b’ in d’ in

b out

a out

d out

c out

BS BS

BS

BS

SPDs

SPDs
SPDs

SPDs

|φ+

|φ+

Figure C.3: Bell state measurement with auxiliary entangled photons. The figure shows the
experimental setup for a BSM measurement that employs auxiliary entangled photons. The
BSM is performed on the qubits in the ports labeled a′in and b′in while the auxiliary photons
are input through the ports labeled as c′in and d′in.

where the subscripts a′in, b
′
in, c

′
in and d′in label of the four input ports, and a, b, c and d label

of the four output ports in the proposed setup, see figure C.3. The choice of the auxiliary

state, |φ+〉, is to break the degeneracy observed in the single beam splitter setup for the

states |φ+〉 and |φ−〉 with a state in a similar form. To illustrate the way this scheme works
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I will present two examples using time-bin qubits, in which |0〉 represents the early temporal

mode and |1〉 represents the late temporal mode. In the first example the input state is

|φ+〉a′b′ and the auxiliary state is |φ+〉c′d′ . The evolution of these two input states through

the four beam splitter setup is:

∣∣φ+
〉
a′b′
⊗
∣∣φ+
〉
c′d′
→

∣∣04
a

〉
+
∣∣04
b

〉
+
∣∣14
a

〉
+
∣∣14
b

〉
+
∣∣04
c

〉
+
∣∣04
d

〉
+
∣∣14
c

〉
+
∣∣14
d

〉
+
∣∣02
a0

2
b

〉
−
∣∣02
a0

2
c

〉
−
∣∣02
a0

2
d

〉
−
∣∣02
b0

2
c

〉
−
∣∣02
b0

2
d

〉
+
∣∣12
c1

2
d

〉
+
∣∣12
b1

2
d

〉
+
∣∣12
a1

2
b

〉
−
∣∣12
a1

2
c

〉
−
∣∣12
a1

2
d

〉
−
∣∣12
b1

2
c

〉
+
∣∣02
c0

2
d

〉
−
∣∣02
a1

2
c

〉
−
∣∣02
a1

2
d

〉
+
∣∣02
b1

2
a

〉
+
∣∣02
a1

2
b

〉
−
∣∣02
b1

2
c

〉
+
∣∣02
b1

2
d

〉
−
∣∣02
c1

2
b

〉
−
∣∣12
a0

2
c

〉
+
∣∣02
c1

2
d

〉
−
∣∣12
a0

2
d

〉
−
∣∣12
b0

2
d

〉
+
∣∣02
d1

2
c

〉
+
∣∣02
d1

2
d

〉
+
∣∣02
a1

2
a

〉
+
∣∣02
b1

2
b

〉
, (C.15)

where the numerical superscript indicates the number of photons exiting through the port

of the beam splitter in a given temporal mode. The expression C.15 shows two types of

outcomes: either all the photons are in the same temporal mode (which is the case for the

first 20 terms) or half of the photons are in the early temporal mode and the other half are

in the late mode (rest of the terms).

In the second example the input state is |φ−〉a′b′ and the auxiliary state is |φ+〉c′d′ . The
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evolution of the two input states through the proposed setup is:

∣∣φ−〉
a′b′

∣∣φ+
〉
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∣∣0a0c12

a

〉
+
∣∣0b0d12

a

〉
+
∣∣0a0c12

b

〉
+
∣∣0b0d12

b

〉
−
∣∣0a0c12

c

〉
−
∣∣0b0d12

c

〉
−
∣∣0a0c12

d

〉
−
∣∣0b0d12

d

〉
(C.16)

In both examples (equations C.15 and C.16), if all the photons exit in the same temporal

mode the states |φ+〉 and |φ−〉 are indistinguishable. However, if the photons exist in both

qubit modes, the two states (|φ+〉a′b′ and |φ−〉a′b′) are distinguishable by the total amount of

photons in the outputs a and b, which is even for |φ+〉a′b′⊗|φ+〉c′d′ (equation C.15) and odd for

|φ−〉a′b′ ⊗ |φ+〉c′d′ (equation C.16). Therefore, the use of auxiliary entangled photons enables

the recognition of states |φ+〉 and |φ−〉 50% of the time. Simultaneously, the states |ψ+〉

and |ψ−〉 remain indistinguishable in this scheme. With this method the success rate of the

BSM is thus increased from 50% to 75%. In this paper it was shown that, as the number of

auxiliary entangled states is increased, the probability of discriminating all four Bell states

can be made arbitrarily close to one. However, practically, this method also requires the

generation of entangled photons (which is not an efficient process) and a larger number of

photon number resolving detectors making it impractical given current technology.
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Appendix D

Supplementary Information: Real-world two-photon

interference and proof-of-principle quantum key

distribution immune to detector attacks

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, W. Tittel

Institute for Quantum Science & Technology and Department of Physics & Astronomy,

University of Calgary, Canada

D.1 Ensuring Indistinguishability

In order to ensure the indistinguishability of photons arriving at Charlie’s and to allow Bell

state measurements in a real-world environment, we developed and implemented three stabi-

lization systems (see Fig. 6.10 in the main text): fully-automatic polarization stabilization,

manual adjustment of photon arrival time, and manual adjustment of laser frequency. Note

that automating the frequency and timing stabilization systems is straightforward, particu-

larly if the active control elements are placed in Charlie’s setup.

The polarization stabilization system [73, 163] employed an additional laser (at Charlie’s)

and two polarization controllers (one at Alice’s and one at Bob’s). Every 10 s, Charlie

disabled data collection for 0.5 s and sent high intensity, vertically polarized stabilization

light to Alice and Bob. This light was detected by photodiodes at Alice’s and Bob’s, and

used to trigger their commercially available polarization controllers (POCs), which were

programmed to adjust the polarization of the stabilization light to vertical. This implies

that Alice’s and Bob’s attenuated laser pulses, which were emitted horizontally polarized,

both arrive horizontally polarized at Charlie’s.
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To stabilize the frequency difference between Alice’s and Bob’s lasers, Alice used a fre-

quency shifter (FS) that employed a linear phase chirp via a serrodyne modulation signal

applied to a phase modulator. Whenever the error rate in the x-key increased significantly,

Charlie communicated the frequency difference after measuring the beat frequency by mixing

their unmodulated and unattenuated laser outputs on the beam splitter. Adjustments, in

the worst case, were required every 30 minutes to maintain the difference below 10 MHz.

To enable temporal synchronization, Charlie sent a master clock signal via a second set

of fibers to Alice and Bob. Roughly every minute, Charlie measured the qubit arrival-time

difference using his SPDs and high-resolution electronics and sent this information to Alice

and Bob. They then adjusted their qubit generation times using function generators to apply

a phase shift to the recovered master clock. This maintained the arrival-time difference under

30 ps.

D.2 Decoy-State Analysis

In MDI-QKD the secret key rate is given by

S ≥ Qz
11

(
1− h2(e

x
11)
)
−Qz

µσfh2(e
z
µσ), (D.1)

where h2(X) denotes the binary entropy function evaluated on X, and f describes the

efficiency of error correction with respect to Shannon’s noisy coding theorem. Furthermore,

Qz
11, e

x
11, Q

z
µσ, and ezµσ are gains (Q – the probability of a projection onto |ψ−〉 per emitted

pair of pulses) and error rates (e – the ratio of erroneous to total projections onto |ψ−〉)

in either the x- or z-basis for Alice and Bob sending single photons (denoted by subscript

“11”), or for pulses emitted by Alice and Bob with mean photon number µ and σ (denoted by

subscript “µσ”), respectively. While Qz
µσ, and ezµσ are directly accessible from experimental

data, Qz
11, e

x
11 have to be bounded using a decoy state method

We use a three-intensity decoy state method for the MDI-QKD protocol [100] that derives

a lower bound for Qx
11 and Qz

11 and an upper bound for ex11, to calculate a lower bound for the
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secure secret key rate. We denote the signal, decoy, and vacuum intensities by µs, µd, and

µv, respectively, for Alice, and Bob (note that µv = 0 by definition). In our implementation

Alice and Bob both select the same mean photon numbers for the three intensities and use

channels of equal transmission. For compactness of notation, we omit the µ when describing

the gains and error rates (e.g. we write Qz
ss to denote the gain in the z-basis when Alice

and Bob both send photons using the signal intensity). Under these assumptions, the lower

bound on Qx
11 is given by

Qx
11 ≥

P1(µs)P2(µs)
(
Qx
dd −Qx

0(µd)
)
− P1(µd)P2(µd)

(
Qx
ss −Qx

0(µs)
)

P1(µs)P1(µd)
(
P1(µd)P2(µs)− P1(µs)P2(µd)

) , (D.2)

where the various Pi(µ) denote the probabilities that a pulse with Poissonian photon number

distribution and mean µ contains exactly i photons, and Qz
0(µd) and Qz

0(µs) are given by

Qx
0(µd) = P0(µd)Q

x
vd + P0(µd)Q

x
dv − P0(µd)

2Qx
vv, (D.3)

Qx
0(µs) = P0(µs)Q

x
vs + P0(µs)Q

x
sv − P0(µs)

2Qx
vv. (D.4)

Similar equations are used to bound Qz
11 (we replace the superscript x by z). Finally, the

error rate ex11 can then be computed as

ex11 ≤
exddQ

x
dd − P0(µd)e

x
vdQ

x
vd − P0(µd)e

x
dvQ

x
dv + P0(µd)

2exvvQ
x
vv

P1(µd)2Qx
11

, (D.5)

where the upper bound holds if a lower bound is used for Qx
11. Note that Qx,z

11 , Qx,z
0 (µd),

Qx,z
0 (µs) and ex11 (Eqs. D.2-D.5) are uniquely determined through measurable gains and error

rates.

Our analysis in [108] determined that lowering µd as much as possible maximizes secret

key rate. In these experiments, we select µd = 0.05 in order to obtain statistically significant

data in a reasonable amount of time (see Suplementary Table D.1)
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Table D.1: List of experimentally obtained error rates, ex,zµσ , and gains, Qx,z
µσ , used to calculate the secret key rate in four

different configurations. For each configuration we show the mean photon numbers for the signal and decoy states, µs and
µd, employed by Alice and Bob. The vacuum state corresponds to a mean photon number of µv = 0. We remind the reader
that we omit the µ when writing the gains and error rates, writing only the subscript denoting the signal (s), decoy (d), or
vacuum (v) state. We also indicate the lengths of fiber connecting Alice and Charlie (`A), Bob and Charlie (`B) and the total
transmission loss (l). Finally, the computed secret key rate (S) is shown in bits per detector gate. Additionally, we measured
Qx,z
vv = (7.1± 0.30)× 10−10 and ex,zvv = 0.49± 0.021, which is applied to all distances.

Fiber Spool Z-basis X-basis
`A 22.85 km Qzss 1.028(3)× 10−4 ezss 0.0311(4) Qxss 1.95(1)× 10−4 exss 0.270(2)
`B 22.55 km Qzsv 2.98(5)× 10−6 ezsv 0.49(1) Qxsv 5.68(2)× 10−5 exsv 0.494(2)

Total loss l 9.1 dB Qzvs 1.78(4)× 10−6 ezvs 0.47(1) Qxvs 5.77(2)× 10−5 exvs 0.507(2)
µs 0.396(4) Qzdd 1.89(3)× 10−6 ezdd 0.070(4) Qxdd 3.40(1)× 10−6 exdd 0.277(2)
µd 0.050(1) Qzdv 1.05(6)× 10−7 ezdv 0.47(3) Qxdv 8.76(8)× 10−7 exdv 0.511(5)
S 1.4(4)× 10−6 Qzvd 9.24(5)× 10−8 ezvd 0.48(3) Qxvd 8.59(9)× 10−7 exvd 0.503(5)

Fiber Spool Z-basis X-basis
`A 30.98 km Qzss 1.67(1)× 10−5 ezss 0.041(2) Qxss 3.57(3)× 10−5 exss 0.274(3)
`B 34.65 km Qzsv 6.7(2)× 10−7 ezsv 0.51(2) Qxsv 9.62(9)× 10−6 exsv 0.498(4)

Total loss l 13.7 dB Qzvs 4.4(2)× 10−7 ezvs 0.48(2) Qxvs 9.32(7)× 10−6 exvs 0.499(4)
µs 0.279(6) Qzdd 6.0(1)× 10−7 ezdd 0.082(5) Qxdd 1.192(7)× 10−6 exdd 0.278(2)
µd 0.050(1) Qzdv 4.7(4)× 10−8 ezdv 0.47(4) Qxdv 3.08(7)× 10−7 exdv 0.50(1)
S 1.7(1.3)× 10−7 Qzvd 4.0(4)× 10−8 ezvd 0.41(4) Qxvd 3.03(7)× 10−7 exvd 0.50(1)

Fiber Spool Z-basis X-basis
`A 40.80 km Qzss 5.57(6)× 10−6 ezss 0.053(2) Qxss 9.87(9)× 10−6 exss 0.270(4)
`B 40.77 km Qzsv 2.15(9)× 10−7 ezsv 0.51(2) Qxsv 2.50(3)× 10−6 exsv 0.505(7)

Total loss l 18.2 dB Qzvs 1.88(8)× 10−7 ezvs 0.49(2) Qxvs 2.95(4)× 10−6 exvs 0.501(6)
µs 0.251(6) Qzdd 2.66(6)× 10−7 ezdd 0.129(8) Qxdd 4.49(4)× 10−7 exdd 0.286(4)
µd 0.050(1) Qzdv 2.8(2)× 10−8 ezdv 0.52(4) Qxdv 1.25(4)× 10−7 exdv 0.51(1)
S 1.2(8)× 10−7 Qzvd 2.2(2)× 10−8 ezvd 0.45(4) Qxvd 1.22(3)× 10−7 exvd 0.51(1)

Fiber Deployed Z-basis X-basis
`A 12.4 km Qzss 1.042(3)× 10−4 ezss 0.0323(6) Qxss 2.020(8)× 10−4 exss 0.265(2)
`B 6.2 km Qzsv 2.96(6)× 10−6 ezsv 0.50(1) Qxsv 5.63(2)× 10−5 exsv 0.492(2)

Total loss l 9.0 dB Qzvs 1.87(4)× 10−6 ezvs 0.52(1) Qxvs 5.10(2)× 10−5 exvd 0.512(2)
µs 0.402(2) Qzdd 1.82(2)× 10−6 ezdd 0.071(3) Qxdd 3.35(2)× 10−6 exdd 0.269(3)
µd 0.050(1) Qzdv 1.15(6)× 10−7 ezdv 0.53(3) Qxdv 8.5(1)× 10−7 exdv 0.502(6)
S 1.5(5)× 10−6 Qzvd 8.4(5)× 10−8 ezvd 0.49(4) Qxvd 8.5(1)× 10−7 exvd 0.501(6)
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D.3 Secure key distribution using MDI-QKD

In this section we describe the assumptions underpinning secure key distribution in MDI-

QKD as well as further technological and theoretical developments required for our current

proof-of-principle demonstration to meet this goal. We note that any QKD system used

to distribute secret key must be vetted against attacks arising from imperfections in its

implementation1. Protection against such attacks requires the development of hardware

that strives to be as ideal as possible, in conjunction with the development of security proofs

that are able to take into account those imperfections that inevitably remain in any realistic

implementation. (Such proofs would bound the information leaked to an eavesdropper,

which, in turn, allows removing it by means of privacy amplification). Even for the heavily

studied prepare-and-measure BB84 protocol, this is an area of ongoing research [164], and

more needs to be done for the new MDI-QKD protocol. Yet, MDI-QKD constitutes a

very important development in this context as it eliminates all potential attack strategies

related to imperfections in the measurement apparatus, including arbitrary measurement-

basis misalignment errors as well as detector attacks that have recently been shown to provide

the eavesdropper full information about the key without leaving a trace [56, 57, 68, 97].

Remaining assumptions and required developments are:

1. Quantum mechanics is correct and complete. This assumption is gen-

erally believed to be true.

2. Alice’s and Bob’s laboratories are private. This assumption entails that

no undesired signals, e.g. RF electromagnetic radiation, escape from Alice’s

and Bob’s apparatus when working in normal conditions. Information gain

through such passive observation can be avoided using appropriate shielding,

which, as is standard in academic QKD implementations, we have not spent

1A notable exception is fully device independent QKD (DI-QKD) [91], which, however, is currently
impossible to realize due to the need for a loophole free violation of a Bell inequality.
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any particular effort on. Furthermore, the assumption implies that Eve cannot

actively obtain information about the experimental settings, e.g. by sending

a probe, such as light, into the laboratories using the fiber that connects

Alice or Bob, respectively, with the outside world, and analyzing the back

reflection. This is often referred to as a Trojan horse attack [10, 11]. And

finally, Eve cannot actively influence Alice’s or Bob’s devices to modify their

functioning. Protection against active attacks requires that the laboratories

are isolated from signals sent by Eve, e.g. using optical isolators or attenuators.

No such countermeasures were realized in our proof-of-principle demonstration.

However, their implementation is straightforward, at least in what concerns

attenuators and isolators [15]. We emphasize that there is no need to protect

Charlie’s laboratory; the MDI-QKD protocol ensures that it can even be run

by the eavesdropper.

3. Alice and Bob send phase-randomized attenuated pulses of light

produced by a laser operated well above threshold. This ensures that

the generated light pulses are correctly described by the density matrix ρ =∑
n Pn(µ) |n〉 〈n|, where Pn(µ) = e−µµn

n!
is the Poisson distribution with mean

photon number µ, and |n〉 〈n| denotes the density matrix of an n-photon Fock

state. This condition is easily met by generating every light pulse using a laser

diode triggered by a short electrical pulse. However, as we carve qubits out of

a laser beam with large coherence time using an intensity modulator, it is not

fulfilled in our setup (more precisely, subsequent pulses are coherent). Yet, we

point out that the solution to our problem is well understood and has been

implemented before [165]: it simply requires adding a phase modulator that

randomizes the global phase of each qubit.

4. The mean values of photons per pulse, as well as the encoded states
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are chosen randomly. No random choices have been implemented in our cur-

rent proof-of-principle demonstration. Instead, we sent pulses with the same

mean photon number and encoded the same qubit state during several min-

utes before changing the state or mean number. However, operating the phase

and amplitude modulators that generate qubit states using adequate drivers

connected to quantum random number generators is well understood [15], and

meeting the requirement of random modulation is straightforward, though

time consuming.

5. Alice and Bob generate qubits in states that are sufficiently close to

those that form two maximally conjugate bases. These states were de-

noted in the main text as |0〉, |1〉, |+〉 ≡ 1√
2
(|0〉+ |1〉) and |−〉 ≡ 1√

2
(|0〉− |1〉),

respectively. This assumption may currently not be satisfied (see [108] for a

detailed description of our experimental imperfections). For instance, consid-

ering states in different bases (for which the overlap should be 0.5), we find

an average deviation of 0.074, and for different states in the same basis (for

which we expect an overlap of zero), the average deviation is 0.013. According

to the analyses in [100, 105] these overlaps, together with the current detector

performance, are insufficient to securely distribute key. However, we point out

that both proofs lead to very conservative bounds. For instance, the proof

in [100] requires a state generation procedure that artificially increases error

rates and applies non-tight bounds, and hence underestimates secure key rates.

We believe that future investigations will rapidly improve proof techniques and

yield higher secret key rates (and result in secret key in cases in which cur-

rent proofs predict no secret key). Furthermore, we note that straightforward

technological improvements allow reducing the maximum deviation from the

ideal overlap values to around 1 part in 1000. For instance, this can be ac-
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complished by reducing ringing in our pulse generation by a factor of 5, and

using commercially-available, state-of-the-art intensity modulators that allow

suppressing the background by an additional 10-20 dB (EOspace). In addi-

tion, using state-of-the-art detectors with 93% quantum efficiency and 1kHz

noise [106] leads, according to simulation results with a theoretical model of

MDI-QKD that we presented in [108], to secret key rates similar to or above

the ones reported in the main document, even using the conservative approach

in [100].

6. Sufficiently weak correlations between qubit states and all degrees

of freedom not used to encode the qubit. In principle, the various states

generated by Alice and Bob could have differences in other degrees of freedom

(i.e. polarization, spectral, spatial, or temporal modes), which could open a

security loophole [166] if not properly quantified and taken into account during

privacy amplification. However, for MDI-QKD, the link between correlations

with unobserved degrees of freedom and Eve’s information gain is not yet clear.

In particular, correlations are likely to degrade the visibility of the BSM, thus

creating observable errors. The upper bound on Eve’s information gain, pos-

sibly zero, can only be assessed using plausible arguments based on the actual

implementation of the setup supplemented by careful measurements. For in-

stance, in our implementation, the use of a single laser to generate all qubits

states and of a single-mode fiber to transmit qubits from Alice, or Bob, to

Charlie, respectively, makes it highly unlikely that correlation between states

and photon spectra or spatial modes exist. Furthermore, careful program-

ming of the function generator that generates all states through interaction

with the same intensity modulator makes it very plausible that no temporal

distinguishability is observable in our experiment. And finally, the polariza-
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tion beam splitter at the exit of Alice’s and Bob’s laboratories ensures equal

polarization of all time-bin qubit states.

7. Appropriate classical post-processing of the sifted key, i.e. error

correction and privacy amplification. Note that while we have not im-

plemented error correction, we have used a realistic estimation of the error

correction efficiency [15] to determine the potential secret key rate of our sys-

tem. Furthermore, we did not consider finite key size effects in our proof-of-

principle demonstration (in other words, we assumed that we could run our

QKD devices during an infinitely long time and produce an infinite amount

of measured data), which, in the case of MDI-QKD, have so far only been

investigated using an overly conservative approach [167].

8. A short secret authentication key exists before starting QKD. This

key is used to authenticate the classical communication channel during error

correction and privacy amplification. As we did not implement any of these

post-processing steps, we did not need any pre-established secret key. In an

actual implementation, this step can, for instance, be accomplished during a

personal meeting between Alice and Bob.

We recall that some of the above topics are currently not as thoroughly studied for MDI-

QKD as for prepare-and-measure QKD. However, the ability to close all side channels in

measurement devices represents a significant step forward in closing the gap between theo-

retical security proofs and experimentally viable implementations. In particular, it has, for

the first time, allowed for the development of security proofs in QKD that take arbitrary

state generation and measurement errors into account, even though the efficiency of the

current approaches can certainly be increased2. In addition, for actual key distribution, our

2In comparison, the only security proof for BB84 QKD dealing with arbitrary state generation errors at
the source and arbitrary misalignment of the measurement bases is limited to individual attacks but does
not apply to more powerful coherent attacks [164].
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experimental implementation has to be improved along the lines discussed above. We leave

these interesting and important topics for future investigations and emphasize that our work

has focused on previously undemonstrated requirements for MDI-QKD, such as the Bell

state measurement over deployed fiber, on improving the understanding of the capabilities

and current limitations of our setup (including optimization and efficiency calculations of a

decoy state analysis; for more information see [108]) and on experimental demonstrations of

the protocol over various distances as well as over deployed, real-world optical fiber.

D.4 Discussion of error rates ex,zµσ

Let us briefly discuss the ideal case in which the quantum states encoded into attenuated

laser pulses, as well as the projection measurements, are perfect. To gain some insight into

how the difference in the error rates, ex,zµσ , arises3, we consider only the most likely case

that can cause the detection pattern associated with a projection onto |ψ−〉 (this projection

occurs if the two detectors indicate detections with 1.4±0.4 ns time difference). Specifically,

we consider only the case in which two photons arrive at the beam splitter. Note that these

photons can either come from the same person, or from different persons.

• z-basis: Assuming that Alice and Bob both prepare states in the z-basis, only

photons prepared in orthogonal states can cause a projection onto |ψ−〉. This

implies that one photon has to come from Alice, and the other one from Bob

(if generated by the same person, both photons would be in the same state).

Hence, taking into account Bob’s bit flip, Alice and Bob always establish

identical bits, i.e. ezµσ(ideal) = 0.

3Note when two superscripts, each one denoting a different basis, are present on variables, (e.g. ex,zµσ , as
above, or Qx,zµσ ), this is a shorthand for, e.g. ezµσ and exµσ – that is, the statement is valid for both the z- and
x-bases. Note that variables may take different values for each basis, e.g. ezµσ 6= exµσ. When this notation is
used within an equation such as Eq. 6.2, then the equation may be written for either the z- or x-basis.
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• x-basis: Assuming that both Alice and Bob prepare states in the x-basis,

it is no longer true that only photons prepared in orthogonal states and by

different persons can cause a projection onto |ψ−〉. Indeed, if the two photons

have been prepared by the same person, it is possible to observe the detection

pattern associated with a projection onto |ψ−〉. In this case, given that all

detected photons have been prepared by either one or the other person, the

detection does not indicate any correlation between the states prepared by

Alice and Bob. In turn, this leads to uncorrelated key bits. Thus, exµσ(ideal)

is determined by the probability that one photon arrived from each person

relative to the probability that two photons arrived from the same person. A

detailed analysis for attenuated laser pulses with Poissonian photon number

distribution, assuming an equal probability of photons arriving from either

party, yields exµσ(ideal) = 1/4.
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E.1 Review of Oblivious Transfer and Private Queries

An ideal 1-out-of-N oblivious transfer protocol simultaneously guarantees that (a) that the

user, Ursula, is able to retrieve a single element from the N -bit database, and (b) that the

database provider, Dave, cannot gain any information about which element was retrieved.

However, it has been shown that, assuming a universal quantum computer, if a protocol

meets condition (b) then condition (a) implies that Ursula can access every element of the

database[130]. As such, it is impossible for a protocol to implement ideal oblivious transfer

without making assumptions in the security model. Alternatively, the class of protocols

we refer to as private queries avoids the impossibility proof by implementing functionality

similar to 1-out-of-N OT. Such protocols offer a reduced level of privacy up front, but this
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reduction in privacy may allow secure protocols using assumptions that are easier to justify,

or in which no assumptions are required at all. In this section, we briefly review protocols

for oblivious transfer and private queries.[130]

In classical information theory, protocols for OT rely on one of two assumptions — that

at least some fraction of the intermediaries used to perform the query are trustworthy[129,

142], or that the adversary has limited classical computational resources[128]. The former

assumption can be difficult to assess, as one must both believe that the intermediaries will

not collude with each other, and that their infrastructure is secured against attacks. The

latter assumption is shared with today’s public key cryptography infrastructure, and is hence

well justified in the short term. However, in the long term, the security of such systems can

be compromised by advances in algorithms (e.g. ref. [143]) or hardware such as a quantum

computer[144].

A quantum 1-out-of-2 OT protocol has also recently been proposed using the noisy-

storage model[139], where it is assumed that the dishonest party has a limited ability to

store quantum information, and that the amount of information that can be faithfully stored

decreases over time due to noise in the quantum memories (note that this protocol is loss-

and fault-tolerant, as quantum memories are not required by the honest protocol). Since

quantum memories are a basic component in a universal quantum computer, this assumption

means that the proof that ideal OT is not possible[130] does not apply. Thus, perfect privacy

is possible under this model, and this has indeed been shown in the protocol of ref. [141, 139].

An experimental demonstration of the protocol in [141] has also recently been performed[150],

showing that it meets the implementability criterion. As with the classical OT protocols

relying on assumptions about the adversaries computational capabilities, this assumption

is well justified in the short term given current quantum memories. However, there is no

fundamental principle limiting the adversaries ability to store quantum information, and

recent advances in quantum memories[145, 146, 36, 147, 148, 149] threaten the validity of
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this assumption in the long term.

The private queries approach to OT using cheat sensitivity was first proposed in ref. [131].

This protocol does not satisfy condition (b) above, since a dishonest database could gain

complete information about which element Ursula retrieved. However, the protocol still offers

security for Ursula as she has, in principle, the potential to detect Dave’s attempt to gain

information about her query, thus discouraging Dave from cheating. Note that condition

(a) was also not satisfied, as a dishonest user could sacrifice her ability to verify Dave’s

honesty in order to obtain a small number of additional elements (although, this is not a

significant loss of privacy for the database if N is large). An experimental proof-of-principle

demonstration of this protocol was subsequently performed[140], however, as Dave could hide

his attempts to cheat if there was significant transmission loss and/or errors in the quantum

channel, the protocol is not practical under realistic conditions. Ref. [132] then proposed

a probabilistic n-out-of-N OT protocol based on the SARG04 Quantum Key Distribution

(QKD) protocol[29], which was then generalized[133]. This protocol allows Dave to gain

information about Ursula’s query, but only at the risk of introducing errors into the element

Ursula retrieved, thereby allowing a dishonest database to be detected. The protocol also

did not satisfy condition (a) above as Ursula gains probabilistic information about elements

of the database she does not request. Interesting features of this protocol are the ability

to tolerate loss in the channel, as well as the fact that it is simple to implement using

existing QKD technology. However, noisy channels were left as an open question, preventing

implementation of the protocol in realistic scenarios. Finally, our protocol proposed in this

work represents the first cheat sensitive protocol to be both loss- and fault-tolerant, making

it suitable for implementation in a realistic environment.
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E.2 Quantum State Identification

In our protocol, the database provider, Dave, encodes each qubit into one of four randomly

chosen quantum states, |ψ0〉, |ψ1〉, |φ0〉 or |φ1〉, as shown in Figure E.1. The user, Ursula,

measures each qubit in either the 0-basis, spanned by |ψ0〉 and |φ0〉, or the 1-basis, spanned

by |ψ1〉 and |φ1〉. After these measurements, Dave tells Ursula whether each qubit was

encoded into one of the ψ states or one of the φ states. In order to demonstrate the state

identification process, suppose Ursula measured in the 0-basis, and Dave declares that he

sent one of the ψ states. If Ursula’s measurement result was |φ0〉, she knows Dave could

not have sent |ψ0〉 as these two states are orthogonal. Hence Dave must have sent |ψ1〉.

This is a conclusive result, and occurs with probability pc = sin2(θ)
2

. Alternatively, if Ursula’s

measurement result was |ψ0〉, she only knows that the state was more likely to have been

|ψ0〉 than |ψ1〉. This is an inconclusive result, occurring with probability pi = 1 − pc. As

the two potential states are associated with different classical bit values (as indicated by the

subscripts), Ursula only gains probabilistic knowledge from this measurement result. This

corresponds to an error rate of ei = cos2(θ)
1+cos2(θ)

in the ideal case (i.e. when no other sources of

error are present).

ψ
0

φ
0

ψ
1

φ
1

2θ

Figure E.1: Quantum states used in the private query protocol shown on a plane of the
Bloch sphere.

Let us now examine how this state identification process leads to user privacy, considering

first the honest protocol. In the above example where Dave sent one of the ψ states and
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Ursula measures in the 0-basis, note that Ursula can only get a conclusive measurement

result if Dave sent the |ψ1〉 state. If Ursula instead measures in the 1-basis, she can only get

a conclusive measurement if Dave sent the |ψ0〉 state. Hence, for any given qubit that Dave

sends, Ursula’s choice of measurement determines whether a conclusive result is possible —

she never gets a conclusive result if she measures in the same basis in which Dave encoded

the qubit. Since she never reveals her choice of measurement basis to Dave, he cannot know

which of her measurements gave conclusive results.

Now, let us consider the case in which Dave is dishonest. In this case, Dave wishes to

break the correlation between Ursula’s choice of measurement basis and the conclusiveness of

her measurement results. Ideally, he would like to choose whether Ursula will get a conclusive

or inconclusive measurement result, regardless of which measurement she makes. For ease

of discussion, we assume here that Dave can send a quantum state that accomplishes this

goal (we discuss a more realistic attack in Section E.5). Since Ursula is honest, she makes

the same measurements as before, and interprets them assuming Dave is honest. In the

above example, in which Dave declares he sent one of the ψ states, if Ursula measures in the

0-basis, she will either conclusively identify that Dave sent the |ψ1〉 state, or inconclusively

identify that Dave likely sent the |ψ0〉 state. If she instead measured in the 1-basis, she will

either conclusively identify that Dave sent the |ψ0〉 state, or inconclusively identify that Dave

likely sent the |ψ1〉 state. Recall that the classical bit values that form the raw keys in the

protocol are given by the basis of the state that Ursula believes Dave sent (and correspond to

the subscripts in the ket notation). Thus, Ursula’s raw key bits are anti-correlated with her

choice of measurement basis for conclusive results, and correlated for inconclusive results.

Hence, if Ursula’s choice of measurement basis does not determine whether a measurement

is conclusive, it instead determines her raw key bits. In this case, since she never reveals

her choice of measurement basis, Dave cannot know her raw key bits. This leads to the

cheat sensitivity in the protocol as the fact that Dave has no knowledge of Ursula’s raw key
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bits may be detected during error correction, and if not detected, results in incorrect query

responses. A more detailed analysis of the cheat sensitivity is given in Section E.5.

E.3 Error Correction

We use a parity-based forward error-correcting code operating on k-bit blocks (corresponding

to the k bits used to compute one oblivious key bit), where Dave sends the parity of several

subsets of the k bits to Ursula. The construction of the code is normally described as a parity

check matrix, denoted H, and is known to both Ursula and Dave. The parity computation

for the jth oblivious key bit is then given by:

~pj = H~dj (mod 2) (E.1)

where ~pj is a vector of computed parity bits (which Dave sends to Ursula) and ~dj is a vector

containing the k bits that Dave uses to compute a single oblivious key bit. For each oblivious

key bit, Ursula has a corresponding k-bit vector, ~uj, in which each bit stems from a conclusive

or an inconclusive measurement that have, respectively, error rates of ec and ei. Ursula can

estimate these error rates over the entire protocol by comparing the parities, ~pj, she receives

from Dave and the parities she computes locally using ~uj. Using these error rates, Ursula’s

error correction procedure for each oblivious key bit is as follows:

1. Rule out those combinations of values for the k bits that are not consistent

with the values for ~pj received from Dave.

2. Divide the remaining possibilities into two sets — those that correspond to an

oblivious key bit of 0, and of 1.

3. Based on the measurement results and estimated error rates, calculate the

probability that each combination of values for the k bits is correct. The
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set with the higher total probability determines the most likely value of the

oblivious key bit.

4. Compute the probability of error in the oblivious key bit, ek.

Note that Ursula can significantly reduce the computation required for error correction by

performing this procedure only if almost all of the k bits were measured conclusively. In

doing so, she only performs error correction if there is a possibility that the result will satisfy

ek ≤ tU.

The error correcting codes used in this work are given by:

H35.6 =



1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 1 1 1 0 0

0 0 1 0 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0

0 0 0 0 1 1 0 0 0 1


(E.2)

for θ = 35.6◦ and

H25 =



1 0 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0

0 0 1 0 0 1 1 1 0

0 0 0 1 0 1 1 0 1

0 0 0 0 1 1 0 1 1


(E.3)

for θ = 25◦. They were selected using an exhaustive search of potential error-correcting

codes for k ≤ 10. The probability distribution for ek is computed for each code based on the

parameters in Table 2 of the main text, and the selected codes provide a low probability for

ek ≤ tD (indicating a small amount of information leakage to Ursula) as well as a suitable

probability for ek ≤ tU (ensuring that Ursula learns a few bits of the oblivious key on

average). Note that both matrices are in reduced row echelon form (i.e. no 1’s appear below
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the leftmost 1 in any row). This is due to the fact that the possible k-bit vectors remaining

after step 1 of the error correction process (i.e. consistent with the parity information

received from Dave) are given by the possible solutions of the system of linear equations

in Eq. E.1, hence any error correction codes that have the same reduced row echelon form

behave identically in the error correction process. The search space was thus limited by only

considering matrices in reduced row echelon form.

E.4 Requirements for security

The security of the experimental results presented in Table 3 and Figure 3 of the main text

hold given that the dishonest party is limited to non-quantum attacks (e.g. an arbitrarily

powerful classical computer, which would be sufficient to break computational protocols

using classical information such as [128]). Furthermore, results for the security of the protocol

against several quantum attacks are presented in the Section E.5. Note that these limitations

on the attacks a dishonest party can perform are a result of the current security analysis of

the protocol, and may not be required in general. It remains an open question as to what

limitations on the dishonest party, if any, are required to achieve a sufficient level of security.

Based on the attacks we have studied, we believe that at a fundamental level, the security of

the protocol stems from the complementarity principle (protecting the user’s security) and

the superposition principle (protecting the database’s security). In addition, we note that the

error-correcting code in our protocol can be selected in order to provide less information to

Ursula in order to compensate for an increased information gain from more powerful quantum

measurements. Thus, it may be possible to adopt such measurements as the legitimate

procedure for the user, provided that the measurements are feasible technologically.

We also note that the security results are valid only if certain requirements are met.

These requirements are listed below, beginning with those that are required in general, fol-

lowed by those that are imposed by the current security analysis:
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1. Ursula’s and Dave’s laboratories are secure (i.e. no information leaves their

laboratories except as specified in the protocol). (Required for any protocol.)

2. Quantum theory is correct and complete. (Required for any quantum proto-

col.)

3. The dishonest party is limited to the attacks covered in the current security

analysis (see Section E.5).

4. In our experimental demonstration, it is also necessary to assume that the user

is not able to take advantage of multi-photon pulses that result from using a

source of weak coherent pulses. While this assumption can be avoided if Dave

uses a single photon source, the implementation of weak coherent pulses is

much simpler from a technological perspective. Thus, it is desirable for the

protocol to be secure for weak coherent pulses without the need for additional

assumptions. The decoy state techniques used in QKD [25, 26, 168] provide

security against an adversary capable of exploiting multi-photon pulses. How-

ever, these techniques cannot be directly applied in cases where the two parties

are adversarial, as is the case in private queries, and must be modified to ac-

count for the fact that the two parties need not be honest in the protocol [154].

However, it is not clear that the techniques in ref. [154] can be applied directly

to our protocol. In particular, Ursula may gain an advantage by manipulating

the aggregate statistics of the decoy state protocol by conducting an attack

(e.g. by lying about detections) during a subset of the protocol while act-

ing honestly for the remaining subset. Analyzing and adapting decoy state

techniques for our protocol is thus an interesting open question. It may also

be possible for Dave to base his estimate of the additional information that
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may have been extracted from multi-photon pulses on a characterization of his

source. Regardless of how Dave quantifies Ursula’s information gain due to

multi-photon pulses it can be accounted for by selecting an appropriate error-

correcting code. If the information gain is sufficiently small, the protocol can

provide a suitable level of database security while maintaining a high success

probability for the user.

E.5 Cheating Strategies

In this section we discuss the attacks on individual qubits proposed in [132, 133]. The discus-

sion below shows that the error correction step provides improved security for the protocol

against these individual attacks. Optimization of error correction in view of coherent attacks

remains an interesting open question, as does an analysis of fully general quantum attacks

and an information theoretic treatment of our protocol. Furthermore, we comment on the

issue of error rate estimation between adversarial parties. As example cases for these dis-

cussions, we consider the mean parameters (θ, pc, ec, and ei) measured with µ = 0.95± 0.47

using standard detectors and the simulated parameters for low-noise detectors (see Table 2

in the main text). For the measured parameters, we do not consider the observed variances

since they are specific to the system used to implement the honest protocol.

E.5.1 User Privacy

Let us first consider an attempt by the database to determine which piece of information

Ursula is interested in. Recall that our protocol does not prevent a dishonest database from

gaining some information about Ursula’s query, but is cheat sensitive in that it gives Ursula

the possibility of detecting such an attack. Performing the attack described below does not

require any additional technology, as it simply requires Dave to send quantum states that
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either maximize or minimize the probability, pc, that Ursula will believe her measurement

was conclusive [132]. In order to determine Ursula’s query, Dave seeks to have Ursula learn

only a single bit of the oblivious key whose position is known to him, thus he maximizes

pc for the k bits that form one oblivious key bit in an attempt to convince Ursula that she

knows a particular bit of the oblivious key. He then minimizes pc elsewhere in an attempt

to prevent Ursula from knowing other bits in the oblivious key, in positions unknown to

him. As noted in [133], Dave’s ability to control pc improves as the angle between the 0-

basis and 1-basis, θ, is decreased, making the attack more powerful. However, in both cases

(i.e. maximization or minimization of pc), the quantum state Dave sends for this attack lies

directly between either pair of ψ or φ states shown in Supplementary Figure E.1, and thus

Ursula will associate a bit value to the measurement that is completely unknown to Dave.

Hence, under this attack, Ursula receives a random bit value in response to her query, leading

to the cheat sensitive property in [132, 133] (and in our protocol), in which incorrect query

results will reveal Dave’s dishonest behavior (i.e. over time, Dave will acquire a reputation

of providing poor query results).

Furthermore, in our protocol the error correction steps provide additional opportunities

for Ursula to verify Dave’s honesty, both weakening the above attack as well as providing

the possibility of detecting the weakened attack prior to Ursula revealing information about

her query. Specifically, the consequence of Dave sending quantum states that minimize pc

(in order to prevent Ursula from knowing one or more bits of the oblivious key in random

positions) is that Ursula’s and Dave’s sifted keys are completely uncorrelated (i.e. they have

error rates ec = ei = 50%). Additionally, since Dave has no knowledge of Ursula’s sifted

key, the parity bits, ~pj (see Supplementary Eq. E.1), that he sends for error correction will

be completely uncorrelated with the parity bits Ursula computes from her measurement

results. This allows Ursula to detect a cheating database, and abort the protocol. While

this severely restricts Dave’s ability to ensure that Ursula does not know bits of the oblivious
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key in random positions, it does not prevent him from attempting to convince Ursula that

she knows a bit in a particular position of his choosing in addition to any bits she learns

randomly (in this case, Dave is unsure if Ursula’s query corresponds to the position where

he conducted the attack, or to an unknown position that Ursula learned randomly). This is

because Dave only needs to maximize pc in k bits out of kN bits of the sifted key, which has

a negligible effect on the overall error rates for large N . However, this attack has a limited

success probability, and if it fails, it may fail in a way that is suspicious to Ursula, again

allowing Ursula to abort the protocol (see below for a detailed example). Note that the above

verifications occur after the error correction step, but before the shift value is communicated,

thus Dave gains no information about Ursula’s query if the protocol is aborted.

To illustrate the possibility for Ursula to detect an attempt by Dave to convince her that

she knows a particular bit, we consider the parameters discussed above. For k = 10 and

θ = 35.6◦, there is a 37.49% chance that Ursula will believe all k bits are conclusive given

this attack. For k = 9 and θ = 25◦, this probability increases to 64.93%. However, for Dave

to convince Ursula that she knows a particular bit of the oblivious key, it is not sufficient

for her to believe that all k bits are conclusive, as the error correction procedure must also

indicate that her measurement results are correct or correctable (i.e. the error correction

procedure results in a error probability ek ≤ tU, where we recall that we have selected

tU = 10−3 as the threshold below which Ursula considers a bit to be known). The attack

thus becomes more difficult with error correction, since the database must also send parity

information to Ursula that is consistent with her measurements. Since Dave’s bit values

are completely uncorrelated with Ursula’s measured bit values, the parity information that

Dave sends is essentially random, and Ursula is unlikely to find a low value for ek. In

the above examples, Ursula finds ek ≤ 10−3 with only 5.92% probability (for k = 10 and

θ = 35.6◦) and 12.73% probability (for k = 9 and θ = 25◦), showing that this attack has

a limited success probability. In addition, the case in which Ursula believes all k bits were

234



measured conclusively is of particular interest as it is very unlikely that she will find a large

probability of error in the oblivious key bit after error correction, ek, if the protocol was

performed honestly. However, in the above attack, Dave must send parity information that

is uncorrelated with Ursula’s measurement results, leading to a large amount of uncertainty

during Ursula’s error correction process and resulting in a high probability of finding a large

value for ek. For example, when Ursula believes all k bits were measured conclusively, for

k = 10 and θ = 35.6◦, she expects ek ≥ 0.15 with 2.14% probability if Dave is honest,

but this value increases to 40.63% given the above attack. For k = 9 and θ = 25◦, she

expects ek ≥ 0.055 with 0.71% probability when honest, and 65.63% with the attack. A

large value for ek if all k bits are measured conclusively can thus serve as an indication that

Dave is attempting to cheat, and allows Ursula to abort the protocol. Furthermore, even if

the protocol proceeds and Dave is cheating (e.g. because Dave, by chance, sent consistent

parity information), Ursula’s and Dave’s oblivious key bits after error correction are still

uncorrelated, as in the protocol of [132, 133]. This ensures that the cheat sensitive property

of the protocols in [132, 133] discussed above is preserved in our protocol.

Generally speaking, we note that the additional benefits provided by the error correction

procedure are relevant to other attack strategies as well. Ursula now has the ability to mon-

itor the aggregate error rates in the system, allowing her to detect any attack by Dave that

has a significant effect on the overall error rates. Furthermore, the need for the database to

be able to send meaningful parity information during error correction provides an additional

hurdle for attacks that cause Dave to lose information about Ursula’s measurement results.

E.5.2 Database Privacy

On the other hand, a user attacking the protocol seeks to learn as many bits from the

database as possible. One method of doing so is to store the photons from Dave in a

quantum memory until after he reveals whether he sent a ψ or φ state, and then perform
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an unambiguous state discrimination (USD) measurement [152, 153] to distinguish which

of the two remaining states was sent. However, as Dave only reveals information about a

quantum state after Ursula has declared that a photon has been detected, every photon that

a dishonest Ursula declares as “detected” contributes to her sifted key. As such, any photon

that Ursula declares as “detected” but subsequently fails to detect (e.g. because she could

not identify when a photon was successfully stored in her quantum memory, or because of

loss occurring after the declaration) results in bits in the sifted key of which Ursula has no

knowledge. Successfully performing an USD attack thus requires a heralding signal indicating

that a photon was successfully stored in the quantum memory, and the ability to recall the

photon from the quantum memory with near 100% efficiency. For the following analysis,

we assume a heralding signal in conjunction with a perfect quantum memory (i.e. one that

introduces no error into the quantum states, and has 100% efficiency; a realistic quantum

memory, such as those assumed in the noisy-storage model, would reduce the effectiveness

of the attack), and that there are no other sources of loss that reduce the success probability

of the USD measurement.

If Ursula is able to perform an USD measurement, this allows her to maximize the prob-

ability that the quantum measurements will give conclusive results. As shown in [132], the

probability of conclusive results increases only slightly when performing USD measurements,

resulting in the user only learning a few more bits than when making honest measurements.

Furthermore, the advantage decreases as θ is decreased [133]. Additionally, in the presence of

error correction, the advantage of performing an USD measurement further decreases. This

is because the USD measurement gains no information from inconclusive results, essentially

exchanging this information for an increased probability of obtaining a conclusive result.

However, the partial information from inconclusive results is useful during error correction,

and can even allow Ursula to know the value of the oblivious key bit in some instances

in which not all measurements were conclusive. As such, error correction can reduce the
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Table E.1: Comparison of simulation results for a user experiencing higher error rates than
those used by Dave to select an error-correcting code. The columns labeled “all” show
experimental results obtained using standard detectors (θ = 35.6◦, k = 10), or simulation
results with improved detectors (θ = 25◦, k = 9), as taken from Tables 2 and 3 of the
main text, and represent the actual results of the protocol as influenced by noise due to all
imperfections. The columns labeled “source only” represent Dave’s predicted results for the
protocol, based on an error rate estimation considering only noise introduced by his source.

θ = 35.6◦, k = 10 θ = 25◦, k = 9
noise all source only all source only
pc (%) 16.1 15.9 9.22 9.14
ec (%) 4.4 2.5 1.91 1.38
ei (%) 41.24 40.89 45.12 45.11
n̄ (bits) 3.89 14.32 4.35 10.67
m̄ (%) 6.03 6.69 0.96 0.93

effectiveness of the USD attack. Performing USD measurements when using the code with

k = 10 and θ = 35.6◦ only increases the average number of bits the user knows from n̄ = 3.89

to n̄ = 11.15 — a rather small gain for a database of 106 bits. For the code using k = 9

and θ = 25◦, performing USD measurements actually decreases the average number of bits

the user knows from n̄ = 4.35 to n̄ = 1.00. This decrease is due to the fact that at this

smaller value of θ, the value of the partial information gained from inconclusive measure-

ments outweighs the slightly improved probability for a conclusive measurement offered by

the USD measurement. Note that these results are based on having the same error rate as

for the honest measurements, which may not be a realistic assumption given that a different

measurement apparatus is required. The issue of error rates differing from those used to

select the error-correcting code is addressed separately below so as to isolate this effect from

that of the USD measurement.

E.5.3 Error rate estimation

Finally, since Ursula and Dave have an adversarial nature in the private query protocol,

accurately characterizing the error rate in the system in order to select an error-correcting
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code is not straightforward. In particular, Ursula would like the database to believe that

the error rate is higher than in reality, as Dave would then select an error-correcting code

that gives her more information, allowing her to learn more bits from the database. To

avoid this problem, Dave can determine the amount of information a user will learn from the

protocol based solely on the error introduced by devices directly under his control. In fact,

he can even choose to deliberately introduce additional noise in order to provide the desired

level of database security. Additional imperfections in the system would cause the user to

experience a higher error rate than Dave’s estimate, leading to her learning fewer bits than

the database predicts. To show that there is a regime that allows the protocol to succeed

from the user’s perspective while still providing good database security, we re-examine the

error-correcting codes that we have considered thus far using the parameters shown in the

columns labeled “source only” in Supplementary Table E.1, where noise in the system has

been reduced compared to the original parameters in the main text (shown in the columns

labeled “all”). Note that the effect of the lower noise observed by the database is not just a

lower error rate in the conclusive measurements, ec, in the “source only” columns — the other

parameters are affected as well. The error rate for inconclusive measurements, ei, is affected

by the same noise sources as ec, but the effect on ei is smaller as the error for inconclusive

measurements is dominated by uncertainty inherent in the quantum measurement. Hence,

ei in the “source only” columns is only slightly lower than in the “user” columns. The

total number of conclusive results is reduced slightly as the number of conclusive results

recorded due to noise events is lower. Hence, the probability of conclusive measurements,

pc, is lowered slightly in the “source only” columns. Supplementary Table E.1 also shows

the results for the average number of bits learned by the user, n̄, and the average proportion

of the database for whic Dave considers Ursula to have significant partial information, m̄,

for the original parameters in the “user” columns, as well as for a lower error rate that can

be used to select the error-correcting code in the “source only” columns. As can be seen,
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the reduction in error rates does not result in a large increase in the potential amount of

information gained by a user who experiences no additional error. Thus, it is possible for an

error-correcting code that is selected based on local error rates to both provide the database

with good security and allow the protocol to be successful for a user experiencing higher

error rates.
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