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Abstract

Quantum correlations arising from measurements on pairs of entangled particles are often

referred to as the most non-classical feature of quantum mechanics. As such, they have found

a role in many fundamental tests of quantum mechanics and most emerging applications

in the field of quantum communication. The most well-known fundamental test is the Bell

inequality. Its repeated violation in countless experiments has convinced physicists that local

hidden variables cannot describe the correlations arising from measurements on entangled

particles. On the application side, quantum correlations have been used in quantum key

distribution, which aims to provably secure messages during transmission, and quantum

repeaters, which are essential for future long-distance quantum communication.

The main goal of this thesis was to use quantum entanglement for new fundamental

studies and quantum communication applications. Towards this end, we developed a high-

fidelity source of entanglement and used it in a fundamental test where we bounded the

predictive power any physical theory could have about the outcomes of measurements on

entangled particles. Secondly, we made use of entangling measurements to develop a new

quantum cryptography system based on the promising MDI-QKD protocol, which protects

users from otherwise undetectable hacking attacks. We developed a detailed model of MDI-

QKD systems with which one can optimize any implementation, deployed our MDI-QKD

system across the city of Calgary, and demonstrated the feasibility of this protocol and of

long-distance entangling measurements. Thirdly, we have built a source of entanglement

compatible with quantum memories, which is an essential ingredient of quantum repeaters.

We then demonstrated several crucial steps towards a functioning quantum repeater, includ-

ing the preservation of entanglement during storage and, more generally, the entire photonic

wavefunction. While further work is required to bring our demonstrations to real-world

applications, we are confident that they will prove useful in guiding future developments.
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Chapter 1

Introduction

1.1 Quantum Entanglement

Quantum entanglement is commonly considered to be the most non-classical feature of quan-

tum mechanics. Measurements on two entangled particles can show individually perfect ran-

domness while simultaneously showing perfect correlation. The existence of such correlations

begs for explanation, but should not, intuitively, appear surprising, as similar correlations

appear everyday, all around us. A group of pedestrians at an intersection will cross the street

at a random but simultaneous time. Their response is correlated because all receive a “walk

signal” persuading them to walk at a specific time. As another example, when one observes

the socks on university students one finds a random collection of colours, but matching

colours on any one student’s pair of feet (perfect correlation). In this case, the correlation

upon inspection of the student’s socks arrises because the student has decided beforehand

that his socks should match - the colour of his socks has a pre-determined, well-defined value.

The correlations around us are explainable with “signals” or pre-determined values, and this

is in striking opposition to quantum mechanics. Correlations between entangled particles

exist regardless of the distance between the particles and regardless of the time between the

measurements, suggesting that a “signal” between the particles is not the explanation. Also,

quantum mechanics says that particles cannot have a well-defined value for all possible mea-

surements simultaneously (e.g. position and momentum), suggesting that the existence of

pre-determined values is not the explanation. These correlations and quantum entanglement

is where quantum mechanics departs from classical reasoning and as such, they are at the

centre of fundamental tests of quantum mechanics as well as most applications of quantum

information processing, including quantum communication.
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The “spooky” properties of entanglement were first recognized by Einstein, Podolsky

and Rosen [1] and Schrödingier, who coined the term entanglement [2], in 1935. EPR

argued that the outcome of any measurement on any particle must be determined prior to

the measurement and cannot depend on actions that are space-like separated. They agued

that these two assumptions, known as realism and locality, must be obeyed in any physical

description of reality. Such assumptions seem natural as they agree with every experience

in classical physics and certainly our own personal experiences. EPR then argued that

if entangled particles give rise to perfect correlations, than there must be an underlying

element of reality that deterministically produced these outcomes. Today these elements are

referred to as local hidden variables and, if they existed, would allow one to deterministically

predict the outcome of every possible measurement. As deterministic predictions for every

measurement disagrees with quantum mechanics, EPR concluded that quantum mechanics

must be incomplete. It is important to note that EPR never argued that quantum mechanics

was wrong, merely that it must be an incomplete theory and that another theory, which

upheld local deterministic predictions, would supersede it.

It is not surprising that EPR used the most non-classical feature in their argument

against quantum mechanics. Nevertheless, in many ways, EPR had created a challenge for

physicists. Either entanglement, and thus, quantum mechanics must be replaced by a more

powerful theory or the widely-believed notion of local realism does not apply in general – an

important fundamental question.

The issue remained largely philosophical until the early 1960s. At that point the Irish

physicist John Steward Bell took up the challenge of developing a theory in the vision of

EPR [3]. He accepted the EPR view and his starting point was that quantum physics

was incomplete and that local realism must be upheld. However, after much e↵ort, Bell

was unable to construct a theory based on local hidden variables that reproduced all the

measurement statistics of entangled particles. In fact, Bell proved just the opposite. He

2



developed mathematical constraints on the local-realistic correlations between measurement

outcomes of two-particle systems and, moreover, demonstrated that correlations stemming

from entangled particles violate those constraints. These constraints, known as Bell inequal-

ities, showed that the quantum entanglement could not be reconciled with classical locality

and realism.

An important feature of Bell’s work is that his inequalities led to experimental tests.

It was possible to experimentally test the di↵erence between local realism and quantum

entanglement, as will be discussed in the next section. Furthermore, as we will see in the

following sections, the growing ability to harness this new phenomenon led to new quantum

applications. Some examples are: quantum cryptography [4, 5, 6, 7], which will be discussed

in section 1.3, quantum teleportation [8] and entanglement swapping [9], which will be

discussed in conjunction with quantum repeaters in section 1.4, and quantum computing [10,

11].

1.2 Quantum Entanglement for Fundamental Tests

To test whether quantum mechanics is correct and whether entanglement, and hence non-

locality, exists, one must turn to experimentation. Answering this question has relied on

searching for experimental violations of Bell inequalities. In this section I restrict the discus-

sion to experimental tests of entanglement and begin with the most famous Bell inequality,

known as the CHSH inequality [12], which is named after its inventors, Clauser, Horne,

Shimony and Holt.

In this experiment, consider a pair of particles with each particle of the pair delivered to

one of two physicists at very distant measuring stations. Each physicist, commonly named

Alice and Bob, has a measurement device that takes as input a binary value specifying one

of two measurements that each physicist will perform on their particle. Each measurement

device can output only one of two answers: +1 or �1 (see Fig. 1.1). We call the two

3



Source'of'Pairs'of'
Par-cles'

'Measurement'
Device'
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{+1,'@1}'
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Figure 1.1: Bell inequality scenario. A source of pairs of particles distributes one particle to
Alice and one particle to Bob. Alice chooses between two measurement settings (e.g. inputs)
for her measurement device {A1, A2} and receives one of two outputs {+1,�1}. Similarly
for Bob.

measurement settings for Alice A1 and A2 and the two measurement settings B1 and B2 for

Bob. For each pair of particles, Alice and Bob randomly, and individually, decide which of

their measurements to perform, and record the output as am or bn, where the superscript

indicates the measurement setting. This is repeated for a large number of pairs, N , where the

measurement results of the ith pair is recorded as am
i

and bn
i

. Afterwards, Alice and Bob come

together and, for each pair of particles, they then calculate the product of their individual

results and then find the average for all pairs measured with the same measurement settings.

This is known as a correlation coe�cient and is easily calculable: E(A
m

, B
n

) =
P

i

am
i

bn
i

/N .

If the four correlation coe�cients could stem from an underlying local hidden variable, then

it can be shown that the following is true:

S = |E(A1, B1) + E(A1, B2) + E(A2, B1)� E(A2, B2)|  2 (1.1)

This is the CHSH inequality, and S is known as the Bell parameter. Most importantly, the

scenario described above as well as the derivation do not rely on quantum mechanics and is

applicable to any physical system.
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Experimental tests of the CHSH inequality rely on particle measurement with two possi-

ble answers. Henceforth, we will refer to these particles as qubits. For quantum mechanics,

interestingly, the situation where the CHSH inequality is maximally violated is not when cor-

relations are maximal but instead when the correlation coe�cients E(A1, B1) = E(A1, B2) =

E(A2, B1) = �E(A2, B2) = 1/
p
2, resulting in an S parameter of 2

p
2.

The first tests of Bell inequalities were performed in 1972 by Stuart Freedman and John

Clauser [13] and did produce a violation (i.e. S > 2). This was followed by the more famous,

and more convincing, experiments by Alain Aspect et al. between 1981 and 1982 [14, 15, 16],

who also observed a violation. Since then, many experimental tests (see [17, 18, 19, 20,

21, 22, 23] for notable experiments) have confirmed the quantum prediction - correlations

unexplainable by local hidden variables.

While countless experiments to date have violated the Bell inequality, in every experiment

there remains at least one potential “loophole” that could invalidate the conclusion and allow

for a local hidden variable description. One of the most prominent loopholes is the locality

loophole. In most experiments the correlations could be described by a slower-than-light

(hence local) signal between the qubits or measurement devices that informs the qubits of the

measurement settings at both measurement stations. Knowing the upcoming measurement

settings the qubits could conspire to violate the Bell inequality. To close this loophole,

the choice of measurement setting and the measurement itself at each measurement station

must be space-like separated. Based on early locality-loophole work by Aspect et al. [16],

the first experiment to fully close the locality loophole was Weihs et al. in 1998 [19]. A

second loophole is known as the detection loophole. Given that most Bell experiments are

performed with ine�cient detectors and that qubits can be lost in apparata, it is possible

that the detected qubits are the ones that give statistics that violate the Bell inequality, while

the non-detected qubits would not. For the CHSH inequality with pure quantum states (see

Chapter 2) an overall e�ciency of 82.8% is needed to close this loophole, but this can be
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lowered for non-maximally entangled states to 66.7% using Eberhard’s inequality [24]. The

first experiment to close the detection loophole was Rowe et al. in 2001 using atoms in an

atomic trap [20]. Closing the detection loophole with photons was first achieved in 2013

by Giustina et al. [23]. The final loophole is known as the free choice loophole. Should the

qubits under test have control of the measurements being performed they could easily violate

a Bell inequality with local hidden variables. Closing this loophole with photons was first

achieved by Scheidl et al. in 2010 [22].

While not all loopholes have been closed simultaneously, they have all been closed in-

dividually. Interest in Bell experiments continues today with a goal being a completely

loophole-free test of a Bell inequality. Other fundamental motives to continue Bell tests

exist as well. Quantum mechanics says that the correlations should exist over any distance,

but could there be a distance limit? This was first tested by Tittel et al. in 1998 [18] with a

Bell test over 10 km and more recently by Ursin et al. in 2007 [21] up to 144 km. Another

fundamental question is whether a size or mass limits could exist. So far, Bell tests have been

preformed with photons and electronic states in atoms. Quantum interference has also been

observed with molecules as large as carbon-60 bucky balls (containing 720 nucleons!) [25].

Observing quantum e↵ects with nano-mechanical objects is also in progress [26].

Moreover, while physicists are largely convinced that local hidden variables are not com-

patible with the predictions of quantum mechanics (and believe that a loophole-free Bell test

will soon confirm this), some physicists have began to consider the existence of non-local

hidden variables. The first series of tests of a specific non-local hidden variable theory began

in 2007 [27, 28, 29]. More recently, we have experimentally worked on excluding general

non-local variables theories (see Chapter 3).

Finally, Bell tests have applications in testing quantum devices and quantum communi-

cation channels. The simplest way to test that a novel source of entangled particles actually

generates entanglement is to observe a Bell violation (see Chapter 3). Testing whether a
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device, such as a quantum communication channel (see Chapter 4) or a quantum memory

(see Chapter 5), can preserve quantum entanglement, is also easily done by observing a Bell

violation

1.3 Quantum Entanglement for Quantum Cryptography

One goal of cryptography is to provide secure and confidential communication between two

distant parties. If two parties share a key (i.e. a string of ones and zeros), of which no one

else has knowledge, than this secret key can be used for secure encryption and transmission

of messages by use of the one-time pad algorithm. This algorithm cannot be broken even in

principle, but requires that the key be as long as the message itself and, most importantly,

that the secret key is only used once. Therefore, to use a one-time pad the two parties

require a technique to securely distribute secret keys. Due to this problem, most cryp-

tographic systems today use other techniques for confidential communication that do not

require the distribution of secret keys, but also cannot be proved secure, even in principle.

Their security is based on computationally di�cult problems that take enormous amounts

of computational time to crack on conventional computers. However, its been proven that a

quantum computer can e�ciently crack some of these techniques. Regardless, given enough

computation time, these techniques can always be broken. As such, a secure method of key

distribution is desirable. Quantum Key Distribution (QKD), the most advanced application

within quantum cryptography, provides a solution to this problem [6, 7]. QKD is the most

advanced application in the field of quantum communication. It has led to the development

of commercial systems [30], systems functioning over more than 100 km of fibre [31] and

air [32] as well as networks [33, 34].

QKD was first discovered by Charles Bennett and Gilles Brassard in 1984 [4] and again

independently discovered in 1991 by Arthur Ekert [5]. The general setting of key distribution

involves two parties, Alice and Bob, separated by some distance. Connecting these parties is
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a communication channel. In classical cryptography this channel allows for the exchange of

classical information while for QKD, Alice and Bob are allowed to posses a quantum channel

that allows for the exchange of qubits or quantum information. Furthermore, it is assumed

that Alice’s and Bob’s labs are secured, but that an eavesdropper, known as Eve, could listen

to or perform any operation on any signals in both the classical and quantum channels (see

Appendix A.2 for a detailed discussion of the assumptions for secure key distribution). The

goal for Alice and Bob is to guarantee the distribution of a secret key of which Eve has no

knowledge.

Here we will briefly outline the protocol introduced by Ekert. A source of two-qubit

entanglement sends one qubit to Alice and one qubit to Bob. Each party again has a

measurement device with three settings (e.g. labelled A1, A2, A3 and B1, B2, B3) such

that one pair of settings (say A1 and B1) will generate perfectly correlated results (perfectly

correlated strings of ones and zeros) and the remaining settings (A2, A3 and B2, B3) are

used to test a Bell inequality. As above, Alice and Bob randomly and independently choose

a measurement setting for their qubit of each pair and after a large number of pairs has been

measured, they publicly reveal their measurement settings for each qubit (known as basis

reconciliation). Results where Alice and Bob both chose the first setting are kept secret

and will be used to form the secret key. Results where Alice and Bob both chose from

the remaining settings are used to verify the security of that key through a Bell test. As

Eve’s goal is to gain knowledge of the bits in the secret key and therefore she would have

to learn the results of Alice’s and Bob’s measurements. However, if Eve had done anything

to the qubits during transmission that gave her information about the results of Alice’s and

Bob’s measurements, then her knowledge constitutes a local hidden variable, and thus Alice

and Bob will not violate the Bell inequality. Eve’s attempt to gain information breaks the

entanglement between Alice and Bob, and this will be detected.

In theory, the results from A1 and B1 are perfectly correlated and the Bell inequality
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is maximally violated, however in a real implementation there are errors. In general, any

deviation from perfect correlation (or non-maximal Bell violation) is assumed to be caused

by an eavesdropper gaining partial information for the key. If the correlation between Alice’s

and Bob’s results are high enough, they can use standard error correction techniques [35]

to create a perfectly correlated key and standard privacy amplification [36] to remove any

partial information Eve might have about that key. The most important feature is that by

assessing error probabilities and the Bell violation, Alice and Bob can prove the security of

the key before using it for message transmission with a one-time pad. This level of verification

is not possible with any classical cryptography.

An important point on security is that QKD does not need to rely on the violation of

a Bell inequality. There exists protocols that use entanglement but whose security relies

on strong correlations for multiple measurement settings, such as [37]. Additionally, QKD

does not even need to rely on entanglement. In fact, in many protocols, including the

original BB84, Alice prepares the quantum state of a single qubit, which she sends to Bob

to measure. These protocols, known as prepare-and-measure protocols, are also provably

secure. Their security can be argued by appealing to two principles. First, security against

attacks based on individual particle operations can be argued by appealing to the no-cloning

theorem of quantum mechanics [38]. Eve cannot create a perfect copy of the quantum state

sent to Bob without necessarily changing the original state. This change leads to errors

that alerts Alice and Bob to Eve’s presence. More generally, attacks based on a coherent

operation between many particles can be argued based on the fact that any measurement

Eve uses to extract information about their quantum states disturbs those quantum states

and, again, introduces errors [7]. Given that security can be proven without relying on the

more complicated sources of entanglement, commercial systems and most highly-developed

research systems use prepare-and-measure schemes.

Nevertheless, entanglement has an important role in QKD. The security discussed so far
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assumes that Eve attacks the quantum signals during transmission and that all devices inside

the laboratories of Alice and Bob function exactly according to theory. The latter is seldom

true and any device functioning that deviates from theory could open a side-channel that

Eve can attack (see Appendix A.2). For example, in prepare-and-measure protocols, if Alice

accidentally prepares multiple qubits with the same quantum state, this opens the possibility

for an attack known as photon (or particle) number splitting (PNS) [39]. Eve can keep and

measure one of the particles (after basis reconciliation) while ensuring that the remaining

particles reach Bob, thus gaining information without introducing errors. This is an example

of a broader class of side-channels based on Alice unintentionally leaking information of her

prepared quantum state into other degrees of freedom [40]. Furthermore, as Alice’s and

Bob’s labs allow for the transfer of qubits, it may be possible for Eve to send her own signals

(classical or quantum) into these laboratories, which could allow for passive monitoring or

even active controlling of devices. For example, in another experimentally demonstrated

series of attacks, known as detector blinding [41], Eve sends light into Bob’s laboratory to

gain active control of his detectors. Eve then measures every particle Alice prepares, sends

another signal to Bob and then only allows Bob’s detectors to register a detection if there

will be no errors. Again, Eve gains information without producing errors. Other known

side-channel attacks include the time-shift attack [42] and the trojan horse attack [43].

While these side-channel attacks have counter-measures (for example, decoy states to

combat PNS attacks [44, 45, 46], new detector designs to combat blinding, etc.) that allow

for secure QKD when properly implemented, the use of entanglement-based techniques is

the only provable way to eliminate other, as of yet unknown, side-channel attacks. For

example, in entanglement-based protocols like Ekert’s, the source of entanglement could

reside in Alice’s lab where she could confirm that it does generate entanglement. Thus, side-

channels involving the source leaking information to the environment (i.e. PNS attacks)

would be detectable as this would constitute the existence of a hidden variable. In view

10



of detector blinding, a newer result is the ability to secure the measurement devices “with

entanglement” [47, 48]. Rather than directly measuring the qubit he receives, Bob (or even

someone else) could instead perform an entangling measurement (using a more sophisticated

measurement device described in Chapter 2) with the qubit from Alice and a qubit of his

own to create entanglement between him and Alice. If Eve controls this measurement device

and tries any measurement other than an entangling measurement, she e↵ectively breaks the

entanglement between Alice and Bob, resulting in detectable errors.

Finally, there is active research into protocols known as device-independent QKD (DI-

QKD), where the security of QKD can be proved solely on a Bell violation [7]. These

DI-QKD protocols [49, 50] require no assumptions about the internal workings of Alice’s

and Bob’s devices, but generally rely on a loophole free Bell tests between Alice’s and Bob’s

labs. A loophole free Bell test ensures the security of Alice’s source of entanglement, Bob’s

measurement device, and the channel in between. However, as a loophole free Bell test has

not yet been performed, the practicality of these techniques in the near term is questionable.

More recently, a more practical DI-QKD protocol was proposed that involves local loophole

free Bell tests at Alice’s and Bob’s labs, as well as an entangling measurement between

them [51].

1.4 Quantum Entanglement for Quantum Repeaters

The distribution of entanglement over long distances is essential for the future of quantum

communication. QKD , communication between distance future quantum computers as

well as long-distance fundamental tests all require long distance entanglement distribution.

However, any quantum channel will be a↵ected by loss, which limits the distance over which

qubits can be sent. The same problem exists in classical telecommunications. Today, optical

fibres can have an impressively low attenuation of 0.2 dB/km, which means that an optical

signal’s intensity drops by 50% after 15 km (compare this to standing in front of a 15-
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km thick glass window. You would see absolutely nothing from the other side). However,

after 100 km, only 1% of the signal remains, one ten-thousandths after 200 km, and one

part in ten billion after 500 km. Imagine a single photon traveling the same distance.

After 500 km (the driving distance between Vienna Austria and Nuremberg Germany, or

between Calgary and Jasper Alberta) the probability that the photon makes the journey is

10�10. Clearly, this exponential loss quickly makes direct communication, both classical and

quantum, unworkable.

The problem is solved in classical telecommunications by repeater stations placed roughly

every 100 kms. These repeaters amplify the remaining optical signal back to the original

intensity. Essentially, they make many copies of the existing, classical, optical signal. Un-

fortunately, due to the quantum no-cloning theorem, this straightforward solution is not

possible for single photons carrying quantum information. Instead, two solutions are being

investigated. The first is to go free-space with satellite communication [52], and take ad-

vantage of the fact that absorption in air decreases with altitude. The main challenges of

this approach are mostly technical, including issues such as optical tracking. The second

approach, is to go with fibre optics and design a quantum repeater.

The quantum repeater was introduced by Briegel et al. in 1999 [53] as an e�cient way to

generate entanglement across long distance [54]. The idea is to start with a long channel and

separate this channel into smaller elementary links. The actual number of elementary links

depends on the length of the channel and the e�ciency of the following steps. Next, one gen-

erates entanglement between the end points of each elementary link via direct transmission.

For example, a source of entangled particles may sit in the middle of an elementary link

and send one particle to each end point. Then, after all the end points of all the elementary

links have shared entangled particles, each end point can perform entanglement swapping [9]:

imagine that two qubits, A and B, are entangled with each other and another two qubits,

C and D, are also entangled with each other. By performing an entangling measurement on
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Figure 1.2: Quantum Repeater. As described in the text, entanglement is distributed across
an elementary link spanning on the order of 100s of kms. Qubits are heralded before being
stored in quantum memories (QM). Once two neighbouring elementary links have established
entanglement between both of their respective end points, qubits are recalled from memo-
ries and an entangling measurement is performed to swap the entanglement. The ellipses
represent that this procedure can be chained repeatedly.

qubits B and C (i.e. one qubit from each initial pair) the other two qubits, A and D, will

become entangled. In the quantum repeater scenario, at the intersection of two elementary

links are two end points (photons B and C). By performing entanglement swapping the far

ends of these two elementary links (A and D) become entangled (see Fig. 1.2). Finally, en-

tanglement swapping can be repeated, or chained, until entanglement is established between

the ends of the original channel.

Two important requirements arise at this point [54]. First is that the initial entangle-

ment distribution across each elementary link must be done in a heralded fashion. It must

be known that the end points of an elementary link actually share entanglement. Second,

as transmission across each elementary link will be probabilistic, each end point must store

their entanglement until entanglement is created across the neighbouring elementary link, as

only then is entanglement swapping possible. This necessitates quantum memories. With-

out quantum memories [55] to store these qubits, all transmissions would have to succeed

simultaneously and there would be no advantage over direct transmission across the entire

channel.

In the above architecture, quantum memories are devices that need to store qubits for an

initially undetermined amount of time and then release them on demand. This combination
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of heralding and on-demand recall from quantum memories essentially transforms proba-

bilistic entanglement generation into entanglement generation on-demand, which is useful in

other applications such as quantum computing.

Experimental investigation into quantum memory is extremely active and encompasses

research into di↵erent systems and di↵erent materials [56] and di↵erent mechanisms to

achieve faithful storage and recall [56, 57]. For quantum repeaters to function e�ciently,

memories require many features beyond recall-on-demand, including high-e�ciency storage

over long durations (this time is, in the best case, on the order of the communication time

across an elementary link). For ease-of-use, they should be able to store short pulses and

many qubits simultaneously. And they need to store qubits with high fidelity, preserve en-

tanglement, and ensure that qubits remain suitable for entanglement swapping. In Chapter

5 I will discuss our work on verifying high-fidelity storage of a particular quantum memory,

which will include demonstrations of entangling measurements required for entanglement

swapping and the preservation of entanglement after storage.

The architecture presented above is just one example of a quantum repeater. There exist

many variations on each component [58, 59, 60], including di↵erent types of memories (i.e.

quantum memories that do not store incoming qubits, but generate two entangled qubits,

each at a di↵erent time), di↵erent techniques for entanglement generation across elementary

links [54], architectures allowing multimode storage [58] and shu✏ing between modes [60] etc.

Most variations are more e�cient than the architecture described above, but the advantage

over direction transmission is clear. With quantum repeaters one does not need a single

qubit to successfully travel all elementary links. Instead, qubits travel smaller elementary

links and individual successes can be stored and built upon to achieve e�cient long-distance

quantum communication.
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1.5 This Thesis

As discussed in this chapter, quantum communication can provide improvements over what

can be achieved with classical communication techniques. In particular, the tremendous

amounts of sensitive information that are now transmitted over public channels and secured

by possibly breakable cryptography techniques could be protected by QKD, which is the only

proven technique for verifiable, unconditional security. While small-scale and point-to-point

QKD systems exist, it will take new technologies such as quantum repeaters to break the

distance barrier and bring e�cient quantum communication to truly long distances.

Perhaps not surprisingly, these technologies all rely on the most non-classical manifes-

tation in quantum mechanics: quantum entanglement. The motivation for this thesis was

to study the phenomenon of entanglement from novel perspectives and to make use of it in

quantum communication applications. It covers research on new fundamental experiments

on quantum non-local correlations and analyzes these correlations in the context of general

non-local hidden variable models. On the applied side, techniques were developed that are

applicable to both quantum cryptography and quantum repeater experiments. More specif-

ically, this thesis contains the first experimental demonstration of a new approach to QKD,

known as Measurement-Device Independent QKD (MDI-QKD). Our demonstration involves

the first demonstration of a long-distance entangling measurement between photons from in-

dependent sources, which is also a key component of quantum repeaters. Furthermore, this

thesis also shows the first entangling measurement between photons stored in independent

quantum memories and the first demonstration of the storage and recall of an entangled

photon from a solid-state device, both important pieces of future quantum repeaters.

This thesis is organized into six chapters. Chapter 1 covered an introduction to the topic.

Chapter 2 will cover the basic elements (qubits, and measurements) required to understand

following chapters. Chapter 3 will cover fundamental tests of quantum mechanics including

a general approach to alternative non-local theories. Chapter 4 will cover the experimental
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demonstration MDI-QKD, including a detailed theoretical model of the experiment and

control systems for real-world entangling measurements. Chapter 5 will cover experimental

demonstrations with quantum memories, which include entanglement storage and entangling

measurements between photons stored in independent memories. The final chapter, Chapter

6, will draw some conclusions and discuss future work in these directions.

Chapters 3, 4 and 5 contain multiple articles and thus there is some topical overlap within

and between these chapters. The supplementary information or supplemental materials for

these papers appear as appendices at the end of this thesis.

This work would not have been possible without collaborations with several other in-

dividuals. As a member of the Quantum Cryptography and Communication (QC2) Labs’

Entanglement team I have worked closely with many current and former members of my

team: Jeongwan Jin, Allison Rubenok, Terence Stuart, and Dr. Félix Bussières. I have

also been fortunate to closely collaborate with members of other QC2 teams, including the

Memory team: Neil Sinclair, Dr. Erhan Saglamyurek and Dr. Daniel Oblak, as well as the

Cryptography team: Philip Chan and Itzel Lucio-Martinez. I have also collaborated with

individuals in University of Paderborn: Mathew George, Raimund Ricken and Prof. Wolf-

gang Sohler as well as in ETH Zurich: Dr. Roger Colbeck and Prof. Renato Renner. My

specific contributions to each investigation will be detailed in the beginning section of each

chapter.
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Chapter 2

Basic Elements for Quantum Communication

In this chapter I will review the basic elements required to appreciate the following chapters.

As quantum communication is based on the generation, transmission and measurement of

qubits, I will review the basic mathematical properties of qubits, both single and entangled

pairs, and their measurement. In each of the following sections I will also discuss some rele-

vant experimental techniques. These techniques will be discussed in terms of photons, which

are the usual candidate for quantum communication because they travel fast, generally have

weak coupling to the environment, and an entire infrastructure for optical communication

has already been developed.

2.1 The Qubit

Classical information is usually represented in bits: an object that can be ‘0’ or ‘1’. In

quantum mechanics, information is represented by the qubit: a two-level space (i.e. a system

described by two orthogonal basis states) of a particle. The basis states for the qubit are

usually notated as |0i and |1i (the | i is usually referred to as a ket, with the interior symbol

identifying the specific quantum state). Departing from classical information, the quantum

state of a qubit can also be a coherent superposition of its two basis states: | i = ↵ |0i+� |1i,

where ↵ and � are complex numbers satisfying ↵2 + �2 = 1, for normalization. Essentially,

the qubit exists in both basis states simultaneously. Note that | i will often be used to refer

to an arbitrary state.

A simple graphical representation of a qubit is a vector on the Bloch sphere, see Fig. 2.1.

The states |0i and |1i are represented on the poles of the sphere, and any state with |↵| =
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Figure 2.1: Bloch Sphere. Qubit states represented on the Bloch sphere. The parameters
✓ and � represent the polar and azimuthal angles of the vector on the Bloch sphere that
represents a qubit’s quantum state.

|�| = 1/
p
2 is represented on the equator. It can be useful to write the qubit state as

| i = cos(✓/2) |0i+ ei� sin (✓/2) |1i , (2.1)

where ✓ and � can be visualized as angles from the Z- and X-axes, respectively. Note that

any states represented on opposite sides of the Bloch sphere are orthogonal and hence can

form a basis.

Any degree of freedom can be used to form a qubit’s two-level space. With photons,

polarization is a frequent choice as it is a natural two-level system with horizontal, |Hi, and

vertical, |V i, polarizations forming one possible basis (and often depicted on the poles of

the Bloch sphere). Other degrees of freedom that are inherently continuous can be used to

form a two-level system. A commonly used qubit is the time-bin qubit, in which a photon

is in a superposition of two di↵erent emission times. If the time di↵erence between these

emission times is large compared to the coherence time of the photon, then orthogonal basis

states are well described by time windows (temporal modes) centred on each emission time.

Typically these basis states are referred to as |earlyi and |latei, or |t0i and |t1i. Similar

principles apply to other degrees of freedom such as path or frequency.

Experimentally generating a photonic qubit begins with generating a single photon. In
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principle this can be done with single emitters such as trapped atoms and ions or quantum

dots. In practice these are di�cult to realize and thus close approximations to single emitters

are used. One technique is to attenuate a laser pulse to the single-photon level. However, as

photon-number statistics from a laser follow a poissonian distribution (i.e. the probability

of finding n photons in a pulse is P (n) = µne�µ/n!, where µ is the mean photon number),

the average emission probability must be kept low to minimize multi-photon emissions.

On the other hand, this creates a large number of emissions containing no photons, so

called vacuum emissions. Another common technique is to use a non-linear process, such as

spontaneous parametric down-conversion (SPDC), spontaneous four-wave mixing (SFWM)

or atomic ensembles, to generate a pair of photons. By detecting one photon of this pair one

can be sure of the existence of the second photon, essentially removing vacuum emissions.

However, these processes are also probabilistic, following either poissonian or thermal photon-

number distributions, and thus multi-photon emissions are still a concern. Nevertheless,

these techniques generate approximations to single photons that su�ce for many fundamental

tests of quantum mechanics and applications of quantum information science.

After generating a “single” photon, it is usually straightforward to create the desired qubit

state. The polarization state can be manipulated with traditional polarization optics, such

as wave plates and polarizers. For time-bin qubits the qubit state can be generated with an

imbalanced interferometer, such that the photon exits the interferometer in a superposition

of two temporal modes in the state:

| i = 1p
2
(|t0i+ ei� |t1i) (2.2)

where � is determined by the temporal distance between the two states and is typically set to

zero by appropriately defining |t0i� |t1i. Alternatively, if the coherence time of the photon is

su�ciently long, one can also carve two temporal modes with an intensity modulator. This

also places the photon in a coherent superposition of the two temporal modes.
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2.2 Measurement

In general, the state of a qubit before measurement cannot be determined. Moreover, the

quantum state of a qubit is disturbed or altered through the act of measurement. These

facts are captured by the most common measurement performed on photonic qubits, the

projection measurement. Through measurement a quantum state is projected onto, or found

in, one of the basis states of a chosen basis (and the qubit remains in that state unless

there is significant evolution). For example, if the experimenter uses the basis spanned

by {| 0i , | 1i} to measure a qubit in state | i, he will project the qubit onto | 
i

i with

probability

P (| 
i

i) = | h 
i

| | i |2. (2.3)

If the initial state | i is a basis state of the measurement, then the outcome is deterministic

and the initial state is projected onto itself with 100% certainty. For example, if the state

|0i is measured in the {|0i , |1i} basis, it is projected onto |0i with 100% certainty. This

is essentially equivalent to the measurement of classical bits. On the other hand, if the

state |+i = 1p
2
(|0i + |1i) (known as the plus state) is measured in the {|0i , |1i} basis, it is

projected onto each basis state with probability | 1p
2
|2 = 0.5. The same is true for the state

|�i = 1p
2
(|0i � |1i). On the other hand, again departing from classical information, if the

state |+i is measured in the {|+i , |�i} basis, it will project onto |+i with 100% probability.

Experimentally, projection measurements with polarization qubits are straightforward

to perform. A polarizing beamsplitter (PBS), which transmits horizontally polarized light

and reflects vertically polarized light, followed by single-photon detectors (SPD) performs a

projection measurement in the {|Hi , |V i} basis. Preceding these apparata with wave plates

allows projections in any basis. Projecting time-bin qubits in the {|t0i , |t1i} basis is straight-

forwardly done with an SPD and a module to record the time of detection. Measurements

in superposition bases require an interferometer to interfere |t0i and |t1i before detection.
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2.3 Density Matrices

So far, in this chapter, we have discussed pure quantum states. Pure quantum states are

states that can be fully described by a single ket vector. Often in experiments this is not

su�cient and the quantum state of a particle must be described by a statistical mixture of

pure quantum states. These are known as mixed states. A mixed state cannot be represented

as a ket, but is instead represented as a density matrix (note that pure states can also be

represented as density matrices). The density matrix is defined as,

⇢ =
X

n

p
n

| 
n

i h 
n

| , (2.4)

where p
n

is the probability that the particle is in the pure state | 
n

i, and n sums over all

basis states in some basis. As an example, the density matrix for an even statistical mixture

of the pure quantum states |0i and |1i (i.e. 50% of each) is easily calculable:

⇢ =
1

2

0

B@
1 0

0 1

1

CA (2.5)

On the other hand, the density matrix for a coherent superposition of |0i and |1i, say the

pure state |+i, when written in the {|0i , |1i} basis, is

⇢ =
1

2

0

B@
1 1

1 1

1

CA (2.6)

The di↵erence between these density matrices clearly indicates the fundamental di↵erence

between a statistical mixture and a quantum superposition. In general, the diagonal elements

of a density matrix equal the probability to project the qubit onto the corresponding basis

state while the o↵-diagonal elements are related to the quantum coherence between the basis

states.

Addressing projective measurements more generally, the probability to project a particle

in state ⇢ onto the pure state | i is

P (| 
i

i) = Tr(| 
i

i h 
i

| ⇢). (2.7)
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2.4 Multiple Qubits and Entanglement

Multiple independent qubits, labelled A and B, are generally represented as

| i
AB

= | 
A

i ⌦ | 
B

i . (2.8)

Or more simply stated

| i
AB

= | 
A

i | 
B

i . (2.9)

Or even simpler

| i
AB

= | 
A

 
B

i . (2.10)

In this case, the state of qubit A is clearly separate from the state of qubit B. It is clear that

the two qubits are in independent states. These are known as product states or separable

states.

On the other hand, entanglement arises when two particles cannot be written as a product

state of their two individual systems (for pure states):

| 
AB

i 6= | 
A

i ⌦ | 
B

i . (2.11)

The four most-commonly referred to maximally entangled qubits states are known as the

Bell states:
���±↵ = 1p

2
(|00i± |11i) (2.12)

and
�� ±↵ = 1p

2
(|01i± |10i) (2.13)

and these form a basis for the space of all two-qubit states. One can see that entanglement

is essentially multi-qubit quantum superposition. For example, the entangled state |�+i is

a coherent superposition of both particles being in the |0i state and both particles being in

the |1i state.
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Moreover, by examining each qubit individually, the presence of individual randomness

becomes obvious. To do this, we must first introduce the partial trace, which is the mathe-

matical operation of removing, or losing, one qubit from the description. In general, there is

no way to remove one particle and retain a pure state, and so we must use density matrices.

The partial trace of ⇢
AB

over system B is defined as

⇢
A

= Tr
B

(⇢
AB

)

=
X

i

hi|
B

⇢
AB

|ii
B

(2.14)

where i sums over all basis states, |ii
B

, of any particular basis. As an example, consider the

density matrix for the entangled state |�+i:

⇢
AB

=
1

2

0

BBBBBBB@

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

1

CCCCCCCA

(2.15)

By applying eq. 2.14 and tracing over system B, one ends up with the density matrix

⇢ =
1

2

0

B@
1 0

0 1

1

CA , (2.16)

which is just an even statistical mixture of |0i and |1i. Thus measurements on a single qubit

of a maximally entangled pair must demonstrate perfect randomness.

Lastly, the concept of a correlation coe�cient was mentioned in the previous chapter.

Here we will now make this concrete. The correlation coe�cient E(m,n) is a measure

of statistical correlation between qubit A when measured in basis m and qubit B when

measured in basis n. For a projection measurement in each basis there are two possible

results, corresponding to the two basis states, {|+1i , |�1i}, although |+1i and |�1i can be

replaced with |0i and |1i, |Hi and |V i, |t0i and |t1i, etc. The choice of physical state does
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not matter. Thus the correlation coe�cient can be calculated as:

E(m,n) =
X

i

am
i

bn
i

/N

= P (+1,+1)� P (+1,�1)� P (�1,+1) + P (�1,�1),

(2.17)

where P ( 
A

, 
B

) is the probability to project qubit A onto state | 
A

i and qubit B onto state

| 
B

i. Correlation coe�cients will be used extensively in Chapter 3.

Experiments generating entangled photons first require a source of photon pairs. Pho-

ton pair sources used in the first entanglement experiments [13, 14] were made from atomic

cascades (two-photon transitions in various atoms) whereas now the most commonly used

source of photon pairs is SPDC in nonlinear crystals (mentioned above). To generate en-

tanglement one needs to use the source in such a way that there exists two “paths” for pair

creation to occur, which can then be superimposed. For example, in Type-I SPDC down-

conversion can occur only if an optical pump beam is polarized along a certain axis of the

crystal. Then, if SPDC occurs, each photon of a generated pair is polarized orthogonally

to the pump light. In an early SPDC entanglement source [61] two identical Type-I SPDC

crystals were placed back-to-back, but with the optical axis of the second crystal at 90� with

respect to the first (see Fig. 2.2). For the sake of explanation, assume that the crystals’

axes are oriented horizontally and vertically, respectively. Then, pump light polarized at 45�

with respect to each of the optical axes (say plus polarized) is equally likely to downconvert

in either crystal. If downconversion occurs, and the crystals are thin enough so that it is

impossible to determine in which crystal downconversion occurred, the downconverted light

is in a superposition of being created in the first crystal and the second crystal. Thus, one

has the polarization entangled state
1p
2
(|HHi+ |V V i). A more common technique today is

to use a Sagnac interferometer in conjunction with SPDC crystals, as detailed in Chapter 3.

Time-bin entanglement, first demonstrated in [63], can be generated by placing an SPDC

crystal after an interferometer with a large path-length di↵erence, as in Fig. 2.3. When
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Figure 2.2: Polarization entanglement. The two crystals produce photon pairs in orthogonal
polarization directions. If they are placed back-to-back then a pump polarized such that
SPDC can occur in either crystal will produce entanglement. Image from [62]

suitably pulsed pump light passes through this unbalanced Mach-Zehnder interferometer it

exits in a superposition of two di↵erent times (an early pulse and a late pulse). If a photon

pair is produced in the source it is in a superposition of having been created by the early

pulse and the late pulse, which produces the state

| i = 1p
2
(|t0, t0i+ ei� |t1, t1i). (2.18)

This time-bin entangled state is used throughout Chapter 5.

Figure 2.3: Time-Bin Entanglement. Two pulses exit the interferometer and as each are
equally likely to cause down-conversion in the crystal time-bin entanglement is created.
Image from [62]
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2.5 Entangling Measurements

The essence of an entangling measurement is to project the state of two qubits onto an

entangled state. As the four Bell states in equations 2.12 and 2.13 form a basis for all 2-

qubit states, which is a 4-dimensional space, often one chooses to use this basis for entangling

measurements. Hence this measurement is typically referred to as a Bell-state measurement

(BSM), and will be referred to as such in following chapters.

Entanglement swapping is a simple extension of BSMs. As explained earlier, imagine two

pairs of photons each in an entangled state: A entangled with B, and C entangled with D.

By projecting B and C onto an entangled state, the entanglement is swapped to A and D.

The final entangled state of A and D depends on the initial states of the particles as well as

onto which Bell state B and C is projected. For example, if both pairs are initially in states

|�+i, and B and C are then projected onto | �i, then A and D are found in the state | �i as

well. However, as B and C were not entangled initially they are equally likely to be projected

onto any of the four Bell states. Hence, before the entanglement between A and D can be

used there needs to be classical communication informing A’s and D’s locations of the result

of the BSM and thus which entangled state they share. This is important as without the

necessity of classical information, entanglement swapping would allow for faster-than-light

communication.

As entanglement can be seen as two-particle superpositions, entangling measurements

can similarly be seen as two-particle interference measurements. As such interference can

only be observed between indistinguishable particles, it is experimentally useful to have a

simple test of the indistinguishability of photons. The simplest two-particle interference

measurement (see Chapters 4 and 5), known as Hong-Ou-Mandel (HOM) interference [64],

involves interfering two photons on a beamsplitter. If the photons enter via di↵erent input

ports and are indistinguishable, they bunch and leave together by the same output port.

This is due to destructive interference between “paths” associated with both photons be-
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ing transmitted and both being reflected. As no such interference occurs for photons that

are distinguishable (in polarization, time or frequency), the presence of HOM interference

with high visibility confirms the suitability of two photons for more advanced two-photon

interference measurements, such as BSMs.

Similar to HOM interference, BSMs can also be performed by overlapping two photons on

a beamsplitter (BS), and then projecting each qubit onto orthogonal states (e.g. one photon

onto |0i and one photon onto |1i). The act of overlapping the photons on the beamsplitter

erases the which-way information and makes it impossible to determine which photon came

from which input. By projecting each photon onto an orthogonal state one has projected

their joint state onto a superposition between |01i and |10i, with the phase between the two

components determined by the number of reflections on the beamsplitter. If both photons

are found on the same side of the BS the projected state is | +i and if both photons are found

on opposite sides, the projected state is | �i. The single-qubit projection measurements on

each output of the beamsplitter are usually |Hi and |V i for polarization qubits and |t0i

and |t1i for time-bin qubits. In this experimental scheme, the remaining two measurement

results are the unentangled |00i and |11i states, corresponding to detecting the two photons

in the same state. In general, the probability for a BSM to result in a projection onto an

entangled state is at most 50% when limited to linear optics [65].
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Chapter 3

Quantum Entanglement for Fundamental Tests

Quantum entanglement has been, and will continue to be, at the heart of most fundamental

tests of quantum mechanics. The local randomness and yet perfect correlation demonstrated

by distant two-qubit entanglement has been used to convincingly rule out the existence of

local realistic theories. After forty years since the first Bell inequality test, and with many

believing that the first loophole-free Bell will be achieved soon, physicists are beginning to

turn to more exotic fundamental tests [27, 28, 29, 66].

The standard approach has been to develop the elements of an alternative theory and

then search for an experiment where the alternative theory and quantum mechanics predict

di↵erent results. Bell’s local hidden variables with Bell’s inequalities and, more recently,

Leggett’s non-local hidden spin vector [27] (more detail in this chapter) with corresponding

inequalities [28, 29] are both examples. For some alternative theories, such as Bohm’s pilot-

wave theory [67], no such di↵erences may be possible.

An important motivation for the projects described in this chapter was to approach

the problem from a general perspective. Rather than designing an alternative theory and

an appropriate inequality, would it be possible to experimentally test the validity of any

possible alternative theory? Can we bound the properties of alternative theories in a useful

way? Following the theoretical work in [68] the answer turned out to be yes. Quantum

mechanics says that the outcomes of measurements on members of entangled qubits are

completely random and unpredictable before measurement – said di↵erently, the predictive

power of quantum mechanics on these measurements is zero. On the other hand, Einstein’s

vision and Bell’s local hidden variables were deterministic and thus had maximal predictive

power. The work in [68] theoretically shows how one can bound the predictive power of any
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theory for entangled particles. If that bound happens to be zero, then quantum mechanics

is maximally predictive and no alternative theory could do better. As with any experiments

on the foundations of quantum mechanics, the results are based on the strength of a series of

correlations measurements on entangled pairs and quantified through correlation coe�cients.

To be more specific about our test of predictive power of alternative theories, we must first

describe the experimental scenario under consideration. Imagine a source of two entangled

qubits that sends each qubit to a di↵erent measurement device. These measurement devices

can take as input measurement settings, A and B (which can be thought of as bases for pro-

jection measurements), and output measurement outcomes, X and Y (where X, Y 2 [±1]).

Knowing the state of the two particles and the measurement apparatus one can use quan-

tum mechanics to calculate the probability distribution of the measurement outcome X. For

example, if the two particles were in a maximally-entangled state, then quantum mechanics

says that the measurement outcome probability distribution P
X

is uniform, regardless of the

input measurement settings A and B, which means that the measurement outcomes X are

completely random and unpredictable, i.e. P
X

= P
X|AB

= P
X̄

, where P
X̄

is the uniform

distribution. Now, let us suppose that there exists another, potentially hidden, property of

the qubit ⌅ that we could in principle measure (with input C) and determine its value, Z.

Our goal then is to develop a test for the existence of any property that allows one to predict

the measurement outcomes X better than quantum mechanics (see Sec. 4.2).

As mentioned above, the first example of work towards answering this question was the

work of Bell [3]. However, Bell assumed that this hidden property was solely influenced by

local e↵ects and that the property would completely determine the measurement outcome

X (e.g. there exists an x0 such that P
X=x0|Z = 1). Both of these conditions impose strict

restraints on the types of hidden properties under test by Bell inequalities (commonly known

as local hidden variables).

For the development of our test, our goal was to use as few assumptions as possible
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about the hidden property – allowing our work to be as generally applicable as possible.

The one assumption we make is that our choice of measurement setting A must be free.

Specifically, that A is uncorrelated with all other values in the experiment (obviously, save

X), i.e. P
A|BCY Z

= P
A

. As we show in the Appendix A.1, if the measurements on the

two particles are space-like separated, this statement is equivalent to requiring no-signalling

within the experiment. Therefore, the test we develop does not apply to any signalling

hidden property, such as Bohmian hidden pilot waves [67], but does apply to any non-local

or local property..

Our test, presented in section 3.2, allows one to bound the predictive power of alternative

physical theories. Specifically, the predictive power � of an alternative theory with hidden

property ⌅ can be defined as the statistical distance between P
Z|abcx and P

Z|abc. (note that

the lower case denotes a particular instance of the associated upper case variable) On the

intuitive level, if these distributions are equal, Z and X must be uncorrelated and thus Z has

no predictive power about on X. This statistical distance we use is the standard statistical

L1 norm [69], known as the variational distance, D(P
W

, Q
W

) := 1
2

P
x

|P
W

(w) � Q
W

(w)|,

which has the operational interpretation: if two distributions have variational distance �,

then the average di↵erence between the probabilities that the two probability distributions

P
W

and Q
W

can assign to the same event is � – said di↵erently, the probability that we

notice a di↵erence between them is at most �.

This chapter contains two articles. In the first article we describe the development of a

new source of polarization entangled photon pairs based on two crystals in a Sagnac interfer-

ometer. The photon pairs are non-degenerate in wavelength, with one photon’s wavelength

at 800 nm for ease of detection and one photon’s wavelength at 1550 nm for long-distance

fibre transmission. The high-quality entanglement from the source is verified through quan-

tum state tomography, which we use to we reconstruct the two-qubit density matrix, and

then violations of a series of increasingly stringent inequalities (Bell inequalities and finally

30



a Leggett inequality).

In the second article we use the same source to bound the predictive power of any

alternative theory to quantum mechanics. This test is the first of its kind as it rules out

general non-local hidden variable models. Our test exhibits the standard free-choice and

detection loopholes but our hope is that work with these general tests will continue and lead

to higher fidelity entanglement sources and closing loopholes.

In this chapter, the experimental work was conducted in collaboration with members of

the QC2 Entanglement team: Terence Stuart and Félix Bussières. I contributed to these

studies in the following stages: developing the source of entanglement, as well as performing

the measurements and analyzing the results. The theory was developed by Dr. Roger Colbeck

and Prof. Renato Renner.
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Sagnac Interferometer
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University of Calgary, Calgary, Alberta T2N 1N4, Canada
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Sources of entangled photon pairs are a key component in both fundamental tests of quantum
theory and practical applications such as quantum key distribution and quantum computing. In
this work, we describe and characterize a source of polarization entangled photon pairs based on
two spontaneous parametric down-conversion (SPDC) crystals in a Sagnac interferometer. Our
source is compact and produces high-quality entangled states in a very flexible manner. The wave-
lengths of the photon pairs, around 810 and 1550 nm, the phase between orthogonal components
of the entangled state, and the tangle of the state are all independently adjustable. In addition
to presenting basic characterization data, we present experimental violations of CHSH and Leggett
inequalities, as well as an instance of the “beautiful” Bell inequality, which has not previously been
tested experimentally.

INTRODUCTION

Over the last century quantum theory has fundamen-
tally changed our understanding of the universe and con-
tinues to o↵er new insights into nature. Schrödinger de-
scribed entanglement as “the characteristic trait of quan-
tum mechanics”[1]. As such, it is not surprising that
sources of entangled particles are a key resource in exper-
iments that probe aspects of quantum theory [2]. They
are also fundamental building blocks for practical appli-
cations of quantum information theory, such as quantum
key distribution [3] and linear optical quantum comput-
ing [4]. Sources of entangled photon pairs based on SPDC
in non-linear crystals [5] are now widely used, and sev-
eral high performance entanglement sources have been
based on a non-linear crystal in a Sagnac interferome-
ter thanks to this type of interferometer’s intrinsic phase
stability [6]. However, due to problems arising from chro-
matic dispersion in polarization optics, such sources are
challenging to build if the members of the entangled pairs
are generated at widely di↵erent wavelengths. One way
to overcome this problem is to use periscopes instead [7].
Here we resort to another approach, which is based on a
Sagnac interferometer that includes two SPDC crystals.
In addition to being compact and highly flexible in terms
of the states it can produce, an interesting added feature
is that the quality of entanglement (the tangle) can be
varied in a controlled manner. Our source has proved
suitable for fundamental tests of quantum theory, some
of which have not been performed before, and would also
be well suited to applications requiring transmission of
entangled photons through both optical fiber and free
space, e.g. for hybrid quantum networks.

SOURCE DESIGN

Figure 3.1.1 shows the design of our entanglement
source. Depending on the experiment, light from a
532 nm pulsed or continuous wave laser is linearly po-
larized before being rotated to an equal superposition of
horizontal and vertical polarizations using a �

2 waveplate.
Pump light is then split into two paths by a polarizing
beam splitter (PBS). In the clockwise (CW) branch of
the interferometer, horizontally polarized pump light first
encounters a periodically poled lithium niobate (PPLN)
crystal that is oriented to satisfy the phase matching con-
ditions for SPDC with vertically polarized pump light.
The pump light will thus pass through this crystal with-
out interaction because the phase matching conditions
are not met at this polarization. The second PPLN crys-
tal encountered by pump light in this path is oriented
to down-convert horizontally polarized pump light, so
pairs of horizontally polarized photons at non-degenerate
wavelengths of 810 nm and 1550 nm are now produced.
These pairs are transmitted through the PBS and exit
the source. The counter-clockwise (CCW) path is sim-
ilar, except that vertically polarized pairs are produced
in the second crystal encountered and then reflected into
the same output mode as the horizontal pairs from the
CW path. The pump intensity is adjusted so that sin-
gle photon-pair events dominate detection statistics, as
evidenced by the results shown below. Since pump light
travels through both arms of the interferometer in a co-
herent superposition, recombining both arms on the PBS
produces the entangled state,

|��i = 1p
2

�
|HHi+ ei�|V V i

�
. (1)

The phase, �, is controlled using a Babinet-Soleil phase
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FIG. 3.1.1. Polarization entanglement source with qubit analyzers. Entangled states produced by the source are split
according to wavelength on a dichroic mirror and distributed to analyzers A and B, which are each composed of a �

4 waveplate
(QWP), a �

2 waveplate (HWP), polarizing beam splitter (PBS) and wavelength specific single photon detectors (Si APD and
InGaAs APD). See text for details.

compensator (BSC) placed in front of the interferometer,
which allows changing the phase between the horizontally
and vertically polarized components of the pump laser.
For the data collected for this article, � was chosen to be
close to zero so that the resulting state had a high fidelity
with a |�+i Bell state.

After the pump light is filtered out, photon pairs are
separated according to wavelength by a dichroic mir-
ror and sent to wavelength specific qubit analyzers con-
sisting of a �

4 waveplate, a �
2 waveplate, a PBS, and

wavelength specific detectors, as shown in Figure 3.1.1.
These analyzers allow arbitrary projection measurements
to be made on each of the photons. A free running
silicon avalanche photo-diode (Si APD) is used in the
810 nm photon analyzer, A. Its output is used to trig-
ger an Indium Galium Arsenide (InGaAs) APD used in
the 1550 nm analyzer, B. Detection signals are collected
using a Time-to-Digital Converter (TDC) so that coin-
cidences between detection events can be recorded. Us-
ing approximately 2 mW of pump power, signal photon
detections occur at a rate of approximately 20 KHz and
coincidences at a rate of approximately 500 Hz. The dark
count rate for the Si APD is approximately 40 Hz, and
the InGaAs APD has a dark count rate of 5x10�5/ns.

VISIBILITY AND
QUANTUM STATE TOMOGRAPHY

Two-photon interference visibilities were assessed by
performing two sets of measurements using the contin-
uous wave pump laser. In the first measurement ana-
lyzer A (810 nm) projected onto |Hi while the analyzer

B (1550 nm) projected onto states represented on the
great circle around the Bloch sphere that includes |Hi,
|V i, |+i, and |�i. In the second measurement, the an-
alyzer A projects onto |+i and the analyzer B projects
onto states represented on the great circle including |Ri,
|Li, |+i, and |�i. Here, |+i and |�i denote ± 45o linear
polarization, and |Ri and |Li denote right and left circu-
lar polarization, respectively. Fitting the measured coin-
cidence rates to sinusoidal functions with visibilities V1

and V2, we find V1 = (99.1±0.7)% and V2 = (97.4±0.9)%,
both being close to the maximum value of 100%.
Table 3.1.1 shows data of a typical density matrix re-

sulting from maximum likelihood quantum state tomog-
raphy (QST) [8] with a tangle [9] of T = 0.905.

(a) Re{⇢}

hHH| hHV | hV H| hV V |
|HHi 0.5085 0.0085 -0.0151 0.4773
|HV i 0.0085 0.0028 -0.0006 0.0145
|V Hi -0.0151 -0.0006 0.0038 -0.0075
|V V i 0.4773 0.0145 -0.0075 0.4848

(b) Im{⇢}

hHH| hHV | hV H| hV V |
|HHi 0.0000 0.0028 -0.0027 -0.0337
|HV i -0.0028 0.0000 0.0028 0.0036
|V Hi 0.0027 -0.0028 0.0000 -0.0045
|V V i 0.0337 -0.0036 0.0045 0.0000

TABLE 3.1.1. Typical Density Matrix. Real and imagi-
nary parts of the density matrix generated by maximum like-
lihood QST performed when the spectral overlap between
SPDC crystals was optimized. The tangle is(T = 0.905).
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FIG. 3.1.2. Single photon spectra for two crystals at
di↵erent temperatures. This plot shows single photon
spectra gathered for ⇠ 810 nm signal photons from the en-
tanglement source’s |V V i PPLN crystal at T = 165.70 �C
and from the |HHi PPLN crystal at T = 165.20 �C.

CONTROLLING TANGLE

In order for the entangled state produced by this source
to be of high quality (i.e. to have a tangle close to 1),
the spectra produced by the two SPDC crystals must
match as closely as possible. Imperfectly overlapping
spectra yield information that reveals in which crystal
a given pair of photons was created, thus reducing the
tangle of the state. The crystals used were made by the
same manufacturer, but at di↵erent times and therefore
have slightly di↵erent poling periods if they are at the
same temperature. By maintaining the SPDC crystals at
slightly di↵erent temperatures we can select the phase-
matching conditions such that the spectra of the |HHi
and |V V i photon pairs are nearly indistinguishable. This
changes the phase � of the state in eq. 1, which we com-
pensate for using the BSC. It is also possible to deliber-
ately mismatch the spectra in a controlled way, allowing
this source to produce states with an arbitrary degree
of entanglement. This is done by adjusting the temper-
ature of one PPLN crystal relative to the other, thus
altering the spectrum of photons it produces and reduc-
ing the spectral overlap between pairs produced by the
two SPDC crystals.

Figure 3.1.2 shows two signal spectra one gathered
from the |HHi PPLN crystal at T = 165.2 �C and
the other gathered from the |V V i PPLN crystal at
T = 165.70 �C. For these temperatures the two spec-
tra have incomplete overlap O (see equation 2), and the
tangle T of the photon pairs produced is small, but non-
zero. Note that the data presented in this section has
been taken with the pulsed pump; all other data has
been taken with the continuous wave laser.

To see how tangle is related to spectral overlap, we then
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FIG. 3.1.3. Density matrices for di↵erent tempera-
tures. This plot depicts the real components of the density
matrices shown from each data point in Figure 3.1.4, ordered
column wise by crystal temperature. Full density matrices for
each point are detailed in Table 3.1.2.

varied the temperature of the PPLN crystal that down-
converts pump light in the CW path of our entanglement
source while the other SPDC crystal’s temperature was
held constant. This shifted the spectrum of the |HHi
component of the state relative to the |V V i component,
resulting in di↵erent degrees of spectral overlap, O, which
we calculate as:

O =

Z p
SHH(�)

p
SV V (�)d�. (2)

where SHH(�) is the the signal spectral density as a
function of wavelength, �, for the SPDC crystal produc-
ing |HHi photons pairs and SV V (�) is the signal spec-
tral density of the SPDC crystal producing |V V i photon
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FIG. 3.1.4. Tangle vs spectral overlap. This plot shows
tangles derived from density matrices (shown in Table 3.1.2)
measured via QST, TQST , as the spectral overlap was changed
by varying the temperature of the |HHi PPLN crystal. The
|V V i crystal’s temperature was kept constant. Also shown is
the overlap, O, of the measured spectra.

pairs.

We measured the spectrum of the signal photons from
the |V V i SPDC crystal, which was kept at a constant
temperature of T = 165.70 �C using a temperature con-
trolled oven that is stable to ± 0.01 �C. We also mea-
sured spectra of signal photons from the |HHi SPDC
crystal at several di↵erent temperatures. At each of these
temperatures we also performed QST on the resulting
bipartite states to find density matrices and associated
tangles for each temperature as shown in Figure 3.1.3.
Tangle and overlap vs crystal temperature are shown in
Figure 3.1.4.

TESTS OF CHSH BELL, “BEAUTIFUL” BELL,
AND LEGGETT INEQUALITIES

Bell inequalities

To assess the non-classical properties of the states pro-
duced by our source we first tested the CHSH Bell in-
equality [10]. A violation of this inequality demonstrates
that local hidden variable (LHV) models are not ade-
quate to describe the behaviour of the states the source
is producing and demonstrates the presence of entangle-
ment. In the CHSH inequality, Alice and Bob each mea-
sure in one of two bases, chosen uniformly and at ran-
dom. For each combination of bases, âi = {ai, a?i } and
b̂j = {bj , b?j }, Alice and Bob measure the correlation co-
e�cient,

E(âi, b̂j) =P (ai, bj) + P (a?i , b
?
j ) (3)

� P (a?i , bj)� P (ai, b
?
j ),

where:

P (ai, bj) =

C(ai, bj)

C(ai, bj) + C(a?i , bj) + C(ai, b?j ) + C(a?i , b
?
j )

and C(ai, bj) is the number of “coincidence” detections
observed when Alice and Bob projectively measure along
basis vectors ai and bj respectively. One optimal set of
bases for testing a the CHSH Bell inequality with a |�+i
state is shown in Figure 3.1.5. We then calculate the Bell
S parameter as:

S =E(â1, b̂1)� E(â1, b̂2)

+ E(â2, b̂1) + E(â2, b̂2). (4)

LHV models predict that S must fall within the range:
�2  S  2. Measurements made with our source (again
using the continuous wave laser) produced a value of
S = 2.757 ± 0.008. The uncertainty is based on Poisso-
nian statistics. We note that QST yielded a density ma-
trix with a tangle of T = 0.884 immediately before this
measurement. Based on this we would expect a max-
imum S parameter value of Smax = 2

p
1 + T = 2.75,

which is consistent with the measured value.
In the CHSH Bell inequality two particles, each with a

Hilbert space of dimension m = 2, are distributed to Al-
ice and Bob. Alice makes projective measurements onto
4 states in n = 2 bases. For an optimal violation of the
bound given by the inequality, Alice chooses bases that
are mutually unbiased and Bob makes projective mea-
surements onto all mn = 4 possible intermediate states
(see [12] for a precise definition). An interesting question
is if (and how) Bell inequalities can be constructed that

!
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|+⟩

1
1

2

2

FIG. 3.1.5. CHSH Measurement Bases. An optimal set
of measurement bases for testing the CHSH Bell inequality
when using a |�+i state is shown here on the equator of the
Bloch sphere. Only one vector for each basis is shown. The
orthogonal vector associated with each basis is rotated by ⇡
from the vector shown.
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FIG. 3.1.6. Beautiful Bell measurement bases. Alice
measures in three mutually unbiased bases {â0, â1, â2} and
Bob measures in bases {b̂0, b̂1, b̂2, b̂3} [13]. Only one basis
vector (e.g. a1 from â1 = {a1, a

?
1 }) from each basis is shown.

a) make use of higher-dimension states or larger number
of measurements made by Alice, and b) require similarly
symmetric projection measurements for maximum vio-
lation. The “beautiful” Bell family of inequalities [11]
was proposed by H. Bechmann-Pasquinucci and N. Gisin
in 2003 [12] and expanded upon by Gisin in 2008 [13]
in response to these questions. The authors proposed
a general form of Bell inequalities, parametrized by m
and n, for which the CHSH Bell inequality is the spe-
cific case in which m = 2 and n = 2. The next simplest
(and only) inequality in the “beautiful” Bell family that
we can evaluate with a source of entangled qubits is the
m = 3, n = 2 case. This inequality di↵ers from the
CHSH Bell inequality in that Alice measures in 3 bases,
each spanned by two orthogonal states. Some reflection
yields mn = 23 = 8 intermediate states that Bob needs
to projectively measures onto [12]. The optimal mea-
surement bases for the m = 3, n = 2 case are shown in
Figure 3.1.6 – note their highly symmetric distribution
around the Bloch sphere.

The (2,3) “beautiful” Bell inequality reads:

S2,3
BB =E(â0, b̂0) + E(â0, b̂1)� E(â0, b̂2)� E(â0, b̂3)+

E(â1, b̂0)� E(â1, b̂1) + E(â1, b̂2)� E(â1, b̂3)+

E(â2, b̂0)� E(â2, b̂1)� E(â2, b̂2) + E(â2, b̂3).

Here âi and b̂j are measurement bases used by analyz-

ers A and B respectively and E(âi, b̂j) are correlation
coe�cients. LHV models predict that this inequality is
bounded by S2,3

BB  6, while quantum theory predicts
a bound of S2,3

BB  4
p
3 = 6.928. A minimal violation

of the beautiful Bell inequality requires an entanglement
visibility of roughly 87%.

We measured a value of S2,3
BB = 6.67 ± 0.08 (derived

x
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FIG. 3.1.7. Leggett Measurment Settings. Settings used
by Alice (solid lines) and Bob (dashed lines) to test the
Leggett inequality. b1 and b01 are each separated from a1 by
'
2 , and by ' from each other in the XY plane. Similarly, b2
and b02 lie in the YZ plane and b3 and b03 are in the XZ plane.

from measurement results shown in Table 3.1.3), equiv-
alent to a violation of LHV models by over 8 standard
deviations. We are not aware of any previously published
experimental violation of the m = 3, n = 2 (or higher di-
mension) “beautiful” Bell inequality.

Leggett inequality

The Leggett model [14] di↵ers from deterministic LHV
models in that it permits some non-local interactions
and makes probabilistic predictions about outcomes of
individual measurements. The Leggett model is inter-
esting because experiments that rule out the LHV mod-
els do not automatically rule out NLHV models such as
the Leggett model. This model was first experimentally
tested in 2007 [15]. We tested the 2008 version of the
Leggett inequality proposed and first violated by Bran-
ciard et al. [16], who defined

L3(') ⌘
1

3

3X

i=1

|E(âi, b̂i) + E(âi, b̂
0
i)|. (5)

Here, E(â, b̂) is the correlation function resulting when
Alice and Bob measure in pairs of bases separated by
angle ', as shown in Figure 3.1.7. The bound provided
by the Leggett model for L3 is:

L3(')  2� 2

3
| sin '

2
| (6)

Figure 3.1.8 shows the results we obtained for several
di↵erent values of '. Each measured point is above the
solid red line, which corresponds to the bound of the
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FIG. 3.1.8. Leggett inequality measurement results.
Experimentally measured values for L3(') are shown versus
'. Points with uncertainty bars are experimentally measured
values for L3('). The solid red line is the upper bound for
the Leggett Model. Each experimental data point above this
line is a violation of the Leggett inequality. The blue solid line
shows predicted L3 values based on a density matrix measured
via QST (tangle T = 0.905). The dashed line is the expected
L3 value for a perfect |�+i state.

Leggett model (equation 6) and is therefore a violation
of the model. The maximal violation occurs at ' = 40�.
At this setting, the measured value is L3 = 1.82 ± 0.02
while the Leggett model is bounded by 1.772 (see Table
3.1.4 in the appendix for measurements settings and re-
sults for this data point). To our knowledge, this is the
first time that the Leggett inequality of the form in [16]
has been violated with photon pairs at non-degenerate
wavelengths. Our result confirms that the specific class
of NHLV models described by Leggett is not compatible
with experimental observations.

CONCLUSION

We have demonstrated a compact and highly flexible
source of entangled photon pairs at widely di↵erent wave-
lengths that features high visibility and adjustable tan-
gle. Our source has proved useful for several fundamental
tests of quantum theory, namely violations of Bell and
Leggett inequalities. It is interesting to note that these
tests, which require testing specific inequalities, are not
the only way to refute local or certain non-local theories
that attempt to explain the origin of quantum correla-
tions. Using the same source, we recently arrived at the
same conclusion based on a more general approach [17].
More precisely, we ruled out all alternative theories to
quantum mechanics, within a causal structure compati-
ble with relativity theory, that improve on quantum me-
chanical predictions about the outcomes of measurements
on maximally entangled particles by more than 16.5%. In
particular, this rules out local and nonlocal hidden vari-
able theories à la Bell and Leggett, respectively.
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APPENDIX

163.70 �C

⇢Re

hHH| hHV | hV H| hV V |
|HHi 0.5062 0.0065 -0.0211 0.0742
|HV i 0.0065 0.0043 0.0001 0.0196
|V Hi -0.0211 0.0001 0.0046 -0.0102
|V V i 0.0742 0.0196 -0.0102 0.4849

⇢Im

hHH| hHV | hV H| hV V |
|HHi 0.0000 -0.0110 -0.0069 0.0046
|HV i 0.0110 0.0000 0.0002 0.0093
|V Hi 0.0069 -0.0002 0.0000 0.0115
|V V i -0.0046 -0.0093 -0.0115 0.0000

164.20 �C

⇢Re

hHH| hHV | hV H| hV V |
|HHi 0.4995 0.0061 -0.0217 0.1798
|HV i 0.0061 0.0043 0.0008 0.0164
|V Hi -0.0217 0.0008 0.0059 -0.0082
|V V i 0.1798 0.0164 -0.0082 0.4903

⇢Im

hHH| hHV | hV H| hV V |
|HHi 0.0000 -0.0048 -0.0085 -0.0091
|HV i 0.0048 0.0000 -0.0039 0.0125
|V Hi 0.0085 0.0039 0.0000 0.0092
|V V i 0.0091 -0.0125 -0.0092 0.0000

164.70 �C

⇢Re

hHH| hHV | hV H| hV V |
|HHi 0.5073 0.0027 -0.0291 0.3012
|HV i 0.0027 0.0049 0.0002 0.0196
|V Hi -0.0291 0.0002 0.0048 -0.0109
|V V i 0.3012 0.0196 -0.0109 0.4830

⇢Im

hHH| hHV | hV H| hV V |
|HHi 0.0000 -0.0064 -0.0043 -0.0017
|HV i 0.0064 0.0000 -0.0038 0.0042
|V Hi 0.0043 0.0038 0.0000 0.0078
|V V i 0.0017 -0.0042 -0.0078 0.0000

165.20 �C

⇢Re

hHH| hHV | hV H| hV V |
|HHi 0.5249 0.0003 -0.0360 0.4007
|HV i 0.0003 0.0045 0.0010 0.0210
|V Hi -0.0360 0.0010 0.0050 -0.0111
|V V i 0.4007 0.0210 -0.0111 0.4656

⇢Im

hHH| hHV | hV H| hV V |
|HHi 0.0000 -0.0033 -0.0050 -0.0154
|HV i 0.0033 0.0000 -0.0004 0.0057
|V Hi 0.0050 0.0004 0.0000 0.0063
|V V i 0.0154 -0.0057 -0.0063 0.0000

165.70 �C

⇢Re

hHH| hHV | hV H| hV V |
|HHi 0.5057 0.0039 -0.0301 0.4632
|HV i 0.0039 0.0045 0.0025 0.0179
|V Hi -0.0301 0.0025 0.0052 -0.0144
|V V i 0.4632 0.0179 -0.0144 0.4846

⇢Im

hHH| hHV | hV H| hV V |
|HHi 0.0000 -0.0028 -0.0047 -0.0264
|HV i 0.0028 0.0000 -0.0005 0.0045
|V Hi 0.0047 0.0005 0.0000 0.0068
|V V i 0.0264 -0.0045 -0.0068 0.0000

166.20 �C

⇢Re

hHH| hHV | hV H| hV V |
|HHi 0.5125 0.0111 -0.0305 0.4770
|HV i 0.0111 0.0048 0.0015 0.0197
|V Hi -0.0305 0.0015 0.0051 -0.0191
|V V i 0.4770 0.0197 -0.0191 0.4775

⇢Im

hHH| hHV | hV H| hV V |
|HHi 0.0000 0.0000 -0.0029 -0.0281
|HV i 0.0000 0.0000 0.0010 0.0028
|V Hi 0.0029 -0.0010 0.0000 0.0015
|V V i 0.0281 -0.0028 -0.0015 0.0000

166.70 �C

⇢Re

hHH| hHV | hV H| hV V |
|HHi 0.5076 0.0084 -0.0317 0.4396
|HV i 0.0084 0.0052 0.0007 0.0226
|V Hi -0.0317 0.0007 0.0045 -0.0157
|V V i 0.4396 0.0226 -0.0157 0.4827

⇢Im

hHH| hHV | hV H| hV V |
|HHi 0.0000 -0.0032 -0.0052 -0.0227
|HV i 0.0032 0.0000 -0.0019 0.0040
|V Hi 0.0052 0.0019 0.0000 0.0069
|V V i 0.0227 -0.0040 -0.0069 0.0000

TABLE 3.1.2. Tangle versus Spectral Overlap Density Matrices. Density matrices measured as |HHi SPDC crystal
temperature (shown above) was varied. Phase was adjusted for maximal fidelity to a |�+i (positive values for o↵-diagonal
terms |HHihV V | and |V V ihHH|) or |��i (negative values for o↵-diagonal terms) state. The |V V i SPDC crystal temperature
was kept at a constant 165.70 �C.
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Bases E(âi, b̂j) �E(âi, b̂j) Bases E(âi, b̂j) �E(âi, b̂j)

{â0, b̂0} 0.5742 0.0061 {â1, b̂2} 0.5763 0.0060

{â0, b̂1} 0.5247 0.0062 {â1, b̂3} -0.5833 0.0061

{â0, b̂2} -0.5641 0.0062 {â2, b̂0} 0.6124 0.0061

{â0, b̂3} -0.5678 0.0061 {â2, b̂1} -0.6255 0.0061

{â1, b̂0} 0.5446 0.0061 {â2, b̂2} -0.5039 0.0061

{â1, b̂1} -0.5307 0.0061 {â2, b̂3} 0.4645 0.0061

TABLE 3.1.3. Beautiful Bell Measurement Settings and Data. This table shows raw data collected to find SBB =
6.67 ± 0.08 > 6. E(âi, b̂j) is the correlation coe�cient measured using bases âi and b̂j . Four coincidence measurements (not
shown) consisting of 40 second samples were recorded for each correlation coe�cient. Uncertainties are derived from Poissonian
statistics.

Bases E(âi, b̂j) �E(âi, b̂j)

{â1, b̂1} 0.9083 0.0057

{â1, b̂01} 0.8919 0.0057

{â2, b̂2} -0.9081 0.0038

{â2, b̂02} -0.8972 0.0059

{â3, b̂3} 0.9199 0.0059

{â3, b̂03} 0.9391 0.0060

TABLE 3.1.4. Leggett Inequality Data (' = 40�). This table shows correlation coe�cients, E(âi, b̂j), measured between
bases âi and b̂j respectively to find L3 = 1.82± 0.02 > 1.772 for ' = 40�. Data collection time for each point was 40 seconds.
Uncertainties are derived from Poissonian statistics.
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The question of whether the probabilistic nature of quantum mechanical predictions can be allevi-
ated by supplementing the wave function with additional information has received a lot of attention
during the past century. A few specific models have been suggested, and subsequently falsified.
Here we give a more general answer to this question: We provide experimental data that, as well as
falsifying these models, cannot be explained within any alternative theory that could predict the out-
comes of measurements on maximally entangled particles with significantly higher probability than
quantum theory. Our conclusion is based on the assumptions that all measurement settings have
been chosen freely, and that the presence of the detection loophole did not a↵ect the measurement
outcomes.

Many of the predictions we make in everyday life are
probabilistic. Usually this is caused by having incom-
plete information, as is the case when making weather
forecasts. On the other hand, even with all the infor-
mation available within quantum mechanics, the out-
comes of certain experiments, e.g., the path taken by a
member of a maximally entangled pair of spin-half parti-
cles that passes through a Stern-Gerlach apparatus, are
generally not predictable before the start of the experi-
ment (see Fig. 3.2.1). This lack of predictive power has
prompted a long debate, going back to the paper by Ein-
stein, Podolsky and Rosen [1], of whether quantum me-
chanics is the optimal way to predict measurement out-
comes. In turn, these discussions have led to important
fundamental insights. In particular, Kochen and Specker,
and independently Bell, proved that there cannot exist
any noncontextual theory that predicts observations with
certainty [2, 3]. In a similar vein, Bell showed [4] that in
general there cannot exist any additional local property
(a local hidden variable) that completely determines the
outcome of any measurement on the particle. Bell’s ar-
gument relies on the fact that entangled particles give
rise to correlations that cannot be reproduced in a local
hidden variable theory. The existence of such correla-
tions has been confirmed in a series of increasingly so-
phisticated experiments [5–10], and local hidden variable
models have thus been ruled out.

The purpose of the above arguments was to refute the-
ories in which access to hidden parameters would, in prin-
ciple, allow perfect predictions of the outcomes of any
experiment. However, these arguments do not rule out
possible theories that have more predictive power than
quantum mechanics, while remaining probabilistic [11].
Consider again the Stern-Gerlach apparatus in Fig. 3.2.1
in which, according to quantum mechanics, a member
of a maximally entangled particle pair may be deviated
in one of two directions, each with probability 0.5. One
may now conceive of a theory that, depending on a hid-

den vector, z which may be seen as a “classical spin”),

would allow us to predict the direction of deviation with a
larger probability, say 0.75, thereby improving the quan-
tum mechanical prediction by 0.25. This corresponds to a
proposal put forward by Leggett [13]. (We note that the
given value of 0.75 assumes the most natural Leggett-
type model, in which the direction of the hidden spin
vector z is uniformly distributed [14]. Furthermore, we
emphasize that the essence of Leggett’s model is the ex-
istence of the hidden spin vector, and not whether the
spin vectors of two particles are connected in a local or
a non-local fashion.) As in the case of local hidden vari-
able models, Leggett-type hidden spin models have been
shown to be incompatible with quantum theory [13] and
falsified experimentally [15–19].

In this letter we present experimental data that bounds
the probability, �, by which any alternative theory could
improve upon predictions made by quantum theory
about measurements on members of maximally entan-
gled particles while being consistent with the assumption
that measurement settings can be chosen freely. We find
that quantum theory is close to optimal in terms of its
predictive power. Our work develops a recent theoreti-
cal argument [20] that refutes alternative theories with
increased predictive power based on the assumption that
quantum theory is correct (similar to Bell’s and Leggett’s
arguments [4, 13]), and is itself based on a sequence of
work [21–24]. Here we experimentally investigate this as-
sumption for the case of maximally entangled particles.
(In this sense, our work is related to [23] in the same
way as experimental tests of the Bell inequality relate
to Bells’ theoretical work [4].) Furthermore, we provide
a significantly strengthened relation between experimen-
tally measurable quantities and the maximum increase
of predictive power any alternative theory could have for
these quantities. This allows us to obtain non-trivial
bounds on the increased predictive power from experi-
mental data obtained using present technology. In par-
ticular, we can falsify all local hidden variable models as
well as all (including so far not considered) Leggett-type



models.
Before describing the experiment, we briefly review the

main features of the theory (see the Supplemental Ma-
terial for more details). Crucially, the framework used
is operational, i.e., it refers only to directly observable
quantities, such as measurement outcomes. For example,
the Stern-Gerlach experiment with entangled particles
mentioned above outputs a binary value, X (Y ), indicat-
ing in which direction particle one (two) is deviated. We
associate with X (Y ) a time coordinate t and three spa-
tial coordinates (r1, r2, r3), corresponding to a point in
spacetime where the value X (Y ) can be observed. We
call such observable values with spacetime coordinates
spacetime variables (SVs). In the same manner, any pa-
rameters that are needed to specify the experiment (e.g.,
the orientations of the Stern-Gerlach apparatuses) can
be modelled as SVs.

According to quantum theory, the outcome, X, of the
measurement on particle one is random, even given a
complete description of the measurement apparatus, A.
However, an alternative theory may provide us with ad-
ditional information, ⌅ (which can also be modelled in
terms of SVs [20]). We can then ask whether this addi-
tional information can be used to improve the predictions
that quantum mechanics makes about X, which depend
on the measurement setting A and the initial state (which
we assume to be fixed). This question has a negative
answer if the distribution of X, conditioned on A, is un-
changed when we learn ⌅. This can be expressed in terms
of the Markov chain condition [25],

X $ A $ ⌅ . (1)

The aim of this work is to place a bound on the maximum
probability, �, by which this condition can be violated.
In other words, a bound of � implies that the predictions
obtained from quantum theory are optimal except with
probability (at most) �.

For the described experiment, the above claim relies
only on the natural (and often implicit) assumption that
measurement parameters can be chosen freely, i.e., inde-
pendently of the other parameters of the theory. This
assumption can be expressed in the above framework as
the requirement that the SV corresponding to a mea-
surement parameter, A, can be chosen such that it is
statistically independent of all SVs whose coordinates lie
outside the future lightcone of A (Bell’s theorem relies on
the same assumption, see, e.g., [26]). When interpreted
within the usual relativistic spacetime structure, this is
equivalent to demanding that A is uncorrelated with any
pre-existing values in any frame. We note that any alter-
native theory that satisfies the free choice assumption au-
tomatically obeys the non-signalling conditions, as shown
in the Supplemental Material.

As is the case in all falsifications of models that would
improve the predictions given by standard quantum the-
ory [4, 13], the argument leading to our bound on �

Source

Detectors Detectors

SA SB
+1

-1

+1

-1

FIG. 3.2.1. A source emits two spin-half particles travelling to
two distant sites where each particle’s spin is measured along
directions SA and SB , respectively, using Stern-Gerlach ap-
paratuses. If the particles are initially maximally entangled,
then the probability of correctly predicting the result of the
measurement on the particle on the left (X = ±1) is, accord-
ing to quantum mechanics, given by pQM = 0.5.

is based on the strength of correlations between mea-
surement outcomes on entangled particles [27], and, in
our case, on pairs of entangled qubits. We denote
the projectors describing measurements on qubit one by
|aiha| = 1

2 (11 + SA(a)�) and for qubit two by |bihb| =
1
2 (11 + SB(b)�) with

SA(a) = (cos(a⇡/2N), sin(a⇡/2N), 0)T

SB(b) = (cos(b⇡/2N), sin(b⇡/2N), 0)T ,

where a 2 {0, 2, ..., (4N � 2)}, b 2 {1, 3, . . . , (4N � 1)},
� = (�x,�y,�z)T , and T denotes “transpose”. (The spin
vectors SA(a) and SB(b) are conveniently depicted on
the Bloch sphere; Fig. 3.2.3 shows the possible vectors
for N = 3.) We note that projectors described by val-
ues of a (or b) that di↵er by 2N correspond to mea-
surements of spin along opposite directions. Hence, each
set of projectors describes N pairs of orthogonal mea-
surements. This allows us to calculate, for each value of
a 2 {0, 2, ..., 2N�2} and b 2 {1, 3, ..., 2N�1}, the proba-
bility of detecting the two photons from a pair along the
spin directions SA(a) and SB(b) (for which we assign
X,Y =+1), and along the orthogonal directions �SA(a)
and �SB(b) (for which we assign X,Y =�1). We denote
this probability P (X=Y |a, b). In turn, this allows us to
establish the correlation strength

IN :=P (X=Y |0, 2N�1) +
X

a,b
|a�b|=1

(1�P (X=Y |a, b)).(2)

We note that measuring IN involves the same measure-
ments as those required for testing a chained Bell inequal-
ity, first violated for N � 3 in [28].
Furthermore, deriving a bound on � requires knowledge

of the bias of the individual outcomes

⌫N := max
a

D(PX|a, PX̄) ,

where D denotes the variational distance, D(PX , QX) :=
1
2

P
x |PX(x)�QX(x)|, and PX̄ denotes the uniform dis-

tribution on X. (In an experiment, due to imperfec-
tions in the generated bipartite state that lead to the
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FIG. 3.2.2. (a) Experimental setup, see text for details. (b) Density matrix ⇢real of the bi-photon state produced by our source
as calculated via maximum-likelihood quantum state tomography [31] (see the Supplemental Material for actual values). The
fidelity, F = h�+|⇢real|�+i, between the detected state, ⇢real, and the ideal state, |�+i, given by Eq. 4, is (98.0± 0.1)%).

local (single particle) states not being completely mixed,
PX(x) 6= 1/2, which implies a non-zero bias.)

As we show in detail in the Supplemental Material, for
each N , the maximum increase of predictive power, �N ,
of any alternative theory is bounded by

�N =
IN
2

+ ⌫N . (3)

Repeating the correlation and bias measurements for
many N , we can obtain the best bound on � via
�  minN{�N}. Assuming a perfect experimental setup,
quantum theory predicts that �N will approach 0 as N
tends to 1. For a realistic (imperfect) setup, however,
�N reaches a minimum at some finite N , above which it
is increasing in N .

A schematic of our experimental setup [29], which is
inspired by the source described in [30], is depicted in
Fig. 3.2.2. A diagonally polarized, continuous wave,
532 nm wavelength laser beam is split by a polariz-
ing beam splitter (PBS) and travels both clockwise and
counter-clockwise through a polarization Sagnac interfer-
ometer. The interferometer contains two type-I, period-
ically poled lithium niobate (PPLN) crystals configured
to produce collinear, non-degenerate, 810/1550 nm wave-
length photon pairs via spontaneous parametric down-
conversion. As the optical axes of the two crystals are
perpendicular to each other and photon-pair generation
is polarization dependent, the clockwise-travelling, verti-
cally polarized (counter-clockwise travelling, horizontally
polarized) pump light passes through the first crystal
without interaction and may down-convert in the sec-
ond crystal to produce two horizontally (vertically) po-
larized photons. For small pump power, recombination
of the two bi-photon modes on the PBS yields photon

pairs with high fidelity to the maximally entangled state

|�+i = 1p
2
(|HHi+ |V V i), (4)

where |Hi and |V i represent horizontal and vertical po-
larization states, respectively, and replace the usual spin-
up and spin-down notation for spin-half particles. Be-
hind the interferometer, the remaining pump light is re-
moved using a high-pass filter. The entangled photons
are separated on a dichroic mirror and sent to polar-
ization analyzers that can be adjusted to measure the
polarization of an incoming photon along any desired di-
rection S = (SH , S+, SL)T , where S is expressed in terms
of its projections onto horizontal (H), diagonal (+45�),
and left-circular (L) polarized components. The polariza-
tion analyzers consist of quarter wave plates (QWP), half
wave plates (HWP), and PBSs. Finally, the 810 nm pho-
tons are detected using a free-running Silicon avalanche
photo-diode (Si APD), and 1550 nm photons are detected
using an InGaAs APD triggered by detection events from
the Si APD.
For each setting SA(a) (with a as described above), we

establish the number of detected photons, M(a), over 80
sec, from which we can calculate the bias

⌫N =
1

2
max

a2{0,2,...,(2N�2)}

⇢
|M(a)�M(a+ 2N)|
M(a) +M(a+ 2N)

�
.

Furthermore, for the joint measurements described by
Eq. 2, we register the number of detected photon pairs
over 40 sec to calculate

P (X = Y |a, b) = M(a, b) +M(a+ 2N, b+ 2N)

M
,

where, e.g., M(a, b) is the number of joint photon de-
tections for measurements along SA(a) and SB(b), and
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N IN ⌫N �N
2 0.6213± 0.0035 0.0025± 0.0002 0.3131± 0.0018
3 0.4549± 0.0032 0.0020± 0.0002 0.2294± 0.0016
4 0.3757± 0.0029 0.0025± 0.0002 0.1904± 0.0015
5 0.3518± 0.0028 0.0033± 0.0002 0.1792± 0.0014
6 0.3290± 0.0028 0.0032± 0.0002 0.1677± 0.0014
7 0.3238± 0.0027 0.0025± 0.0002 0.1644± 0.0014

TABLE 3.2.1. Summary of Results. The table shows values
for IN , bias ⌫N , as well as �N = IN/2 + ⌫N . Statistical un-
certainties (one standard deviation) are calculated from mea-
surement results assuming Poissonian statistics.

the normalization factor M = M(a, b) +M(a, b+ 2N) +
M(a + 2N, b) + M(a + 2N, b + 2N). This allows us to
establish �N via Eqs. 2 and 3.

Our experimental results are depicted in Fig. 3.2.3 and
summarized in Table 3.2.1. We measured �N for N = 2
to N = 7 and found the minimum, �7 = 0.1644± 0.0014,
for N = 7. Using the above considerations, these data
lead to our main conclusion that the maximum proba-
bility by which any alternative theory can improve the
predictions of quantum theory is at most ⇠0.165. To put
this result into context, we note that a deterministic lo-
cal hidden variable theory would allow for predictions of
the outcomes with probability pLHV = 1; similarly, it is
easy to verify that the Leggett model (with a uniform
distribution over the hidden spin, z) would correctly pre-
dict the outcome with probability pLeggett = 3/4. Since
these values exceed pQM = 1/2 by more than delta, both
theories are directly falsified by our result. (We refer to
the Supplemental Material for a more detailed discussion
of the Leggett model, including variants with a di↵erent
distribution of the hidden spin vector.) We remark that
our conclusion is based on the assumption that measure-
ment settings can be chosen freely (this removes the ne-
cessity to experimentally close the locality loophole), and
our experiments do not close the detection loophole [10].
Hence, strictly, the above conclusion holds modulo the as-
sumption that similar, loophole-free experiments would
show the same results.

Further decreasing the experimentally established
bound on � would require photon pair sources and mea-
surement apparatuses with rapidly increasing quality.
For example, to decrease � by more than a factor of two
compared to our result, the fidelity must exceed 99.6%
(assuming zero bias and perfect measurement apparatus)
and N increases to 15 or beyond, resulting in 120 or more
high-precision coincidence measurements. This is, to the
best of our knowledge, unattainable with state-of-the-art
sources [16, 17] (for more details see the Supplemental
Material).

In conclusion, under the assumption that measure-
ments can be chosen freely, no theory can predict the out-
comes of measurements on a member of a maximally en-
tangled pair substantially better than quantum mechan-
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FIG. 3.2.3. (a) Measurement settings. Graphical depiction
of the polarization measurements along SA (red, labelled us-
ing index A, i.e. even numbers) and SB (blue, labelled using
index B, i.e. odd numbers) for N = 3. (b) Results. Ex-
perimentally obtained values �N (blue diamonds) with one-
standard-deviation uncertainties (hidden by the size of the di-
amonds) calculated from measurement results assuming Pois-
sonian statistics. Also shown is a curve joining the values pre-
dicted by quantum theory, including one-standard-deviation
statistical uncertainties (solid red line and grey shaded area,
respectively), calculated from the measured density matrix
⇢real. Note that the predicted value for � increases for N > 7.
The bounds of the shaded region are derived using Monte
Carlo simulations and are consistent with the observed vari-
ations of the measured values. Finally, the dashed blue line
is the theoretical curve, again calculated using quantum the-
ory, that assumes the ideal |�+i state, as in Eq. 4, and perfect
experimental apparatus with zero noise. It asymptotically ap-
proaches zero as N tends to infinity. For instance, for N = 7
we find �ideal7 = 0.088.

ics. In other words, any already considered or yet-to-be-
proposed theory that makes significantly better predic-
tions would either be incompatible with our experimen-
tal observations, or be incompatible with our assumption
that the measurement parameters can be chosen freely.
While the former is true, for example, for local hidden
variable theories (as already pointed out by Bell [4]) or
for the Leggett model [13], the de Broglie-Bohm the-
ory [32, 33] is an example of the second type – the theory
cannot incorporate measurement parameters that satisfy
our free-choice assumption (this is further discussed in
the Supplemental Material).
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Chapter 4

Quantum Entanglement for Quantum Cryptography

Quantum entanglement gives rise to correlations that are fundamentally di↵erent from cor-

relations possible in a local realistic world. In the previous chapter we have tested those

di↵erences in a variety of ways, which, in turn, allows us to confirm our ability to produce

high-fidelity entanglement. Entanglement can then be used for many practical applications,

such as QKD.

The security of QKD has been proven under various assumptions about the devices of

the legitimate QKD players, Alice and Bob. While commercial and high-performance re-

search systems exist, the next-generation of QKD research is moving towards understanding

potential side-channels and closing them with e↵ective counter-measures. For our research

into next-generation systems, we chose to study and implement a new protocol known as

MDI-QKD [47].

In previously-developed entanglement-based protocols [5, 37], a source of entanglement

is stationed between Alice and Bob that sends one qubit to Alice and one qubit to Bob, who

both perform projection measurements (see Chapter 1). In contrast to this, and prepare-

and-measure QKD, in MDI-QKD Alice and Bob both generate single qubits in one of four

states and send these to a third-party named Charlie. Charlie performs a BSM with the

qubits he receives and then informs Alice and Bob which qubits projected onto which Bell

state. Charlie’s only purpose is to essentially create entanglement between Alice and Bob,

which, as he is the only participant using detectors and performing measurements, closes all

possible detector side-channels in the process. In particular, not even Charlie himself can

gain information about the key without introducing detectable errors.

The motivation for choosing this protocol was three-fold. First, it is an example of the
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use of entanglement to provably close side-channels, which is an important goal in next-

generation QKD research. Second, Charlie’s BSM is between photons generated by inde-

pendent sources that have travelled through independent channels and this had not been

demonstrated previously. This is also a necessary feat for quantum repeaters and so we

believe that the techniques we developed for MDI-QKD will be useful for future repeater

experiments. Finally, MDI-QKD seems well suited for networked QKD. Generally QKD is

performed over point-to-point links between only two individuals and there is some research

push to develop networked QKD systems. With MDI-QKD one could envision Charlie at

the centre of a network with fibres connecting him to a many Alices and Bobs (the so-called

star network), whom he “connects”, like a switchboard, by entangling their photons. Charlie

could also be connected to a larger, high-rate, long-distance network and act as a hub con-

necting the nearby Alices and Bobs to the larger network. As Charlie is the only participant

performing measurements and as detector technology is generally more expensive and more

di�cult to run, this network design minimizes costs be keeping expensive technology all in

a single place, while cheap, easy-to-use sources are with scattered end users.

This chapter contains two articles. In the first paper we developed our experimental

QKD system as well as a general, detailed, theoretical model of the performance of MDI-

QKD systems. The model contains parameters describing identifiable imperfection in any

system, and can be used to predict experimentally measurable quantities, such as error rates

and secret key rates. We deployed our system across the city of Calgary and we found very

good agreement between our theoretical model and measurement results. The purpose of

the model was to understand how to optimize secret key generation rates and to learn what

imperfections limit secret key generation rates. Since our demonstration, two other groups

have demonstrated MDI-QKD [70, 71] and our hope is that they and future researchers will

use this model to optimize their systems as well.

In the second article, we added an MDI-QKD decoy-state protocol to our implementation
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to protect against PNS attacks (as described in Chapter 1) and again deployed across the

city of Calgary. This proof-of-principle demonstration proved the feasibility of both MDI-

QKD and real-world BSMs, as needed for quantum repeaters and a host of other quantum

communication applications.

This work was done in collaboration with Allison Rubenok and the QC2 cryptography

team. I contributed to these studies in the following stages: I worked on developing the

system, developing the model, performing the measurements, and analyzing the results.
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Abstract. We present a detailed description of a widely applicable model for
quantum key distribution (QKD) systems implementing the measurement-device-
independent (MDI) protocol. The validity of the model is confirmed by comparing its
predictions with real-world data taken using a time-bin qubit-based QKD system in
various configurations. This allows using the model to optimize mean photon numbers
per attenuated laser pulse, which are used to encode quantum bits. In turn, this allows
optimizing secret key rates of existing MDI-QKD systems, identifying rate-limiting
components, and projecting future performance.

1. Introduction

From the first proposal in 1984 to now, the field of quantum key distribution (QKD)

has evolved significantly [1, 2]. For instance, experimentally, systems delivering

key at Mbps rates [3] as well as key distribution over more than 100 km [4, 5]

have been reported. From a theoretical perspective, e↵orts aim at developing QKD

protocols and security proofs with minimal assumptions about the devices used [6].

Of particular practical importance are two recently developed protocols that do

not require trusted single photon detectors (SPDs) [7, 8]. One of these, the so-

called measurement-device-independent QKD (MDI-QKD) protocol, has already been

implemented experimentally [9, 10, 11]. Hence, it is foreseeable that it will play an

important role in the future of QKD, and it is thus important to understand the interplay

between experimental imperfections (which will always remain in real systems) and

system performance to maximize the latter.

In this work, we present a detailed description of a widely applicable mathematical

model describing systems that implement the MDI-QKD protocol. The model takes

into account imperfect state preparation, loss in the quantum channel, as well as limited

detector e�ciency and noise. The validity of our model is assessed by comparing its



predictions with real-world data taken with an MDI-QKD system employing time-bin

qubits [9]. Our system is used in two di↵erent configurations: In the first configuration,

all parties required for key distribution are situated within the same laboratory and are

connected through spooled fibers of di↵erent lengths, while in the second, the protocol is

performed over deployed fiber across the city of Calgary (see Fig. 4.1.1 for a schematics).

Our model reproduces the experimental data within statistical uncertainties, regardless

of whether experiments were performed using spooled or deployed fibers. In turn, this

validation allows optimizing central parameters that determine secret key rates, such as

mean photon numbers used to encode qubits, and to identify rate-limiting components

for future system improvement.

This paper is organized in the following way: In section 2 we detail some of the

side-channel attacks (i.e. attacks exploiting incorrect assumptions about the working of

QKD devices) proposed so far and review technological countermeasures. In section 3 we

briefly describe the MDI-QKD protocol, which instead exploits fundamental quantum

physical laws to render the most important of these attacks useless. Our model of MDI-

QKD systems is presented in section 4. This section is followed by an in-depth account

of experimental imperfections that a↵ect MDI-QKD performance and a description of

how we characterized them in our system (section 5). Section 6 shows the results of

the comparison between modelled and measured quantities, and section 7 details how

to optimize the performance of our MDI-QKD system using the model. Finally, we

conclude the article in section 8.
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Figure 4.1.1. Schematics for MDI-QKD. Charlie facilitates the key distribution
between Alice and Bob without being able to learn the secret key.

2. Side-channel attacks

A healthy development of QKD requires investigating the vulnerabilities of QKD

implementations in terms of potential side-channel attacks. Side-channels in QKD are

channels over which information about the key may leak out unintentionally. One of

the first QKD side-channel attacks proposed was the photon number splitting (PNS)

attack [12] in which the eavesdropper, Eve, exploits the fact that attenuated laser pulses

sometimes include more than one photon to obtain information about the key. This

attack can be detected if the decoy state protocol [13, 14, 15] is implemented. In the

decoy state protocol, Alice varies the mean photon number per pulse in order to allow

her and Bob to distill the secret key only from information stemming from single photon
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emissions. More proposals of side-channel attacks followed, including the Trojan-horse

attack [16], for which the countermeasure is an optical isolator [16], and the phase

remapping attack [17], for which the countermeasure is phase randomization [17]. Later

on, attacks that took advantage of SPD vulnerabilities were also proposed [18, 19, 20, 21].

For example, the time-shift attack [19] exploits a di↵erence in the quantum e�ciencies

of the SPDs used in a QKD system. This attack can be prevented by actively selecting

one of the two bases for the projection measurement, as well as by monitoring the

temporal distribution of photon detections [19]. Another example is the detector

blinding attack [21] in which the eavesdropper uses high intensity pulses to modify

the performance (i.e. blind) the SPDs. Due to its power, it is currently of particular

concern. The blinding attack can be detected by monitoring the intensity of light at the

entrance of Bob’s devices with a photodiode [21, 22, 23].

It is important to mention that open side-channels do not necessarily compromise

the security of the final key if the information that Eve may have obtained through an

attack is properly removed during privacy amplification. However, as technological fixes

(as discussed above) or additional privacy amplification can only thwart known attacks,

it is important to develop and implement protocols that use a minimum number of

assumptions about the devices used to implement the protocol. An important example

is the measurement-device-independent QKD protocol, which we will introduce in the

next section.

3. The Measurement-Device-Independent Quantum Key Distribution

Protocol

The MDI-QKD protocol is a time-reversed version of entanglement-based QKD. In this

protocol, the users, Alice and Bob are each connected to Charlie, a third party, through

a quantum channel, e.g. optical fiber (see Fig. 4.1.1). In the ideal version, the users have

a source of single photons that they prepare randomly in the BB84 qubit states [24] |0i,

|1i, |+i and |�i, where |±i = 2�1/2(|0i± |1i). The qubits are sent to Charlie where the

SPDs are located. Charlie performs a partial Bell state measurement (BSM) through a

50/50 beam splitter and then announces the events for which the measurement resulted

in a projection onto the | 

�
i = 2�1/2(|0iA|1iB � |1iA|0iB) state. Alice and Bob then

publicly exchange information about the basis (z, spanned by |0i and |1i, or x, spanned

by |+i and |�i. Associating quantum states with classical bits (e.g. |0i, |�i ⌘ 0,

and |1i, |+i ⌘ 1) and keeping only events in which Charlie found | 

�
i and they picked

the same basis, Alice and Bob now establish anti-correlated key strings. (Note that a

projection of two photons onto | 

�
i indicates that the two photons, if prepared in the

same basis, must have been in orthogonal states.) Bob then flips all his bits, thereby

converting the anti-correlated strings into correlated ones. Next, the so-called x-key is

formed out of all key bits for which Alice and Bob prepared their photons in the x-basis;

its error rate is used to bound the information an eavesdropper may have acquired

during photon transmission. Furthermore, Alice and Bob form the z-key out of those
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bits for which both picked the z-basis. Finally, they perform error correction and privacy

amplification[1, 2] to the z-key, which results in the secret key.

The advantage of MDI-QKD protocol over conventional prepare-and-measure or

entangled photon-based QKD protocols is that detection events are uncorrelated with

the final secret key bits. This is because a projection onto | 

�
i only indicates that Alice

and Bob sent anti-correlated states, but does not reveal who sent which state. As a

result, Eve (including a dishonest Charlie) is unable to gain any information about the

key from passively monitoring the detectors or implementing a detector side-channel

attack. In fact, all detector side channels are closed in MDI-QKD.

Note that the ideal version of MDI-QKD protocol assumes that Charlie performs

a perfect partial BSM. While this is required to maximize the secret key rate, it is

not necessary to guarantee security of the key. Indeed, the key distribution is not

compromised if the measurement is di↵erent, regardless wether the di↵erence is due to

experimental imperfections, or to an eavesdropper (including Charlie) trying to gather

information about the states that Alice and Bob sent. An imperfect BSM will simply

result in a higher error rate and thus to a smaller secret key rate once error correction

and privacy amplification have been applied.

In the ideal scenario introduced above, Alice and Bob use single photon sources

to generate qubits. However, it is possible to implement the protocol using light

pulses attenuated to the single photon level. Indeed, as in prepare-and-measure QKD,

randomly varying the mean photon number of photons per attenuated light pulse

between a few di↵erent values (so-called decoy and signal states) allows making the

protocol practical while protecting against a possible PNS attack [7, 25]. The secret key

rate is then given by [7]:

S = Q

z
11(1� h2(e

x
11))�Q

z
µ�fh2(e

z
µ�), (1)

where h2 is the binary entropy function, f indicates the error correction e�ciency,

Q indicates the gain (the probability of a projection onto | 

�
i per emitted pair of

pulses) and e indicates error rates (the ratio of erroneous to total projections onto | �
i).

Furthermore, the superscripts, x or z, denote if gains or error rates are calculated for

qubits prepared in the x- or the z-basis, respectively. Similarly, the subscripts, µ and �,

show that the quantity under concern is calculated or measured for pulses with mean

photon number µ (sent by Alice) and � (sent by Bob), respectively. Finally, the subscript

11 indicates quantities stemming from events for which the pulses emitted by Alice and

Bob contain only one photon each. Note that Q11 and e11 cannot be measured; their

values must be bounded using a decoy state method.

Shortly after the original proposal [7], a practical decoy state protocol for MDI-

QKD was proposed in [25]. It requires Alice and Bob to randomly pick mean photon

numbers between two decoy states and a signal state. One of the decoy states must

have a mean photon number lower than the signal state, while the other one must be

vacuum. A finite number of decoy states results in a lower bound for Qx,z
11 and an upper
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bound for ex11, which in turn gives a lower bound for the secret key rate in Eq. 1. We

will elaborate more on decoy states in section 7.1.

4. The Model

4.1. Assumptions

The four main assumptions or approximations under which our model has been

developed are the following:

• We assume the sources located at Alice and Bob, respectively, generate phase

randomized mixtures of photon number states (Fock states) with known distribution

D(n) (e.g. Poissonian or thermal distribution, etc).

• After Charlie’s beam splitter, we consider terms of up to three photons only.

Considering higher-order terms would slightly raise the gains and error rates

predicted by the model. However, given the low average photon numbers and

the typical channel loss in real-world quantum channels, this e↵ect is negligible.

• Charlie’s beam splitter is a perfect 50/50, lossless beam splitter. A deviation from

this approximation does not open a security loophole as an imperfect beam splitter

implies that Charlie’s measurement is an imperfect Bell state measurement, which

increases the error rates measured by Alice and Bob. E↵ectively, this degrades the

(entangled) channel between Alice and Bob, which results in a decreased secret key

rate.

• Charlie’s two single-photon detectors have identical properties. We note that a

deviation from this approximation also does not open a potential security loophole

(in contrast to prepare-and-measure and entangled photon based QKD), as all

detector side-channel attacks are removed in MDI-QKD.

4.2. Derivation of the model

Our model takes into account imperfections present in a typical QKD system. Regarding

the sources, located at Alice and Bob, we take into account imperfect preparation of

the quantum state of each photon. Furthermore, we consider transmission loss of the

links between Alice and Charlie and Bob and Charlie. And finally, concerning the

measurement apparatus at Charlie’s, we consider imperfect projection measurement

stemming from non-maximum quantum interference on Charlie’s beam splitter, detector

noise such as dark counts and afterpulsing, and limited detector e�ciency.

In the following paragraphs we present a detailed description of our model. We note

that, in order to facilitate explanations, we have adopted the terminology of time-bin

encoding. However, our model is general and can also be applied to MDI-QKD systems

implementing any kind of encoding.

52



4.2.1. State preparation In the MDI-QKD protocol, Alice and Bob derive key bits

whenever Charlie announces a projection onto the | 

�
i Bell state. We model the

probability of a | 

�
i projection for various quantum states of photons emitted by Alice

and Bob‡ as a function of the mean photon number per pulse (µ and � respectively)

and transmission coe�cients of the fiber links (tA and tB, respectively)§. We consider

qubit states described by:

| i =
p

m

x,z + b

x,z
|0i+ e

i�x,z

p

1�m

x,z + b

x,z
|1i (2)

where |0i and |1i denote photons in orthogonal modes (i.e. early and late temporal

modes assuming time-bin qubits), respectively. Note that | i describes any pure state.

In the ideal case, mz
2 [0, 1] for photon preparation in the z-basis (in this case, the value

of �z is irrelevant), mx = 1
2 and �x

2 [0, ⇡] for the x-basis, and b

x,z = 0 for both bases.

Imperfect preparation of photon states is modelled by using non-ideal mx,z, �x,z and

b

x,z for Alice and Bob. The parameter bx,z is included to represent the background light

emitted by an imperfect sourcek. Furthermore, in principle, the various states generated

by Alice and Bob could have di↵erences in other degrees of freedom (i.e. polarization,

spectral, spatial, temporal modes). This is not included into Eq. 2.

4.2.2. Conditional probability for projections onto | 

�
i A projection onto | 

�
i occurs

if one of the SPDs behind Charlie’s 50/50 beam splitter signals a detection in an early

time-bin (a narrow time interval centered on the arrival time of photons occupying an

early temporal mode) and the other detector signals a detection in a late time-bin (a

narrow time-interval centered on the arrival time of photons occupying a late temporal

mode). Note that, in the following paragraphs, this is the desired detection pattern we

search for when modelling possible interference cases or noise e↵ects.

We build up the model by first considering the probabilities that particular outputs

from the beam splitter (at Charlie’s) will generate the detection pattern associated with

a projection onto | 

�
i. The outputs are characterized by the number of photons per

output port as well as their quantum state. The probabilities for each of the possible

outputs to occur can then be calculated based on the inputs to the beam splitter

(characterized by the number of photons per input port and their quantum states,

as defined in Eq. 2). Note that for the simple cases of inputs containing zero or one

photon (summed over both input modes), we calculate the probabilities leading to the

desired detection pattern directly, i.e. without going through the intermediate step of

calculating outputs from the beam splitter. Finally, the probability for each input to

occur is calculated based on the probability for Alice and Bob to send attenuated light

pulses containing exactly i photons, all in a state given by Eq. 2. The probability for a

particular input to occur also depends on the transmissions of the quantum channels,

‡ Note that all photons within a specific attenuated light pulse are in the same quantum state.
§ Normally t is given by the optical loss in the fiber. However, if modelling eavesdropping, t might be
photon number dependent.
k Note how the added background leads to non-normalized states.
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tA and tB. We recall that this model considers up to three photons incident on the

beam splitter. This is su�cient as, in the case of heavily attenuated light pulses and

lossy transmission, higher order terms do not contribute significantly to projections onto

| 

�
i. However, we limit the following description to two photons at most: the extension

to three is straightforward and follows the methodology presented for two photons.

Detector noise Let us begin by considering the simplest case in which no photons

are input into the beam splitter. In this case, detection events can only be caused by

detector noise. We denote the probability that a detector indicates a spurious detection

as Pn. Detector noise stems from two e↵ects: dark counts and afterpulsing [26]. Dark

counts represent the base level of noise in the absence of any light, and we denote the

probability that a detector generates a dark count per time-bin as Pd. Afterpulsing is

an additional noise source produced by the detector as a result of prior detection events.

The probability of afterpulsing depends on the total count rate, hence we denote the

afterpulsing probability per time-bin as Pa, which is a function of the mean photon

number per pulse from Alice and Bob (µ and �), the transmission of the channels (tA
and tB) and the e�ciency of the detectors (⌘) located at Charlie (see below for afterpulse

characterization). The total probability of a noise count in a particular time-bin is thus

Pn = Pd + Pa. All together, we find the probability (conditioned on having no photons

input into the beam splitter) for generating the detection pattern associated with a

projection onto the | 

�
i-state to be:

P (| �
i|0 photons, in) = P (| �

i|0 photons, out) = 2P 2
n , (3)

Here and henceforward, we have ignored the multiplication factor (1-Pn) ⇠ 1¶, which

indicates the probability that a noise event did not occur in the early time-bin (this is

required in order to see a detection during the late time-bin assuming detectors with

recovery time larger than the separation between the |0i and |1i temporal modes). Note

that the probability conditioned on having no photons at the inputs of the beam splitter

equals the one conditioned on having no photons at the outputs.

One-photon case Next, we consider the case in which a single photon arrives at the

beam splitter. To generate the detection pattern associated with | 

�
i, either the photon

must be detected and a noise event must occur in the other detector in the opposite

time-bin, or, if the photon is not detected, two noise counts must occur as in Eq. 3. We

find

P (| �
i|1 photon, in) = ⌘Pn + (1� ⌘)P (| �

i|0 photons, out), (4)

where ⌘ denotes the probability to detect a photon that occupies an early (late) temporal

mode during an early (late) time-bin (we assume ⌘ to be the same for both detectors).

¶ Note that this approximation is, in general, not required. However, in order to obtain the best
performance from a QKD implementation, the noise level should be as low as possible, i.e. P

n

⇠ 0.
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Two-photon case We now consider detection events stemming from two photons

entering the beam splitter. The possible outputs can be broken down into three cases.

In the first case, both photons exit the beam splitter in the same output port and

are directed to the same detector. This yields only a single detection event, even if

the photons are in di↵erent temporal modes. The probability for Charlie to declare a

projection onto | 

�
i is then

P (| �
i|2 photons, 1 spatial mode, out) =

(1� (1� ⌘)2)Pn + (1� ⌘)2P (| �
i|0 photons, out). (5)

In the second case, the photons are directed towards di↵erent detectors and occupy

the same temporal mode. Hence, to find detections in opposite time-bins in the two

detectors, at least one photon must not be detected. This leads to

P (| �
i|2 photons, 2 spatial modes, 1 temporal mode, out) =

2⌘(1� ⌘)Pn + (1� ⌘)2P (| �
i|0 photons, out). (6)

In the final case, both photons occupy di↵erent spatial as well as temporal modes.

In contrast to the previous case, a projection onto | 

�
i can now also originate from the

detection of both photons. This leads to

P (| �
i|2 photons, 2 spatial modes, 2 temporal modes, out) =

⌘

2 + 2⌘(1� ⌘)Pn + (1� ⌘)2P (| �
i|0 photons, out). (7)

In order to find the probability for each of the three two-photon outputs to occur,

we now examine two-photon inputs to the beam splitter. For ease of analysis, we first

introduce some notation:

p

x,z(0, 0) ⌘ (mx,z
1 + b

x,z
1 )(mx,z

2 + b

x,z
2 )

p

x,z(0, 1) ⌘ (mx,z
1 + b

x,z
1 )(1�m

x,z
2 + b

x,z
2 )

p

x,z(1, 0) ⌘ (1�m

x,z
1 + b

x,z
1 )(mx,z

2 + b

x,z
2 )

p

x,z(1, 1) ⌘ (1�m

x,z
1 + b

x,z
1 )(1�m

x,z
2 + b

x,z
2 )

b

x,z
norm ⌘ 1 + 2bx,z1 + 2bx,z2 + 4bx,z1 b

x,z
2 (8)

where b

x,z
1,2 and m

x,z
1,2 are the parameters introduced in Eq. 2; the subscripts label the

photon (one or two) whose state is specified by the parameters. Furthermore, px,z(i, j)

is proportional to finding photon one in temporal mode i and photon two in temporal

mode j, where i, j 2 [0, 1]. Finally, bx,znorm is a normalization factor.

We note that it is possible for the two photons to be subject to a two-photon

interference e↵ect (known as photon bunching) when impinging on the beam splitter.
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Let us first consider the case in which the two photons do not interfere. This case occurs

if both photons either come from the same source, or if they come from di↵erent sources

and are perfectly distinguishable (for example, if they had orthogonal polarizations).

With probability 1/2 the two photons exit the beam splitter in the same output port

(or spatial mode). Furthermore, with probability A = [px,z(0, 0)+ p

x,z(1, 1)]/2bx,znorm we

find the photons in di↵erent spatial modes and in the same temporal mode, and with

probability B = [px,z(0, 1) + p

x,z(1, 0)]/2bx,znorm we find the photons in di↵erent spatial

and temporal modes. Thus the probability that Charlie finds the desired detection

pattern is:

P (| �
i|2 photons, non-interfering, in) =

1

2
P (| �

i|2 photons, 1 spatial mode, out)

+A⇥ P (| �
i|2 photons, 2 spatial modes, 1 temporal mode, out)

+B ⇥ P (| �
i|2 photons, 2 spatial modes, 2 temporal modes, out).

(9)

Finally, consider the case in which the two input photons interfere on the beam

splitter, which occurs if they come from di↵erent sources and are indistinguishable.

In this case, the probabilities of finding the outputs from the beam splitter discussed

in Eqs. 5-7 are dependent on the phase di↵erence between the states of the two

photons, ��x,z
⌘ �

x,z
1 � �

x,z
2 . Note that, due to the two-photon interference e↵ect,

finding the two photons in di↵erent spatial modes and the same temporal mode is

impossible. We are thus left with the case of having two photons in the same output

port (the same spatial mode), which occurs with probability C = [px,z(0, 0)+p

x,z(1, 1)+

0.5(px,z(0, 1)+p

x,z(1, 0))+
p

p

x,z(0, 1)px,z(1, 0) cos(��x,z)]/bx,znorm, and the case of having

the photons in di↵erent temporal and spatial modes, which occurs with probability

D = [0.5(px,z(0, 1) + p

x,z(1, 0))�
p

p

x,z(0, 1)px,z(1, 0) cos(��x,z)]/bx,znorm. This leads to

P (| �
i|2 photons, interfering, in) =

C ⇥ P (| �
i|2 photons, 1 spatial mode, out) +

D ⇥ P (| �
i|2 photons, 2 spatial modes, 2 temporal modes, out). (10)

4.2.3. Aggregate probability for projections onto | 

�
i Now that we have calculated the

conditional probabilities of a detection pattern indicating | 

�
i for various inputs to the

beam splitter, let us consider with what probability each case occurs. This requires that

we know the photon number distribution of the pulses arriving at Charlie’s beam splitter

from Alice and Bob, which can be computed based on the photon number distribution at

the sources and the properties of the quantum channels. For the following discussion, we

assume that the channels from Alice to Charlie and from Bob to Charlie are characterized

by the loss tA and tB, respectively, yielding pulses with number distribution D and mean
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photon number, µtA and �tB, respectively. This is equivalent to assuming that no PNS

attack takes place, which is the case of interest when optimizing the secret key rate in

section 7+. We limit our discussion to the cases with two or less photons at the input of

the beam splitter (but recall that the actual calculation includes up to three photons).

Hence, the cases we consider and their probabilities of occurrence, PO, are given by:

• 0 photons at the input from both sources: PO = D0(µtA)D0(�tB)

• 1 photon at the input from Alice and 0 from Bob: PO = D1(µtA)D0(�tB)

• 0 photons at the input from Alice and 1 from Bob: PO = D0(µtA)D1(�tB)

• 2 photons at the input from Alice and 0 from Bob: PO = D2(µtA)D0(�tB)

• 0 photons at the input from Alice and 2 from Bob: PO = D0(µtA)D2(�tB)

• 1 photon at the input from both sources: PO = D1(µtA)D1(�tB)

where we denote the probability of having i photons from a distribution D with mean

number µ as Di(µ). For each of these cases, we have already computed the probability

that Charlie obtains the detection pattern associated with the | 

�
i-state for arbitrary

input states of the photons (as defined in Eq. 2). When zero or one photons arrive at the

beam splitter, Eq. 3 and Eq. 4 are used, respectively. In the case in which two photons

arrive from the same source, Eq. 9 is used. Finally, in the case in which one photon

arrives from each source, Eq. 10 would be used in the ideal case. However, perfect

indistinguishability of the photons cannot be guaranteed in practice. We characterize

the degree of indistinguishability by the visibility, V , that we would observe in a closely-

related Hong-Ou-Mandel (HOM) interference experiment [27] with single-photon inputs.

Taking into account partial distinguishability, the probability of finding a detection

pattern corresponding to the projection onto | 

�
i is given by

P (| �
i|2 photons, visibility V , in) =

V P (| �
i|2 photons, interfering, in)

+(1� V )P (| �
i|2 photons, non-interfering, in). (11)

Equations 3-11 detail all possible causes for observing the detection pattern associated

with a projection onto the | 

�
i Bell state, if up to two photons at the beam splitter

input are taken into account. We remind the reader that all calculations in the following

sections take up to three photons into account. To calculate the gains, Qx,z
µ� , using these

equations, we need only substitute in the correct values of µ, �, tA, tB, mx,z, bx,z, and

��x,z for the cases in which Alice and Bob both sent attenuated light pulses in the x-

basis or z-basis, respectively. The error rates, ex,zµ , can then be computed by separating

the projections onto | �
i into those where Alice and Bob sent photons in di↵erent states

(yielding correct key bits) and in the same state (yielding erroneous key bits). More

+ Obviously, with PNS attack (or any other eavesdropping attack that increases the error rate), the
final key rate would be smaller than the one calculated under optimum conditions. However, it would
still be secure.
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precisely, the error rates, ex,zµ� , are calculated as e

x,z
µ� = p

x,z
wrong/(p

x,z
correct + p

x,z
wrong) where

p

x,z
wrong (p

x,z
correct) denotes the probability for detections yielding an erroneous (correct) bit

in the x (or z)-key.

5. Characterizing experimental imperfections

The parameters used to model our system are derived from data established through

independent measurements. To verify our model, the characterization of experimental

imperfections in our MDI-QKD implementation [9] is very technical at times. It can be

broken down into time-resolved energy measurements at the single photon level (required

to extract µ, �, bx,z and m

x,z for Alice and Bob, as well as dark count and afterpulsing

probabilities), measurements of phase (required to establish �

x,z for Alice and Bob),

and visibility measurements. In the following paragraphs we describe the procedures we

followed to obtain these parameters from our system.

5.1. Our MDI-QKD Implementation

In our implementation of MDI-QKD [9] Alice’s and Bob’s setups are identical. Each

setup consists of a CW laser emitting at 1550nm wavelength. Time-bin qubits, encoded

into single photon-level light pulses with Poissonian photon number statistics, are

created through an attenuator, an intensity modulator and a phase modulator located

in a temperature controlled box. The two temporal modes defining each time-bin qubit

are of 500 ps (FWHM) duration and are separated by 1.4 ns. Each source generates

qubits at 2 MHz rate.

The time-bin qubits are sent to Charlie through an optical fiber link. The link

consisted of spooled fiber (for the measurements in which Alice, Bob and Charlie were

all located in the same laboratory) or deployed fiber (for the measurements in which

the three parties were located in di↵erent locations within the city of Calgary). Charlie

performs a BSM on the qubits he receives using a 50/50 beamsplitter and two SPDs.

See Figure 4.1.2. Note that, in order to perform a Bell state measurement the photons

arriving to Charlie must be indistinguishable in all degrees of freedom: polarization,

frequency, time and spatial mode. The indistinguishability of the photons is assessed

through a Hong-Ou-Mandel interference measurement [27]. As our system employs

attenuated laser pulses, the maximum visibility we can obtain in this measurement is

Vmax = 50% (and not 100% as it would be with single photons). In our implementation

the visibility measurements resulted in V = (47± 1), irrespective of whether they were

taken with spooled fiber inside the lab, or over deployed fiber.

5.1.1. Time-resolved energy measurements First, we characterize the dark count

probability per time-bin, Pd, of the SPDs (InGaAs-avalanche photodiodes operated

in gated Geiger mode [26]) by observing their count rates when the optical inputs

are disconnected. We then send attenuated laser pulses so that they arrive just after
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Figure 4.1.2. Time-bin qubits are created at Alice’s and Bob’s through a CW laser
(LD), and attenuator (ATT) and temperature-controlled intensity (IM) and phase
(PM) modulator. The projective measurements are done at Charlie’s via a beam
splitter (BS) and two single photon detectors (SPDs).

the end of the 10 ns long gate that temporarily enables single photon detection. The

observed change in the count rate is due to background light transmitted by the intensity

modulators (whose extinction ratios are limited) and allows us to establish b

x,z (per time-

bin) for Alice and Bob. Next, we characterize the afterpulsing probability per time-bin,

Pa, by placing the pulses within the gate, and observing the change in count rate in the

region of the gate prior to the arrival of the pulse. The afterpulsing model we use to

assess Pa from these measurements is described below.

Once the background light and the sources of detector noise are characterized, the

values of mx,z can be calculated by generating all required states and observing the

count rates in the two time-bins corresponding to detecting photons generated in early

and late temporal modes. Observe that mz=1 for photons generated in state |1i (the late

temporal mode) is zero (i.e. the entire optical pulse is located in the second temporal

mode), since all counts in the early time-bin are attributed to one of the three sources of

background described above. Furthermore, we observed thatmz=0 for photons generated

in the |0i state (the early temporal mode) is smaller than one due to electrical ringing

in the signals driving the intensity modulators. Note that, in our implementation, the

duration of a temporal mode exceeds the width of a time-bin, i.e. it is possible to detect

photons outside a time-bin (see Figure 4.1.3 for a schematical representation). Hence,

it will be useful to also define the probability for detecting a photon arriving at any

time during a detector gate; we will refer to this quantity as ⌘gate.The count rate per

gate, after having subtracted the rates due to background and detector noise, together

with the detection e�ciency, ⌘gate (⌘gate, as well as ⌘, have been characterized previously

based on the usual procedure [26]), allows calculating the mean number of photons per

pulse from Alice or Bob (µ or �, respectively). The e�ciency coe�cient relevant for our

model, ⌘, is smaller than ⌘gate. Finally, we point out that the entire characterization

described above was repeated for all experimental configurations investigated to confirm

the validity of the model (the configurations are detailed in Table 4.1.2). We found all

parameters to be constant in µ�tAtB, with the obvious exception of the afterpulsing

probability.

5.1.2. Phase measurements To detail the assessment of the phase values �

x,z

determining the superposition of photons in early and late temporal modes, let us
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Figure 4.1.3. Sketch (not to scale) of the probability density p(t) for a detection
event to occur as a function of time within one gate. Detection events can arise from
a photon within an optical pulse (depicted here as a pulse in the late temporal mode),
or be due to optical background, a dark count, or afterpulsing. Also shown are the 400
ps wide time-bins. Within the early time-bin only optical background, dark counts
and afterpulsing give rise to detection events in this case. Note that the width of the
temporal mode exceeds the widths of the time-bins.

assume for the moment that the lasers at Alice’s and Bob’s emit light at the same

frequency. First, we defined the phase of Bob’s |+i state to be zero (this can always be

done by appropriately defining the time di↵erence between the two temporal modes |0i

and |1i). Next, to measure the phase describing any other state (generated by either

Alice or Bob) with respect to Bob’s |+i state, we sequentially send unattenuated laser

pulses encoding the two states through a common reference interferometer. Comparing

the output intensities, we can calculate the phase di↵erence. We note that any frequency

di↵erence between Alice’s and Bob’s lasers results in an additional phase di↵erence. Its

upper bound for our maximum frequency di↵erence of 10 MHz is denoted by �freq.

5.1.3. Measurements of afterpulsing We now turn to the characterization of

afterpulsing. After a detector click (or detection event, which includes photon detection,

dark counts and afterpulsing), the probability of an afterpulse occuring due to that

detection event decays exponentially with time. The SPDs are gated, with the afterpulse

probability per gate being a discrete sampling of the exponential decay. This can be

expressed using a geometric distribution: supposing a detection event occurred at gate

k = �1, the probability of an afterpulse occuring in gate k is given by Pk = ↵p(1� p)k.

Thus, if there are no other sources of detection events, the probability of an afterpulse

occuring due to a detection event is given by
P1

k=0 ↵p(1� p)k.

In a realistic situation, the geometric distribution for the afterpulses will be cut o↵
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by other detection events, either stemming from photons, or dark counts. In addition,

the SPDs have a deadtime after each detection event during which the detector is not

gated until k � kdead (note that time and the number of gates applied to the detector

are proportional). The deadtime can simply be accounted for by starting the above

summation at k = kdead rather than k = 0. However, for an afterpulse to occur during

the kth gate following a particular detection event, no other detection events must have

occured in prior gates. This leads to the following equation for the probability of an

afterpulse per detection event:

P (a,det) =
1X

k=k
dead

(� ⇥ � ⇥ ⇢⇥ Pk) (12)

where:

� = (1� µavg(µ, �, tA, tB)⌘gate)
k�k

dead

� = (1� Pd,gate)
k�k

dead

⇢ =
k�1Y

j=k
dead

1� ↵p(1� p)j

Pk = ↵p(1� p)k (13)

and Pd,gate denotes the detector dark count probability per gate (as opposed to per

time-bin), and µavg(µ, �, tA, tB) expresses the average number of photons present on the

0 0.05 0.1 0.15 0.2
0

1

2

3

4

5
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7

8 x 10ï�

mavg

P a

(µ+b)t

Figure 4.1.4. Afterpulse probability per time-bin as a function of the average number
of photons arriving at the detector per gate.
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detector during each gate as follows:

µavg(µ, �, tA, tB) =
(µ+ bA)tA + (� + bB)tB

2
, (14)

where bA and bB characterize the amount of background light per gate from Alice and

Bob, respectively, and the factor of 1
2 comes from Charlie’s beam splitter. The terms

in the sum of Eq. 12 describe the probabilities of neither having an optical detection

(�), either caused by a modulated pulse or background light, nor a detector dark count

(�) in any gate before and including gate k, and not having an afterpulse in any gate

before gate k (⇢), followed by an afterpulse in gate k (Pk). Equation 12 takes into

account that afterpulsing within each time-bin is influenced by all detections within

each detector gate, and not only those happening within the time-bins that we post-

select when acquiring experimental data.

The afterpulse probability, Pa,gate, for given µ, �, tA and tB can then be found by

multiplying Eq. 12 by the total count rate

Pa,gate = (µavg(µ, �, tA, tB)⌘gate + Pd,gate + Pa,gate)P (a,det). (15)

This equation expresses that afterpulsing can arise from prior afterpulsing, which

explains the appearance of Pa,gate on both sides of the equation. Equation 15 simplifies

to

Pa,gate =
(µavg(µ, �, tA, tB)⌘gate + Pd,gate)P (a,det)

1� P (a,det)
. (16)

Finally, to extract the afterpulsing probability per time-bin, Pa(µ, �, tA, tB), we note

that we found that the distribution of afterpulsing across the gate to be the same as the

distribution of dark counts across the gate. Hence,

Pa(µ, �, tA, tB) = Pa,gate
Pd

Pd,gate

. (17)

Fitting our afterpulse model to the measured afterpulse probabilities, we find ↵ =

8.63 ⇥ 10�3, p = 3.00 ⇥ 10�2, and P
d

P
d,gate

= 4.96 ⇥ 10�2 for kdead = 20. The fit, along

with the measured values, is shown in Figure 4.1.4 as a function of the average number

of photons arriving at the detector per gate µavg(µ, �, tA, tB).

A summary of all the values obtained through these measurements is shown in

Table 4.1.1.

6. Model verification

6.1. Comparing modelled with actual performance

To verify our model, we now compare its predictions with data obtained using our

MDI-QKD system (our system is characterized by the parameters listed in Table 4.1.1).

Experimental data is obtained using two configurations: inside the laboratory using

spooled fiber (for four di↵erent distances between Alice and Bob ranging between 42

62



Table 4.1.1. Experimentally established values for all parameters required to describe
the generated quantum states, as defined in Eq. 2, as well as two-photon interference
parameters and detector properties.

Parameter Alice’s value Bob’s value

b

z=0 = b

z=1 (7.12± 0.98)⇥ 10�3 (1.14± 0.49)⇥ 10�3

b

x=� = b

x=+ (5.45± 0.37)⇥ 10�3 (1.14± 0.49)⇥ 10�3

m

z=0 0.9944± 0.0018 0.9967± 0.0008
m

z=1 0 0
m

x=+ = m

x=� 0.4972± 0.011 0.5018± 0.0080
�

z=0 = �

z=1 = �

x=+ [rad] 0 0
�

x=� [rad] ⇡ + (0.075± 0.015) ⇡ � (0.075± 0.015)

Parameter Value

|�

freq

| [rad] < 0.088
V 0.94± 0.02
P

d

(1.83± 0.77)⇥ 10�5

⌘

gate

0.2
⌘ 0.145

km and 103 km) and over deployed fiber (18 km). For each of these tests three di↵erent

mean photon numbers (0.1, 0.25 and 0.5) were used. All the configurations tested (as

well as the specific parameters used in each test) and the results obtained are listed

in Table 4.1.2. In Figure 4.1.5 we show the simulated values for the error rates (ez,x)

and gains (Qz,x) predicted by the model as a function of µ�tAtB. The plot includes

uncertainties from the measured parameters, leading to a range of values (bands) as

opposed to single values. The figure also shows the experimental values of ez,x and

Q

z,x from our MDI-QKD system in both the laboratory environment and over deployed

fiber. The modelled values and the experimental results agree within experimental

uncertainties over at least three orders of magnitude, from which we conclude that the

model is valid for predicting error rates and gains. This now allows us to optimize

performance of our QKD systems in terms of secret key rate. For instance, the model

allows optimizing the mean photon number per pulse that Alice and Bob use to encode

signal and decoy states as a function of transmission loss, or to identify rate-limiting

components.

7. Optimization of system performance

7.1. Decoy-state analysis

To calculate secret key rates for various system parameters, which allows finding

optimum conditions, first, it is necessary to compute the gain, Qz
11, and the error rate,

e

x
11, that stem from events in which both sources emit a single photon. We consider
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Figure 4.1.5. Modelled and measured results. Figure a) shows the plot for the
error rates in the z-basis (green band) and in the x-basis (blue band) as a function
of the mean photon number per pulse sent by Alice (µ) and Bob (�) multiplied by
the channel transmissions (t

A

and t

B

). Figure b) shows the plot of the gains as a
function of µ�t

A

t

B

. The z-basis is shown in green and the x-basis is shown in blue.
For both figures the results of the measurements done in the laboratory are shown
with squares (blue or green) and the measurements done over deployed fiber are shown
with diamond circles (red and purple). The di↵erence in gains and error rates in the
x- and the z-basis, respectively is due to the fact that, in the case in which one party
sends a laser pulse containing more than one photon and the other party sends zero
photons, projections onto the | 

�
i Bell state can only occur if both pulses encode

qubits belonging to the x-basis. The Bell state projection cannot occur if both prepare
qubits belonging to the z-basis (we ignore detector noise for the sake of this argument).
This causes increased gain for the x-basis and, due to an error rate of 50% associated
with these projections, also an increased error rate for the x-basis.

the three-intensity decoy state method for the MDI-QKD protocol proposed in [25]⇤,

which derives a lower bound for the secret key rate using lower bounds for Qx,z
11 and an

upper bound for ex11. Note that we assume here that imperfectly generated qubit states

only a↵ect the secret key rate through an increase of error rates. We will discuss this

assumption below.

We denote the signal, decoy, and vacuum intensities by µs, µd, and µv, respectively,

for Alice, and, similarly, as �s, �d, and �v for Bob]. For the purpose of this analysis,

we take both channels to have the same transmission coe�cients (that is tA = tB ⌘ t),

according to our experimental configuration, and Alice and Bob hence both select the

same mean photon numbers for each of the three intensities (that is µs = �s ⌘ ⌧s,

µd = �d ⌘ ⌧d, and µv = �v ⌘ ⌧v). Additionally, for compactness of notation, we omit

the µ and � when describing the gains and error rates (e.g. we write Q

z
ss to denote the

gain in the z-basis when Alice and Bob both send photons using the signal intensity).

⇤ Note that we have corrected a mistake present in Eq. 17 of [25].
] Note that µ

v

= �

v

= 0 by definition.
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Table 4.1.2. Measured error rates, ex,z
µ�

, and gains, Qx,z

µ�

, for di↵erent mean photon
numbers, µ and � (where µ = �), lengths of fiber connecting Alice and Charlie, and
Charlie and Bob, `

A

and `

B

, respectively, and total transmission loss, l. The last
set of data details real-world measurements using deployed fiber. Uncertainties are
calculated using Poissonian detection statistics.

Fiber µ = � `

A

`

B

total loss Q

x

µ�

Q

z

µ�

e

x

µ�

e

z

µ�

[km] [km] l [dB]

0.49(2) 1.045(4)⇥ 10�4 5.57(8)⇥ 10�5 0.272(2) 0.037(3)
Spool 0.254(9) 30.98 11.75 13.6 3.20(2)⇥ 10�5 1.47(3)⇥ 10�5 0.277(2) 0.040(4)

0.101(4) 4.84(6)⇥ 10�6 2.72(6)⇥ 10�6 0.278(5) 0.073(6)

0.49(2) 3.92(2)⇥ 10�5 2.02(1)⇥ 10�5 0.261(2) 0.046(1)
Spool 0.25(1) 40.80 40.77 18.2 9.87(9)⇥ 10�6 5.1(1)⇥ 10�6 0.270(4) 0.047(5)

0.099(4) 1.57(3)⇥ 10�6 9.2(3)⇥ 10�7 0.281(9) 0.084(8)

0.50(2) 1.37(1)⇥ 10�5 1.07(2)⇥ 10�5 0.275(3) 0.054(4)
Spool 0.24(1) 51.43 32.19 22.7 3.73(4)⇥ 10�6 3.01(8)⇥ 10�6 0.269(5) 0.071(7)

0.100(6) 6.0(1)⇥ 10�7 4.07(9)⇥ 10�7 0.30(1) 0.103(7)

0.50(5) 4.96(4)⇥ 10�6 2.94(3)⇥ 10�6 0.280(4) 0.068(3)
Spool 0.25(1) 61.15 42.80 27.2 1.50(2)⇥ 10�6 7.1(2)⇥ 10�7 0.282(7) 0.091(6)

0.103(5) 2.45(9)⇥ 10�7 1.31(6)⇥ 10�7 0.28(2) 0.14(2)

0.50(2) 3.01(1)⇥ 10�4 1.667(8)⇥ 10�4 0.273(2) 0.0362(7)
Deployed 0.26(1) 12.4 6.2 9.0 8.78(6)⇥ 10�5 5.01(4)⇥ 10�5 0.263(3) 0.043(1)

0.100(4) 1.45(2)⇥ 10�5 7.3(1)⇥ 10�7 0.276(5) 0.055(3)

Under these assumptions, the lower bound on Q

x,z
11 is given by

Q

x,z
11 �

D1(⌧s)D2(⌧s)(Q
x,z
dd �Q

x,z
0 (⌧d))� D1(⌧d)D2(⌧d)(Qx,z

ss �Q

x,z
0 (⌧s))

D1(⌧s)D1(⌧d)(D1(⌧d)D2(⌧s)� D1(⌧s)D2(⌧d))
,(18)

where the various Di(⌧) denote the probability that a pulse with photon number

distribution D and mean ⌧ contains exactly i photons, and Q

x,z
0 (⌧d) and Q

x,z
0 (⌧s) are

given by

Q

x,z
0 (⌧d) = D0(⌧d)Q

x,z
vd + D0(⌧d)Q

x,z
dv � D0(⌧d)

2
Q

x,z
vv , (19)

Q

x,z
0 (⌧s) = D0(⌧s)Q

x,z
vs + D0(⌧s)Q

x,z
sv � D0(⌧s)

2
Q

x,z
vv . (20)

The error rate e

x
11 can then be computed as

e

x
11 

e

x
ddQ

x
dd � D0(⌧d)exvdQ

x
vd � D0(⌧d)exdvQ

x
dv + D0(⌧d)2exvvQ

x
vv

D1(⌧d)2Qx
11

, (21)

where the upper bound holds if a lower bound is used for Qx
11. Note that Q

x,z
11 , Q

x,z
0 (⌧d),

Q

x,z
0 (⌧s) and e

x
11 (Eqs. 18-21) are uniquely determined through measurable gains and

error rates.
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7.2. Optimization of signal and decoy intensities

For each set of experimental parameters (i.e. distribution function D, channel transmis-

sions and all parameters describing imperfect state preparation and measurement), the

secret key rate (Eq. 1) can be maximized by properly selecting the intensities of the

signal and decoy states (⌧s and ⌧d, respectively). Here we consider its optimization as

a function of the total transmission (or distance) between Alice and Bob. We make the

assumptions that both the channel between Alice and Charlie and the channel between

Bob and Charlie have the same transmission coe�cient, t, and that Alice and Bob use

phase randomized attenuated laser pulses with Poissonian photon number distribution

as well as the same signal and decoy intensities. We considered values of ⌧d in the range

0.01  ⌧d < 0.99 and values of ⌧s in the range ⌧d < ⌧s  1. An exhaustive search com-

puting the secret key rate for an error correction e�ciency f = 1.14 [28] is performed

from 2 km to 200 km total distance (assuming 0.2 dB/km loss), with increments of 0.01

photons per pulse for both ⌧s and ⌧d. For each point, the model described in section 4 is

used to compute all the experimentally accessible quantities required to compute secret

key rates using the three-intensity decoy state method summarized in Eqs. 18-21.

In our optimization, we found that, in all cases, ⌧d = 0.01 is the optimal decoy

intensity. We attribute this to the fact that ⌧d has a large impact on the tightness of

the upper bound on e

x
11 in Eq. 21 (this is due to the fact that all errors in the cases

in which both parties sent at least one photon, which increases with ⌧d, are attributed

to the case in which both parties sent exactly one photon). Figure 4.1.6 shows, as a

function of total loss (or distance), the optimum values of the signal state intensity, ⌧s,

and the corresponding secret key rate, S, for decoy intensities of ⌧d 2 [0.01, 0.05, 0.1],

as well as for a perfect decoy state protocol (i.e. using values of Qz
11 and e

x
11 computed

from the model, as detailed in the preceeding section).

7.3. Rate-limiting components

Finally, we use our model to simulate the performance of the MDI-QKD protocol

given improved components. We consider two straightforward modifications to the

system: replacing the InGaAs single photon detectors (SPDs) with superconducting

single photon detectors (SSPDs) [29], and improving the intensity modulation (IM)

system. For various combinations of these improvements, the optimized signal intensities

and secret key rates for µd = 0.05 are shown in Figure 4.1.7. First, using the state-of-

the-art SSPDs in [29], the detection e�ciency (⌘) is improved from 14.5% to 93%,

and the dark count probability (Pd) is reduced by nearly two orders of magnitude.

Furthermore, the mechanisms leading to afterpulsing in InGaAs SPDs are not present

in SSPDs (that is Pa = 0). This improvement results in a drastic increase in the

secret key rate and maximum distance as both the probability of projection onto | 

�
i

and the signal-to-noise-ratio are improved significantly. Second, imperfections in the

intensity modulation system used to create pulses in our implementation contribute
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Figure 4.1.6. a) Optimum signal state intensity, ⌧
s

, and b) corresponding secret key
rate as a function of total loss in dB. The secondary axis shows distances assuming
typical loss of 0.2 dB/km in optical fiber without splices. The optimum values for µ

s

for small loss have to be taken with caution as in this regime the model needs to be
expanded to higher photon number terms.

significantly to the observed error rates, particularly in the z-basis. Using commercially-

available, state-of-the-art intensity modulators allow suppressing the DC background

light (represented by b

x,z in general quantum state given in Eq. 2) by an additional

10-20 dB, corresponding to an extinction ration of 40 dB. Furthermore, we consider

improvements to the driving electronics for the intensity modulator that reduces ringing

in our pulse generation by a factor of 5, bringing the values of mx,z in Eq. 2 closer to

the ideal values. As seen in Figure 4.1.7, this provides a modest improvement to the

secret key rate, both when applied to our existing implementation, and when applied in

conjunction with the SSPDs.

8. Conclusion

We have developed a general model for systems implementing the Measurement-Device-

Independent QKD Protocol. Our model takes into account experimental imperfections

in sources and measurement devices as well as transmission loss, and is evaluated against

data taken with a real, time-bin qubit-based QKD system. The consistency between

observed values and predicted data confirms the model. In turn, this allows optimizing

mean photon numbers for signal and decoy states and finding rate-limiting components

for future improvements. We believe that our model, which is straightforward to

generalize to other types of qubit encoding, as well as the detailed description of the

characterization of experimental imperfections will be useful to improve QKD beyond

its current state of the art.
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Figure 4.1.7. a) Optimum signal state intensity, ⌧
s

, and b) corresponding secret key
rate as a function of total loss in dB. The secondary axis shows distances assuming
typical loss of 0.2 dB/km in optical fiber without splices. The optimum values for µ
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[6] Masanes L, Pironio S and Aćın A 2011 Secure device-independent quantum key distribution with
causally independent measurement devices Nat. Comm. 2, 238.

[7] Lo H-K, Curty M and Qi B 2012 Measurement-device-independent quantum key distribution Phys.

Rev. Lett. 108, 130503.

68



[8] Braunstein S L and Pirandola S 2012 Side-channel-free quantum key distribution Phys. Rev. Lett.

108, 130502.
[9] Rubenok A, Slater J A, Chan P, Lucio-Martinez I, Tittel W 2013 Real-world two-photon

interference and proof-of-principle quantum key distribution immune to detector attacks
arXiv :1304.2463 [quant-ph].

[10] Liu Y, Chen T-Y, Wang L-J, Liang H, Shentu G-L, Wang J, Cui K, Yin H-L, Liu N-L, Li L, Ma X,
Pelc, J S, Fejer M M, Zhang Q, Pan J-W 2012 Experimental measurement-device-independent
quantum key distribution arXiv :1209.6178 [quant-ph].

[11] da Silva T F, Vitoreti D, Xavier G B, Temporão G P and von der Weid J P 2012 Proof-of-
principle demonstration of measurement device independent QKD using polarization qubits
arXiv :1207.6345 [quant-ph].

[12] Brassard G, Lütkenhaus N, Mor T, Sanders B 2000 Limitation on practical quantum cryptography
Phys. Rev. Lett. 85, 1330.

[13] Hwang W 2003 Quantum Key Distribution with High Loss: Towards Global Secure
Communication Phys. Rev. Lett. 91, 057901.

[14] Lo H-K, Ma X and Chen K 2005 Decoy State Quantum Key Distribution Phys. Rev. Lett. 94,
230504.

[15] Wang X 2005 Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptoraphy
Phys. Rev. Lett. 94, 230503.

[16] Gisin N, Fasel S, Kraus B, Zbinden H and Ribordy G 2006 Trojan-horse attacks on quantum-key-
distribution systems Phys. Rev. A 73, 022320.

[17] Fung C-H F, Qi B, Tamaki K and Lo H-K 2007 Phase-remapping attack in practical quantum key
distribution systems Phys. Rev. A 75, 032314.

[18] Lamas-Linares A and Kurtsiefer C 2007 Breaking a quantum key distribution system through a
timing side channel Opt. Express 15, 9388.

[19] Zhao Y, Fung C-H F, Qi B, Chen C and Lo H-K 2008 Quantum Hacking: Experimental
demonstration of time-shift attack against practical quantum key distribution systems Phys.

Rev. A 78, 042333.
[20] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Thermal blinding of

gated detectors in quantum cryptography Opt. Express 18, 27938.
[21] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Hacking commercial

quantum cryptography systems by tailored bright illumination Nat. Photonics 4, 686.
[22] Yuan Z L, Dynes J F and Shields A J 2010 Avoiding the blinding attack in QKD Nat. Phot. 4,

800.
[23] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Avoiding the blinding

attack in QKD Nat. Phot. 4, 801.
[24] Bennett C and Brassard G 1984 Quantum cryptography: Public key distribution and coin tossing.

Proceedings of IEEE International Conference on Computers Systems and Signal Processing,
175.

[25] Wang X-B 2013 Three-intensity decoy-state method for device-independent quantum key
distribution with basis-dependent errors Phys. Rev. A 87, 012320.

[26] Stucki D, Ribordy G, Stefanov A, Zbinden H, Rarity J and Wall T 2001 Photon counting for
quantum key distribution with Peltier cooled InGaAs/InP APDs J. of Mod. Opt. 48, 1967.

[27] Hong C K, Ou Z Y and Mandel L 1987 Measurement of subpicosecond time intervals between two
photons by interference Phys. Rev. Lett. 59, 2044.

[28] Sasaki M et. al. 2011 Field test of quantum key distribution in the Tokyo QKD Network Opt.

Express 19, 10387.
[29] Marsili F, Verma V B, Stern J A , Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B,

Shaw M D, Mirin R P and Nam S W 2013 Detecting single infrared photons with 93% system
e�ciency Nat. Phot. 7, 210.

69



Real-world two-photon interference and proof-of-principle quantum key distribution

immune to detector attacks
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1Institute for Quantum Science & Technology, University of Calgary, Canada
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Several vulnerabilities of single photon detectors have recently been exploited to compromise the
security of quantum key distribution (QKD) systems. In this letter we report the first proof-of-
principle implementation of a new quantum key distribution protocol that is immune to any such
attack. More precisely, we demonstrated this new approach to QKD in the laboratory over more
than 80 km of spooled fiber, as well as across di↵erent locations within the city of Calgary. The
robustness of our fibre-based implementation, together with the enhanced level of security o↵ered
by the protocol, confirms QKD as a realistic technology for safeguarding secrets in transmission.
Furthermore, our demonstration establishes the feasibility of controlled two-photon interference in
a real-world environment, and thereby removes a remaining obstacle to realizing future applications
of quantum communication, such as quantum repeaters and, more generally, quantum networks.

Quantum key distribution (QKD) promises the distri-
bution of cryptographic keys whose secrecy is guaranteed
by fundamental laws of quantum physics[1, 2]. Start-
ing with its invention in 1984[3], theoretical and experi-
mental QKD have progressed rapidly. Information theo-
retic security, which ensures that secret keys can be dis-
tributed even if the eavesdropper, Eve, is only bounded
by the laws of quantum physics, has been proven un-
der various assumptions about the devices of the legit-
imate QKD users, Alice and Bob[4, 5]. Furthermore,
experimental demonstrations employing quantum states
of light have meanwhile resulted in key distribution over
more than 100 km distance through optical fiber[6] or
air[7], QKD networks employing trusted nodes[8], as well
as in commercially available products[9].

However, it became rapidly clear that some of the as-
sumptions made in QKD proofs were di�cult to meet
in real implementations, which opened side channels
for eavesdropping attacks. The most prominent exam-
ples are the use of quantum states encoded into attenu-
ated laser pulses as opposed to single photons[10], and,
more recently, various possibilities for an eavesdropper
to remote-control or monitor single photon detectors[11–
14]. Fortunately, both side channels can be removed us-
ing appropriately modified protocols. In the first case,
randomly choosing between so-called signal or decoy
states (quantum states encoded into attenuated laser
pulses with di↵erent mean photon numbers) allows one
to establish a secret key strictly from information con-
veyed by single photons emitted by the laser[15–17]. (We
remind the reader that an attenuated laser pulse com-
prising on average µ photons contains exactly one pho-
ton with probability P1(µ) = µe

�µ [10].) Furthermore,
the recently proposed measurement-device independent
(MDI) QKD protocol[18] (for closely related work see
[19]) additionally ensures that controlling or monitoring
detectors, regardless by what means, does not help the
eavesdropper to gain information about the distributed

key. Note that, while the two most prominent side chan-
nels are removed by MDI-QKD, others remain open and
have to be closed by means of appropriate experimental
design (see the Supplemental Material).

The MDI-QKD protocol is a clever time-reversed ver-
sion of QKD based on the distribution and measurement
of pairs of maximally entangled photons[20]: In the ideal-
ized version, Alice and Bob randomly and independently
prepare single photons in one out of the four qubit states
| iA,B 2 [|0i, |1i, |+i, |�i], where |±i = 2�1/2(|0i± |1i).
The photons are then sent to Charlie, who performs
a Bell state measurement, i.e. projects the photons’
joint state onto a maximally entangled Bell state[21].
Charlie then publicly announces the instances in which
his measurement resulted in a projection onto | �i ⌘
2�1/2

�
|0iA⌦ |1iB � |1iA⌦ |0iB

�
and, for these cases, Al-

ice and Bob publicly disclose the bases (z, spanned by |0i
and |1i, or x, spanned by |±i) used to prepare their pho-
tons. (They keep their choices of states secret.) Identify-
ing quantum states with classical bits (e.g. |0i, |�i ⌘ 0,
and |1i, |+i ⌘ 1) and keeping only events in which Char-
lie found | �i and they picked the same basis, Alice and
Bob now establish anti-correlated key strings. (Note that
a projection of two photons onto | �i indicates that the
two photons, if prepared in the same basis, must have
been in orthogonal states.) Bob then flips all his bits,
thereby converting the anti-correlated strings into corre-
lated ones. Next, the so-called x-key is formed out of
all key bits for which Alice and Bob prepared their pho-
tons in the x-basis; its error rate is used to bound the
information an eavesdropper may have acquired during
photon transmission. Furthermore, Alice and Bob form
the z-key out of those bits for which both picked the z-
basis. Finally, they perform error correction and privacy
amplification[1, 2] to the z-key, which results in the secret
key.

As in the entanglement-based protocol, the time-
reversed version ensures that Eve cannot gain informa-



tion by eavesdropping photons during transmission or by
modifying the device that generates entanglement – ei-
ther the source of photon pairs or the projective two-
photon measurement, respectively – without leaving a
trace[22, 23]. Furthermore, the outstanding attribute
of the MDI-QKD protocol is that it de-correlates detec-
tion events (here indicating a successful projection onto
the | �i Bell state) from the values of the x- and z-key

bits and hence the secret key bits. In other words, all
side channels related to the detection setup, regardless
whether actively attacked or passively monitored, do not
help Eve gain information about the secret key.

Unfortunately, the described procedure is currently dif-
ficult to implement for two reasons, first of which is the
lack of practical single photon sources. However, it is
possible to replace the true single photons by attenuated
laser pulses of varying mean photon number (i.e. signal
and decoy states, as introduced above), and to establish
the secret key using information only from joint measure-
ments at Charlie’s that stem from Alice and Bob both
sending single photons[24]. This procedure results in the
same security against eavesdropping as the conceptually
simpler one discussed above. The secret key rate, S, dis-
tilled from signal states, is then given by[18]:

S � Q

z
11

�
1� h2(e

x
11)

�
�Q

z
µ�fh2(e

z
µ�), (1)

where h2(X) denotes the binary entropy function eval-
uated on X, and f describes the e�ciency of error cor-
rection with respect to Shannon’s noisy coding theorem.
Furthermore, Qz

11, e
x
11, Q

z
µ�, and e

z
µ� are gains (Q – the

probability of a projection onto | �i per emitted pair of
pulses) and error rates (e – the ratio of erroneous to total
projections onto | �i) in either the x- or z-basis for Al-
ice and Bob sending single photons (denoted by subscript
“11”), or for pulses emitted by Alice and Bob with mean
photon number µ and � (denoted by subscript “µ�”), re-
spectively. While the latter are directly accessible from
experimental data, the former have to be calculated us-
ing a decoy state method [18, 24] (see the Supplemental
Material).

Second, a crucial element for MDI-QKD as well as
future quantum repeaters and networks is a Bell state
measurement (BSM)[25]. However, this two-photon in-
terference measurement has not yet been demonstrated
with photons that were generated by independent sources
and have travelled through separate deployed fibers (i.e.
fibers that feature independent changes of propagation
times and polarization transformations). To implement
the BSM one requires that these photons be indistin-
guishable, i.e. arrive simultaneously within their respec-
tive coherence times, with equal polarization, and fea-
ture su�cient spectral overlap. Yet, due to time-varying
properties of optical fibers in a real-world environment,
significant changes to photons’ indistinguishability can
happen in less than a minute, as depicted in Fig. 4.2.1.
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FIG. 4.2.1. (a) Drift of di↵erential arrival time. Variation
of arrival time di↵erence of attenuated laser pulses emitted
at Alice’s and Bob’s after propagation to Charlie. (b) Vari-
ation in the overlap of the polarization states of originally
horizontally polarized light (emitted by Alice and Bob) af-
ter propagation to Charlie. Both panels include temperature
data (crosses), showing correlation between variations of in-
distinguishability and temperature. In addition, despite local
frequency locks, the di↵erence between the frequencies of Al-
ice’s and Bob’s lasers varied by up to 20 MHz per hour (not
shown).

Furthermore, the carrier frequencies of the signals gen-
erated at Alice’s and Bob’s generally vary. These insta-
bilities make real-world Bell state measurements without
stabilization by means of active feedback impossible.
Hence, to enable MDI-QKD and pave the way for

quantum repeaters and quantum networks, we developed
the ability to track and stabilize photon arrival times and
polarization transformations as well as the frequency dif-
ference between Alice’s and Bob’s lasers during all mea-
surements (for more information see the Supplemental
Material). In order to ensure the indistinguishability of
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Setup Fiber `
A

l
A

`
B

l
B

total length total loss
[km] [dB] [km] [dB] ` [km] l [dB]

1a Spool 22.85 4.6 22.55 4.5 45.40 9.1
1b Spool 30.98 6.8 34.65 6.9 65.63 13.7
1c Spool 40.80 9.1 40.77 9.1 81.57 18.2
2 Deployed 12.4 4.5 6.2 4.5 18.6 9.0

TABLE 4.2.1. Length and loss (`
A

, l
A

, `
B

, l
B

) of the individ-
ual fiber links used to connect Alice and Charlie, and Charlie
and Bob, respectively, for all tested setups. The table also
lists the total length ` and total loss l = l

A

+ l
B

(in dB). The
last line details measurements outside the laboratory with de-
ployed fiber.

photons arriving at Charlie’s and to allow, for the first
time, Bell state measurements in a real-world environ-
ment, we developed and implemented three stabilization
systems (see Fig. 4.2.2): fully-automatic polarization sta-
bilization, manual adjustment of photon arrival time, and
manual adjustment of laser frequency. Note that au-
tomating the frequency and timing stabilization systems
is straightforward, particularly if the active control ele-
ments are placed in Charlie’s setup.

We verified that we could indeed maintain the in-
distinguishability of the photons by frequently measur-
ing the visibility, VHOM , of the so-called Hong-Ou-
Mandel dip[26] (a two-photon interference experiment
that is closely related to a BSM). On average we found
VHOM=47±1%, which is close to the maximum value of
50% for attenuated laser pulses with a Poissonian pho-
ton number distribution[27], and thereby confirm that
real-world two-photon interference is possible.

To assess the feasibility of MDI-QKD, we implemented
a proof-of-principle demonstration of MDI-QKD using
the decoy state protocol proposed byWang[24]. This pro-
tocol requires that Alice and Bob choose between three
di↵erent mean photon numbers: two non-zero values re-
ferred to as signal and decoy as well as vacuum. We
performed our experiments over four di↵erent distances
(henceforth referred to as setups) comprising two di↵er-
ent arrangements (see Fig. 4.2.2): (i) Alice, Bob and
Charlie are located within the same lab, and Alice and
Bob are connected to Charlie via separate spooled fibers
of various lengths and loss. (ii) Alice, Bob and Charlie are
located in di↵erent locations within the city of Calgary,
and Alice and Bob are connected to Charlie by deployed
fibers of 12.4 and 6.2 km length, respectively. The fiber
lengths and loss in each setup are listed in Table 1.

For each setup, we prepared all 4 combinations of
Alice and Bob picking a state from the z-basis (i.e.
| iA,B 2 [|0i, |1i], where |0i and |1i denote time-bin
qubits[21] prepared in an early or late temporal mode),
and all 4 combinations of picking a state from the x-basis
(i.e. | iA,B 2 [|+i, |�i]). Using a detailed model of our
MDI-QKD system[28], we calculated the signal and decoy

ALICE 

BOB

CHARLIE

500 m

Link A
12.4 km

12.4 km

  6.2 km

ALICE

LEGEND

Laser

Polarizing Beam Splitter

50/50 Beam Splitter

Single Photon Detector

Photodiode

Temperature
Controlled Box

ATT

Function
Generator

FS IM PM POC

Trigger

Clock

CHARLIE 

SPD

SPD
Link B
6.2 km

MC

FIG. 4.2.2. Aerial view showing Alice (located at SAIT Poly-
technic), Bob (located at the University of Calgary (U of
C) Foothills campus) and Charlie (located at the U of C
main campus). Also shown is the schematic of the experi-
mental setup. Optically synchronized using a master clock
(MC) at Charlie’s, Alice and Bob (not shown; setup iden-
tical to Alice’s) generated time-bin qubits at 2 MHz rate
encoded into Fourier-limited attenuated laser pulses using
highly stable continuous-wave lasers at 1552.910 nm wave-
length, temperature-stabilized intensity and phase modula-
tors (IM, PM), and variable attenuators (ATT). The two
temporal modes defining each time-bin qubit were of 500 ps
(FWHM) duration and were separated by 1.4 ns. The qubits
travelled through 12.4 and 6.2 km of deployed optical fibers
to Charlie, where a 50/50 beam splitter followed by two gated
(10 µs deadtime) InGaAs single photon detectors (SPD) al-
lowed projecting the bi-partite state onto the | �i Bell state.
(This projection occurred if the two detectors indicate detec-
tions with 1.4±0.4 ns time di↵erence.) The MC, polarization
controller (POC) and Alice’s frequency shifter (FS) are used
to maintain indistinguishability of the photons upon arrival
at Charlie. These three feedback systems are detailed in the
Supplemental Material. The individual setups for measure-
ments using spooled fiber (arrangement (i)) are identical.

intensities that maximize the secret key rate produced by
the decoy-state method for each setup. For our decoy in-
tensity we generated attenuated laser pulses containing
on average µ = � = 0.05±5% photons and for our signal
intensities we used a mean photon number between 0.25
and 0.5 (the optimal value depends on loss). For each of
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the four distance configurations listed in Table 1, and for
each of the 16 pairs of qubit states, we performed mea-
surements of all 9 combinations of Alice and Bob using
the signal, decoy or vacuum intensity. We recorded the
number of joint detections in which one detector indi-
cated an early arriving photon (or an early noise count),
and the other detector indicated a late arriving photon
(or a late noise count), which, for time-bin qubits, is re-
garded as a projection onto the | �i-state[21]. Depend-
ing on the observed detection rates, measurements took
between 2 and 35 minutes. This data yields the gains,
Q

z
µ� and Q

x
µ�, and error rates, ezµ� and e

x
µ�, a subset of

which is plotted in Fig. 4.2.3a. A complete list of gains
and error rates is presented in the Supplemental Mate-
rial.

We then computed secret key rates according to Eq. 1
after extracting Q

z
11 and e

x
11 using Wang’s decoy state

calculation[24] and assuming an error correction e�-
ciency f=1.14[8]. As shown in Fig. 4.2.3b, all our mea-
surements, both outside and inside the laboratory, and
using up to 80 km of spooled fiber between Alice and Bob,
output a positive secret key rate. Furthermore, using our
model[28], we estimate that our setup allows secret key
distribution up to a total loss of 18±4.8 dB, which is
in agreement with our QKD results. Assuming the stan-
dard loss coe�cient for telecommunication fibers without
splices of 0.2 dB/km, this value corresponds to a maxi-
mum distance between Alice and Bob of 90±24 km. Note
that moving from our proof-of-principle demonstration to
the actual distribution of secret keys requires additional
developments, which are detailed in the Supplemental
Material.

In summary, we have demonstrated that real-world
quantum key distribution with practical attenuated laser
pulses and immunity to detector hacking attacks is pos-
sible using current technology. Our setup contains only
standard, o↵-the-shelf components, its development into
a complete QKD system follows well-known steps[8], and
the extension to higher key rates using state-of-the-art
detectors[29, 30] is straightforward. We also point out
that MDI-QKD is well suited for key distribution over
long distances, and we expect that further developments
will rapidly push the separation between Alice and Bob
beyond its current maximum of 250 km[6]. Finally, we
remind the reader that the demonstrated possibility for
Bell state measurements in a real-world environment and
with truly independent photons also removes a remaining
obstacle to building a quantum repeater, which promises
quantum communication such as QKD over arbitrary dis-
tances.

Note added: We note that related
experimental work has recently been re-
ported in http://arxiv.org/abs/1207.0392 and
http://arxiv.org/abs/1209.6178.

b)

1E-8

1E-7

1E-6

1E-5

1E-4

 
 

   
   

 S
ec

re
t K

ey
 R

at
e

   
(b

its
 p

er
 d

et
ec

to
r g

at
e)

Loss (dB)
0 5 10 15 25

0 25 50 75 100 125
Distance (km)

20

Lab
Real World

a)

 Loss (dB)
0 5 10 15 20

0 25 50 75 100
Distance (km)

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

E
rr

or
 R

at
e

 
 signal, Lab

signal, Real World
decoy, Lab
decoy, Real World

25

125

x-basis

z-basis

FIG. 4.2.3. (a) Measured error rates ez
µ�

and ex
µ�

for Alice
and Bob either both using signal intensity or both using de-
coy intensity as a function of total loss, l = l

A

+ l
B

(in dB).
We note that every other combination of intensities used in
the decoy-state analysis requires Alice or Bob (or both) send-
ing vacuum, and thus the error rate is 50% and not plotted.
(b) Experimentally obtained and simulated secret key rates
as a function of total loss, l = l

A

+ l
B

(in dB), with l
A

⇠= l
B

,
for optimized mean photon numbers. Experimental secret
key rates are directly calculated from measured gains and er-
ror rates using the decoy state method[24] (see Supplemental
Material for details). In both panels, the secondary x-axis
shows distance assuming loss of 0.2 dB/km. Diamonds de-
pict results obtained using deployed fibers (see Fig. 4.2.2a);
all other data was obtained using fiber on spools. Uncertain-
ties (one standard deviation) were calculated for all measured
points assuming Poissonian detection statistics. We stress
that the simulated values, computed using our model[28], do
not stem from fits but are based on parameters that have been
established through independent measurements. Monte-Carlo
simulations using uncertainties in these measurements lead to
predicted bands as opposed to lines (for more details see the
Supplemental Material).

73



ACKNOWLEDGEMENTS

The authors thank E. Saglamyurek, V. Kiselyov and
TeraXion for discussions and technical support, the Uni-
versity of Calgary’s Infrastructure Services for providing
access to the fiber link between the University’s main
campus and the Foothills campus, SAIT Polytechnic
for providing laboratory space, and acknowledge funding
by NSERC, QuantumWorks, General Dynamics Canada,
iCORE (now part of Alberta Innovates Technology Fu-
tures), CFI, AAET and the Killam Trusts.

[1] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, Quan-
tum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

[2] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M.
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Chapter 5

Quantum Entanglement for Quantum Repeaters

A goal of quantum communication is the distribution of entanglement between faraway

locations. This long-distance entanglement could be used for long-distance fundamental

tests of quantum mechanics, such as Bell inequalities, and also practical applications like

quantum cryptography protocols, such as MDI-QKD. Unfortunately, as discussed earlier,

exponentially-scaling loss in any communication channel limits the practical distance over

which entanglement can be established. To break this distance barrier and allow for truly

long-distance quantum communication one must develop a new quantum technology - the

quantum repeater.

As explained in Chapter 1, a long channel can be split into a series of smaller, elemen-

tary links, which are connected via quantum repeaters. These repeaters generate entangled

photons, store one photon per entangled pair in quantum memories, distribute the other half

across the elementary link and then use entanglement swapping to link distant elementary

links together. A long-term goal of the QC2 group is to develop a functioning quantum

repeater.

The motivation for the work presented in this chapter is to demonstrate key steps towards

this long term goal: interfacing sources of photonic entanglement with suitable quantum

memories and testing necessary features of a quantum memory. In the repeater architecture

we consider, the qubit is input to a quantum memory and, in the ideal scenario, recalled

from the memory at a later time without any changes to its quantum state. Moreover,

as entanglement swapping and BSMs are required for quantum repeaters, there needs to

be no changes to any degree of freedom of the photons during storage and furthermore,

entanglement must be preserved. One challenge in these projects was developing a source
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of entanglement to interface with a quantum memory. Typical SPDC photon pair sources

have bandwidths in the terahertz regime while typical quantum memories have bandwidths

around tens of megahertz. Our group’s Entanglement team and Memory team were able to

meet half-way and develop technologies working around several gigahertz.

This chapter contains three articles. In the first we describe how we used our photon pair

source to generate a conditional time-bin qubit, which was stored and recalled in the quantum

memory. We demonstrated that the fidelity of the time-bin quantum state storage was higher

than any classical memory could achieve. Also, the conditioning is closely related to heralded

state storage, which is necessary for quantum repeaters (see Chapter 1). In the second

article, we showed that there was no change to any degree of freedom during storage. To

demonstrate this, we performed two-photon interference experiments with photons recalled

from separate quantum memories and also BSMs with two qubits, one of which was stored

in a quantum memory. The high visibility of the interference and low error rate of the

BSM confirm that no degree of freedom is significantly modified during storage. Note that

in these experiments, we used attenuated laser pulses instead of the photon pair source as

two inputs were required. In the third article, we upgraded our photon pair source to a

source of entanglement and demonstrated the faithful storage of entanglement. These works

demonstrate that our quantum memories are suitable for quantum repeaters.

The fabrication of the quantum memory material was done by Prof. Wolfgang Sohler’s

group at the University of Paderborn and the quantum memories were designed and devel-

oped by our QC2 Memory team. In collaboration with Jeongwan Jin and Félix Bussières, I

focused on the development of the optical sources for all three projects, as well as performing

the measurements and analyzing the results.
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We demonstrate the conditional detection of time-bin qubits after storage in and retrieval from a
photon-echo based waveguide quantum memory. Each qubit is encoded into one member of a photon-
pair produced via spontaneous parametric down conversion, and the conditioning is achieved by the
detection of the other member of the pair. Performing projection measurements with the stored
and retrieved photons onto di↵erent bases we obtain an average storage fidelity of 0.885 ± 0.020,
which exceeds the relevant classical bounds and shows the suitability of our integrated light-matter
interface for future applications of quantum information processing.

Quantum memories are key elements for future ap-
plications of quantum information science such as
long-distance quantum communication via quantum re-
peaters [1, 2] and, more generally, distributed quantum
information processing in quantum networks [3]. They
enable reversible mapping of arbitrary quantum states
between travelling and stationary carriers (i.e. light and
matter). This reduces the impact of loss on the time
required to establish entanglement between distant loca-
tions [1], and allows the implementation of local quan-
tum computers based on linear optics [4]. However, to-
wards these ends, the successful transfer of a quantum
state into the memory must be announced by a herald-
ing signal. When using an individual absorber, such a
signal can be derived through the detection of a change
of atomic level population [5]. In atomic ensembles, this
approach is infeasible. Instead, storage is derived from
the detection of a second photon that either indicates the
absorption [6], or the presence of the first at the input of
the memory [7] (the first approach relies on spontaneous
Raman scattering, the second on using pairs of photons).
Furthermore, quantum memories must have large accep-
tance bandwidths and multi-mode capacities, and allow
on-demand read-out after second-long storage with high
e�ciency [7, 8]. In addition, for viable quantum technol-
ogy, quantum memories should be robust and simple to
operate (e.g. be based on integrated optics).

A lot of progress towards these figures of merit has
been reported over the past few years, including work
that explores electromagnetically induced transparency
(EIT), as well as photon-echo and cavity QED-based ap-
proaches (see [2, 5, 7–16] for reviews and latest achieve-
ments). For instance, quantum memories employing Rb
vapour have demonstrated e�ciencies up to 87% [9] and
storage times in excess of 0.1 s [10], while GHz band-
widths [11] and storage of 64 modes [14] have been shown
in rare-earth materials. However, having a quantum
memory that simultaneously satisfies all figures of merit

currently remains an outstanding challenge.

Yet, strictly, most of these experiments did not report
true heralding – either heralding was not actually im-
plemented, or the ‘heralding’ signal was generated only
after the stored photon left the memory, or the signal
could, due to technical issues, only be derived once the
stored photon was detected. Nevertheless, experiments
that employ photon pairs [11–13, 17] do gain from con-
ditioning the detection of the stored photon on that of
the auxiliary photon (i.e. a posteriori ‘heralding’): by
reducing the e↵ects of loss and detector noise condition-
ing generally increases the fidelity between the quantum
state of the original and the retrieved photon.

Supplementing the experiments on storage of entan-
gled photons [11–13, 17], we now report another step to-
wards the goal of building universal, viable, and heralded
quantum memory devices – the storage of photons in pure
quantum states in a solid state waveguide, their retrieval,
and their conditional detection by means of temporal cor-
relations with auxiliary photons. We point out that the
step to true heralding is minor and of purely technical
nature; it simply requires using di↵erent, existing, single-
photon detectors (see, e.g., [18, 19]).

Our experimental setup consists of two main
blocks, see Fig. 5.1.1: A spontaneous parametric
down-conversion (SPDC) photon-pair source, and a
Ti:Tm:LiNbO3 single mode waveguide fabricated by in-
di↵usion processes [20]. When cooled to 3 K, and us-
ing a photon-echo quantum memory protocol [7, 8, 21],
the Tm-doped waveguide allows storage and retrieval of
quantum states encoded into one member of each photon
pair, while the detection of the other member provides
the conditioning signal.

In the photon-pair source a mode-locked pump laser
generates 6 ps long pulses at a rate of 80 MHz and
1047.328 nm central wavelength. They are subsequently
frequency-doubled (FD) in a periodically poled LiNbO3

(PPLN) crystal, yielding pulses with 523.664 nm cen-
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FIG. 5.1.1. a. Photon pair source and quantum memory
setup (see text for details). Wave-plates align light polariza-
tion along the LiNbO3’s C3-axis. The waveguide is held at
3 K, and a 570 G magnetic field is applied along the crystal’s
C3-axis (see Fig. 2a). b. Timing sequence containing three
repeated phases: 10 ms AFC preparation for optical pump-
ing, 2.2 ms wait to allow excited population to decay, and
40 ms storage and retrieval, during which 795 nm photons are
successively stored for tst = 6 ns and then recalled.

tral wavelength, 16 ps duration, and 90 mW average
power. The FD pulses are sent to a second PPLN crys-
tal that, via SPDC, produces pairs of photons centred
at 795.506 nm and 1532.426 nm. Frequency filtering
the 795 nm photons with a 6 GHz-bandwidth Fabry-
Perot filter (FPF) and the 1532 nm photons with a
9 GHz-bandwidth fiber-Bragg grating (FBG) we obtain
frequency uncorrelated pairs. Each 795 nm photon trav-
els through an imbalanced, temperature-stabilized Mach-
Zehnder interferometer with 42 cm path-length di↵er-
ence, corresponding to 1.4 ns relative delay. Thus, each
photon emerges in a superposition of two temporal modes
(early and late), i.e., in a time-bin qubit state [22]. They
are then directed into the quantum memory, stored, re-
trieved, and finally detected by a Si avalanche-photo-
diode (APD)-based single-photon detector.

All 1532 nm photons are sent through 30 m standard
telecommunication fiber to an InGaAs APD-based single-
photon detector. As is typically done, the detector is
gated to reduce noise. The gate signal could in princi-
ple be the SYNC signal derived from each pulse emitted
by the pump laser. However, as its repetition rate of
80 MHz by far exceeds the maximum gate frequency of
our detector, around 1 MHz, we first AND the SYNC
pulses with pulses generated by each Si-APD detection,
and then use this low-rate signal to gate the InGaAs-
APD. Provided the latter is ready for photon detection
(i.e. not deadtime-blocked due to a previous detection),
this signal also starts a time-to-digital converter (TDC),
which then records the time-di↵erence between the de-

tection events produced by the Si-APD and the InGaAs-
APD. This data is used to obtain statistics for single
detections of the retrieved 795 nm photons, as well as for
detections conditioned on the existence of 1532 nm pho-
tons. We emphasize that if an InGaAs APD supporting
80 MHz gate rate had been available [18, 19], then 1532
nm photons could have been detected without the need
for a priori detection of a 795 nm photon. This simple
modification of our setup would have turned the condi-
tional detection of 795 nm photons into detections that
are heralded by clicks of the InGaAs APD.
The other main block of our setup is a Ti:Tm:LiNbO3

waveguide that allows storage and retrieval of the 795 nm
photons via the atomic frequency comb (AFC) quantum
memory protocol [21]. This approach to quantum state
storage requires the spectral absorption of an atomic en-
semble to be constituted of a series of equally spaced lines
with frequency spacing�⌫ . The interaction between such
an AFC and a photon with wavevector k leads to the
absorption of the photon and generates a collective exci-
tation in the atomic medium that is described by

| i = 1p
N !

NX

j=1

cje
i2⇡mj�⌫te�ikzj |g1, · · · ej , · · · gN i . (1)

Here, |gji (|eji) denotes the ground (excited) state of
atom j, mj�⌫ is the detuning of the atom’s transition
frequency from the photon carrier frequency, zj its po-
sition measured along the propagation direction of the
light, and the factor cj depends on the atom’s resonance
frequency and position. Due to the presence of di↵erent
atomic transition frequencies, the excited collective co-
herence dephases rapidly. However, the particular shape
of the absorption line results in the recovery of the col-
lective coherence after storage time tst = 1/�⌫ . This can
easily be seen from Eq. (1): for t = 1/�⌫ all frequency
dependent phase factors are zero (mod 2⇡). This leads
to re-emission of the photon into the original mode and
quantum state with maximally 54% e�ciency for an opti-
mally implemented AFC. Modifications to the procedure
enable recall on demand and up to 100% e�ciency [21].
Suitable media in which to implement the AFC pro-

tocol are cryogenically cooled rare-earth ion doped crys-
tals [7, 23]. They feature inhomogeneously broadened
absorption profiles, often posses long-lived atomic sub-
levels that can serve as shelving levels for tailoring the
AFC through persistent spectral hole burning, and gen-
erally have long coherence times on optical and spin tran-
sitions. We use the 3H6-3H4 transition of Tm ions in a
single-mode channel waveguide fabricated by Ti indi↵u-
sion into the Tm doped surface of a Z-cut LiNbO3 crystal,
see Fig. 5.1.2a [20]. To tailor the desired AFC into the
inhomogeneously broadened absorption profile, Tm ions
with transition frequencies within the comb’s troughs are
optically pumped via the excited level into long-lived nu-
clear Zeeman levels, see Fig. 5.1.2b [20, 24]. To achieve
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FIG. 5.1.2. a. Waveguide geometry: The sample surface is
first doped by indi↵using a ⇡ 20 nm thick Tm layer yielding
a concentration profile of ⇡ 6 µm depth with ⇡ 1020 ions per
cm3 surface concentration. Subsequently a 3 µm wide chan-
nel waveguide is fabricated by indi↵usion of a 40 nm thick
vacuum-deposited Ti stripe. AFC preparation light and sin-
gle photons are coupled in and out of the waveguide with
10% total e�ciency by butt-coupling single mode fibers. b.
Simplified energy level diagram of Tm ions: The optical co-
herence time of the 3H6-

3H4 transition at 3 K is 1.6 µs, and
the radiative lifetimes of the 3H4 and 3F4 levels are 82 µs and
2.4 ms, respectively. A 570 G magnetic field splits the ground
and excited levels into Zeeman sub-levels. The ground Zee-
man level splitting is ⇠ 83 MHz, and the lifetime of the upper
ground level exceeds one second. c. 5 GHz-bandwidth AFC:
The tooth separation is �⌫ = 167 MHz, corresponding to 6 ns
storage time. The line-width of the teeth is � = 83 MHz.

frequency selective optical pumping we employed a linear
side-band chirp technique [11, 25] that allowed us to cre-
ate a 5 GHz broad grating (matching the spectral width
of the 795 nm photons) with tooth spacing of 167 MHz,
see Fig. 5.1.2c. This corresponds to a storage time of 6 ns.
After each 10 ms-long AFC preparation a 2.2 ms-long
wait time allows atoms excited by the optical pumping
to decay before photon storage (see Fig. 5.1.1b for the
timing per experimental cycle). A set of micro electro-
mechanical switches (MEMS) then open the channel for
qubits to enter the memory, and, after recall, direct them
towards the Si-APD. We assessed our memory’s retrieval
e�ciency to be (2±0.5)%. Taking the 10 dB fibre-to-fibre
coupling loss in and out of the waveguide into account,
this yields an overall system e�ciency of approximately
0.2% [11].

An interesting and useful aspect of photon-echo quan-
tum memory protocols is that they provide a robust tool
to manipulate time-bin qubits [26–29]. For example, us-
ing the AFC approach, any projection measurement on
time-bin qubit states can be performed by superimposing
two combs (double AFC) with appropriately chosen rela-
tive center frequencies and amplitudes [27]. This leads to
two re-emission times that can be set to di↵er by the tem-
poral mode separation of the qubit to be analyzed (1.4 ns
for our experiments). Hence, as a previously absorbed
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FIG. 5.1.3. Storage of early and late time-bin qubit states
in the AFC memory. The left-hand figure depicts the his-
tograms from 180 min of single detections of the retrieved
795 nm photons prepared in early (red) and late (green) qubit
states with the highlighted regions marking the relevant de-
tection windows. The right-hand figure shows the detections
conditioned on 1532 nm photons for the same states. With-
out conditioning the fidelities are Fe = 0.8652 ± 0.0006 and
Fl = 0.8376±0.0004 for the storage of early and late time-bin
states, respectively. Correspondingly, with conditioning, the
fidelities are F⇤

e = 0.9505± 0.0058 and F⇤
l = 0.9573± 0.0033.

photon is re-emitted by the superimposed combs, early
and late temporal modes interfere, allowing the qubit
state to be analyzed in the same way as is typically done
with an imbalanced Mach-Zehnder interferometer [27].
Double AFC recall will, however, lead to a reduction of
the recall e�ciency (compared to single recall).

To demonstrate faithful storage and retrieval of quan-
tum states from the memory, we performed projection
measurements with various time-bin qubits onto di↵erent
bases using single (standard) and double AFC schemes
as explained before. In all our measurements the aver-
age photon number per qubit was 0.1 at the output of
the qubit-encoding interferometer. First we generated
qubit states that occupy only early |ei or late |li tem-
poral modes by blocking either the long or short arm of
the qubit-encoding interferometer, respectively, and then
stored these states in the memory for 6 ns. Fig. 5.1.3
(left) shows single detections (no conditioning) of the re-
trieved photons as a function of the time di↵erence with
respect to the START signal. The dark counts from
the Si-APD reduce the signal to noise ratio (SNR) to
⇠ 5. For an input state |ei, we compute the fidelity as
Fe = Ce|e/(Ce|e + Cl|e), where, e.g., Cl|e denotes the
number of detected counts in the late time-bin given |ei
was encoded in the qubit at the input. Similarly, we
can find Fl, enabling us to calculate the mean fidelity:
Fel = (Fe + Fl)/2 = 0.8514± 0.0004.

On the other hand, conditioning the detections of the
retrieved photons on the detection of 1532 nm photons
leads to a substantial increase of the SNR to ⇠ 22, as
shown in Fig. 5.1.3 (right). This yields a mean fidelity of
F⇤

el = 0.9539± 0.0024.

Next, qubit states in an equal superposition of early
and late temporal modes 1p

2
(|ei+ ei�|li) were produced

with � set to zero. Storage and projection measurements
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FIG. 5.1.4. Retrieval of qubits created in a superposition of
early and late temporal modes. The top left figure presents
histograms of single detections of the retrieved 795 nm pho-
tons with AFC phase settings of zero (red) and ⇡ (green), col-
lected during 80 min. The top right figure shows the same his-
tograms for conditional detections. The highlighted regions
mark detection windows used to derive projection probabil-
ities required to calculate fidelities. The lower curves show
single and coincidence counts obtained for all phase settings
for single detections (left) and conditional detections (right),
yielding visibilities of 0.364± 0.087 and 0.701± 0.059, respec-
tively.

were performed using the double AFC scheme with the
relative phase of the two combs (measured w.r.t. the
phase introduced by the qubit-encoding interferometer)
varied by ⇡/2 increments. The results for single and
conditional detections are given in Fig. 5.1.4. The his-
tograms show the detection statistics for zero and ⇡ dou-
ble AFC phase settings, from which we extract a SNR
slightly above 1 for the single, and above 6 for the con-
ditional detection. In the lower part of Fig. 5.1.4 we
show the normalized counts for each projection setting
for the single and conditional detections. Fitting sinu-
soidal curves to these we derive visibilities V, which, in
turn, yield a fidelity F = (1 + V)/2 for single detections
of F� = 0.682±0.020. For conditional detections we find
a significantly larger value of F⇤

� = 0.851± 0.030. These
figures allow establishing an average, single detection fi-
delity: F ⌘ (Fel +2F�)/3 = 0.738± 0.029. This violates
the quantum classical bound [30] of ⇠ 0.667, thus veri-
fying that our memory outperforms any classical storage
protocol. However, it is below the bound of ⇠ 0.833 for
an optimal universal quantum cloner [31]. Harnessing the
conditional detection we find F⇤ = 0.885 ± 0.020. This
beats the quantum-classical bound by 10 standard devi-
ations and also violates the optimal universal quantum
cloner bound by 2.5 standard deviations.

To conclude, we have demonstrated storage, retrieval,
and conditional detection of di↵erent time-bin qubit
states using a solid-state Ti:Tm:LiNbO3 waveguide quan-

tum memory with average fidelity F⇤ = 0.885 ± 0.020,
which exceeds the relevant classical bounds. Operating
the memory in a heralded fashion is readily achievable
with high-rate APDs that have recently become com-
mercially available. Despite our memory device’s current
limitations, namely e�ciency, storage time, and preset
recall time, the high fidelity and the wide spectral accep-
tance makes our approach promising for future quantum
communication schemes and quantum networks. The
LiNbO3 host crystal and the waveguide structure have
potential advantages in quantum memory applications
such as fast electric field control of collective atomic
phase evolution and, due to the resemblance with build-
ing blocks of classical integrated optical devices [32], it
holds promise for simple integration with existing infor-
mation technology. Furthermore, the ability to perform
projection measurements using a photon-echo memory
provides a simple and robust tool that might find use in
other applications of quantum information processing.
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[31] V. Bužek and M. Hillery, Phys. Rev. A 54, 1844 (1996).
[32] W. Sohler et al., Opt. Photon. News 19, 24 (2008).

81



Two-photon interference of weak coherent laser pulses recalled from separate

solid-state quantum memories

Jeongwan Jin,1 Joshua A. Slater,1 Erhan Saglamyurek,1 Neil Sinclair,1 Mathew
George,2 Raimund Ricken,2 Daniel Oblak,1 Wolfgang Sohler,2 and Wolfgang Tittel1

1Institute for Quantum Science and Technology, and Department of Physics & Astronomy,
University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada

2Department of Physics - Applied Physics, University of Paderborn,
Warburger Strasse 100, 33095 Paderborn, Germany

Quantum memories for light, which allow the reversible transfer of quantum states between light
and matter, are central to the development of quantum repeaters, quantum networks, and linear
optics quantum computing[1, 2]. Significant progress has been reported in recent years, including
the faithful transfer of quantum information from photons in pure and entangled qubit states[3–8].
However, none of these demonstrations confirm that photons stored in and recalled from quantum
memories remain suitable for two-photon interference measurements, such as C-NOT gates and
Bell-state measurements, which constitute another key ingredient for all aforementioned applica-
tions of quantum information processing. Using pairs of weak laser pulses, each containing less than
one photon on average, we demonstrate two-photon interference as well as a Bell-state measure-
ment after either none, one, or both pulses have been reversibly mapped to separate thulium-doped
titanium-indi↵used lithium niobate (Ti:Tm:LiNbO

3

) waveguides. As the interference is always near
the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faith-
fully mapping quantum information, also preserves the entire photonic wavefunction. Hence, we
demonstrate that our memories are generally suitable for use in advanced applications of quantum
information processing that require two-photon interference.

When two indistinguishable single photons impinge on
a 50/50 beam-splitter (BS) from di↵erent input ports,
they bunch and leave together by the same output port.
This so-called Hong-Ou-Mandel (HOM) e↵ect[9] is due
to destructive interference between the probability am-
plitudes associated with both input photons being trans-
mitted or both reflected, see Fig. 1. Since no such in-
terference occurs for distinguishable input photons, the
interference visibility V provides a convenient way to ver-
ify that two photons are indistinguishable in all degrees
of freedom, i.e. spatial, temporal, spectral, and polariza-
tion modes. The visibility is defined as

V = (R
max

�R
min

)/R
max

, (1)

where R
min

and R
max

denote the rate with which pho-
tons are detected in the two output ports in coincidence
if the incoming photons are indistinguishable and distin-
guishable, respectively. Consequently, the HOM e↵ect
has been employed to characterize the indistinguishabil-
ity of photons emitted from a variety of sources, including
parametric down-conversion crystals[10], trapped neutral
atoms[7, 11], trapped ions[12], quantum dots[13], organic
molecules[14], nitrogen-vacancy centres in diamond[15,
16], and atomic vapours[17–19]. Furthermore, two-
photon interference is at the heart of linear optics Bell-
state measurements[20], and, as such, has already en-
abled experimental quantum dense coding, quantum tele-
portation, and entanglement swapping[21]. However, to
date, the possibility to perform Bell-state measurements
with photons that have previously been stored in a quan-
tum memory, as required for advanced applications of

quantum information processing, has not yet been es-
tablished. For these measurements to succeed, photons
need to remain indistinguishable in all degrees of free-
dom, which is more restrictive than the faithful recall of
encoded quantum information. Indeed, taking into ac-
count that photons may or may not have been stored
before the measurement, this criterion amounts to the
requirement that a quantum memory preserves a pho-
ton’s wavefunction during storage. Similar to the case
of photon sources, the criterion of indistinguishability is
best assessed using HOM interference, provided single-
photon detectors are employed.

Our experimental setup is depicted in Fig. 5.2.2.
We employ solid-state quantum memories, more pre-
cisely thulium-doped lithium-niobate waveguides in con-
junction with the atomic frequency comb (AFC) quan-
tum memory protocol[22], which have shown great
promise for advanced applications of quantum informa-
tion processing[4, 5]. We then interfere various combina-
tions of recalled and non-stored (i.e. directly transmit-
ted) pulses on a 50/50 BS (HOM-BS). When using sin-
gle photon Fock states at the memory inputs, the HOM
visibility given in Eq. (1) theoretically reaches 100% as
illustrated in Fig. 5.2.1. However, with phase incoherent
laser pulses obeying Poissonian photon-number statistics,
as in our demonstration, the maximally achievable visi-
bility is 50%[23], irrespective of the mean photon number
(see Supplementary Information). Nevertheless, attenu-
ated laser pulses are perfectly suitable for assessing the
e↵ect of our quantum memories on the photonic wave-
function. Any reduction of indistinguishability due to



|> (in) =|1 |1’

i|0 |1+1’ + |1’ |1 - |1 |1’ + i|1+1’ |0|> (out) =

FIG. 5.2.1. Illustration of HOM-interference in the case of single photons at BS input | (in)i = |1, 10i, where the prime on
the latter input indicates the possibility to distinguish that input photon from the other in some degree of freedom e.g. by
being polarized orthogonally. The four possible paths of the photons are illustrated, together with their corresponding output
states. If the input photons are indistinguishable with respect to all degrees of freedom we can ignore the primes in the output
states and the paths shown in the two central pictures are identical and, due to the di↵erent signs, thus cancel. This leaves
in the output state | (out)i only the possibilities in which photons bunch. For distinguishable photons, e.g. having orthogonal
polarizations, all paths are distinguishable and all terms remain in | (out)i.

storage causes a reduction of visibility, albeit from max-
imally 50%. This approach extends the characterization
of quantum memories using attenuated laser pulses[24]
from assessing the preservation of quantum information
during storage to assessing the preservation of the entire
wavefunction, and from first- to second-order interfer-
ence.

We first deactivate both quantum memories (see Meth-
ods), to examine the interference between directly trans-
mitted pulses, and thereby establish a reference visibility
for our experimental setup. We set the mean photon
number per pulse before the memories to 0.6, i.e. to the
single-photon level. Using the wave plates, we rotate the
polarizations of the pulses at the two HOM-BS inputs to
be parallel (indistinguishable) or orthogonal (distinguish-
able) and in both cases record the coincidence detection
rates of the detectors at the HOM-BS outputs. Employ-
ing Eq. (1) we find a visibility of (47.9± 3.1)%.

Subsequently, we activate memory a while keeping
memory b o↵, and adjust the timing of the pulse prepa-
ration so as to interfere a recalled pulse from the ac-
tive memory with a directly transmitted pulse from the
inactive memory (see Methods). Pulses are stored for
30 ns in memory a, and the mean photon number per
pulse at the quantum memory input is 0.6. Taking the
limited storage e�ciency of ⇡ 1.5% and coupling loss
into account, this results in 3.4⇥ 10�4 photons per pulse
at the HOM-BS inputs. As before, changing the pulse
polarizations from mutually parallel to orthogonal, we
find V = (47.7± 5.4)%, which equals our reference value
within the measurement uncertainties.

As the final step, we activate both memories to test

the feasibility of two-photon interference in a quantum-
repeater scenario. We note that in a real-world im-
plementation, memories belonging to di↵erent network
nodes are not necessarily identical in terms of material
properties and environment. This is captured by our
setup where the two Ti:Tm:LiNbO

3

waveguides feature
di↵erent optical depths and experience di↵erent mag-
netic fields (see Fig. 5.2.2 and Supplementary Informa-
tion). To balance the ensuing di↵erence in memory e�-
ciency we set the mean photon number per pulse before
the less e�cient and more e�cient memories to 4.6 and
0.6, respectively, so that, as before, the mean photon
numbers are 3.4 ⇥ 10�4 at both HOM-BS inputs. With
the storage time of both memories set to 30 ns, we find
V = (47.2±3.4)%, in excellent agreement with the values
from the previous measurements. The consistently high
visibilities, compiled in the first column of Table 5.2.1,
hence confirm that our storage devices do not introduce
any degradation of photon indistinguishability during the
reversible mapping process, and that two-photon inter-
ference is feasible with photons recalled from separate
quantum memories, even if the memories are di↵erent.

We now investigate in greater detail the change in coin-
cidence count rates as photons gradually change from be-
ing mutually indistinguishable to completely distinguish-
able w.r.t. each degree of freedom accessible for change
in single-mode fibres, i.e. polarization, temporal, and
spectral modes (see Methods). To acquire data more ef-
ficiently we increase the mean number of photons per
pulse at the memory input to between 10 and 50 (re-
ferred to as few-photon-level measurements). However,
the mean photon number at the HOM-BS remains below
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FIG. 5.2.2. Experimental setup. Light from a 795.43 nm wavelength CW laser passes through an acousto-optic modulator
(AOM) driven by a sinusoidally varying signal. The first negative refraction order is fibre coupled into a phase modulator
and, via a beam-splitter (BS), two polarization controllers (PCs) and two micro-electromechanical switches (MEMS), injected
from the back into two Ti:Tm:LiNbO

3

waveguides (labelled a and b) cooled to 3 K [30]. Waveguide a is placed inside a
superconducting solenoid. Using a linear frequency-chirping technique[4] we tailor AFCs with 600 MHz bandwidth and a few
tens of MHz peak spacing, depending on the experiment, into the inhomogeneously broadened absorption spectrum of the
thulium ions, as shown for crystal a in the inset. After 3 ms memory preparation time and 2 ms wait time we store and
recall probe pulses during 3 ms. The 8 ns long probe pulses with ⇡ 50 MHz Fourier-limited bandwidth are derived from the
first positive di↵raction order of the AOM output at a repetition rate of 2.5-3 MHz. Each pulse is divided into two spatial
modes by a half-wave plate (HWP) followed by a polarizing beam-splitter (PBS). All pulses are attenuated by neutral-density
filters (NDFs) and coupled into optical fibres and injected from the front into the Ti:Tm:LiNbO

3

waveguides. After exiting the
memories (i.e. either after storage, or after transmission), the pulses pass quarter- and half-wave plates used to control their
polarizations at the 50/50 BS (HOM-BS) where the two-photon interference occurs. Note that, to avoid first-order interference,
pulses passing through memory a propagate through a 10 km fibre to delay them w.r.t. the pulses passing through memory b
by more than the laser coherence length. Finally, they are detected by two single-photon detectors (actively quenched silicon
avalanche photodiodes, Si-APDs) placed at the outputs of the beam-splitter, and coincidence detection events are analyzed
with a time-to-digital convertor (TDC) and a computer.

one. Example data plots are shown in Fig. 5.2.3, while
the complete set of plots is supplied in the Supplementary
Information Figs. 3-5.

In Fig. 5.2.3a we show the coincidence counts rates as
a function of the polarization of the recalled pulse for the
case of one active memory. The visibilities for all configu-
rations (i.e. zero, one, or two active memories) extracted
from fits to the experimental data are listed in column
2 of Table 5.2.1. They are – as in the case of single-
photon-level inputs – equal to within the experimental
uncertainty.

Next, in Fig. 5.2.3b, we depict the coincidence count
rates as a function of the temporal overlap (adjusted by
the timing of the pulse generation) for the two-memory
configuration. Column 3 of Table 5.2.1 shows the visibil-
ities extracted from Gaussian fits to the data, reflecting
the temporal profiles of the probe pulses, for all con-
figurations. Within experimental uncertainty, they are
equal to each other. Alternatively, in the single-memory
configuration, we also change the temporal mode over-
lap by adjusting the storage time of the pulse mapped
to the quantum memory. Again the measured visibility
of V = (44.4 ± 6.9)% (see Fig. 5.2.3c) is close to the
theoretical maximum.

Finally, we vary the frequency di↵erence between the
two pulses (see Methods) to witness two-photon interfer-
ence w.r.t. spectral distinguishability. For this measure-

ment, we consider only the configurations in which nei-
ther, or a just single memory is active. In both cases the
visibilities, listed in the last column of Table 5.2.1, are
around 43%. While this is below the visibilities found
previously, for reasons discussed in the Supplementary
Information, the key observation is that the quantum
memory does not a↵ect the visibility.

As stated in the introduction, Bell-state measurements
(BSM) with photonic qubits recalled from separate quan-
tum memories are key ingredients for advanced applica-
tions of quantum communication. To demonstrate this
important element, we consider the asymmetric (and ar-
guably least favourable) configuration in which only one
of the qubits is stored and recalled. Appropriately driv-

TABLE 5.2.1. Experimental two-photon interference visibili-
ties (%) for di↵erent degrees of freedom

Single-photon Few-photon

Storage level level

configuration Polarization Polarization Temporal Spectral

No-storage 47.9± 3.1 51.0± 5.6 42.4± 2.3 43.7± 1.7

Single-storage 47.7± 5.4 55.5± 4.1 47.6± 3.0 42.4± 3.5

Double-storage 47.2± 3.4 53.1± 5.3 46.1± 3.2 N. A.
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FIG. 5.2.3. HOM interference plot examples for one or two active memory configurations (as labelled). a) Varying mutual
polarization di↵erence. b) Varying temporal overlap by changing timing of pulse generation. c) Varying temporal overlap by
changing storage time. The acquisition time per data point is 60 s in a,b and 120 s in c.

ing the AOM in Fig. 5.2.2, we prepare the states | 
1

i
and | 

2

i, which describe time-bin qubits[21] of the form
|ei, |li, 1p

2

(|ei + |li), or 1p
2

(|ei � |li), where e and l, re-

spectively, label photons in early or late temporal modes,
which are separated by 25 ns. The qubits are directed
to the memories of which only one is activated. The
mean photon number of the qubit that is stored is set to
0.6, yielding a mean photon number of both qubits at the
HOM-BS input of 6.7⇥10�4. We ensure to overlap pulses
encoding the states | 

1

i and | 
2

i at the HOM-BS and
count coincidence detections that correspond to a projec-
tion onto the | �i = 1p

2

(|ei|li � |li|ei) Bell state. This

projection occurs if the two detectors click with 25 ns
time di↵erence[21]. Because | �i is antisymmetric w.r.t.
any basis, the count rate is expected to reach a mini-
mum value Rk if the two input pulses are prepared in
equal states, and a maximum value R? if prepared in
orthogonal states. Accordingly, we define an error rate
that quantifies the deviation of the minimum count rate
from its ideal value of zero:

e ⌘ Rk

Rk +R? . (2)

First, choosing to encode | 
1

i and | 
2

i in states |ei and
|li we obtain the error rate e(exp)e/l = 0.039± 0.037, which

is near the theoretical value of e(QM)

e/l = 0 (see the Sup-
plementary Information for derivations of the theoretical
values and bounds). In addition it clearly violates the

lower bound e(CM)

e/l = 0.33 that can be obtained for a
Bell-state measurement on two qubits of which one is
recalled from a classical memory (CM). Note that val-

ues for e(QM)

e/l and e(CM)

e/l are independent of whether |ei
and |li qubits are encoded into single photons or at-
tenuated laser pulses. Next, using instead the states
|+i ⌘ 1p

2

(|ei + |li), and |�i ⌘ 1p
2

(|ei � |li) we measure

e(exp)
+/� = 0.287± 0.020, which again only slightly exceeds
the lowest possible value for attenuated laser pulses of

e(att,QM)

+/� = 0.25. The crucial observation is once more

that e(exp)
+/� violates both the lower bound for qubits en-

coded into single photons e(sing,CM)

+/� = 0.33 and attenu-

ated laser pulses e(att,CM)

+/� = 0.417 when these have at
one input of the HOM-BS been recalled from a classical
memory.
Our demonstrations show that solid-state AFC quan-

tum memories are suitable for two-photon interference
experiments, even in the general case of storing the two
photons an unequal number of times. With improved sys-
tem e�ciency[25] and multi-mode storage supplemented
by read-out on demand, which can be achieved either
by selecting the storage time of photons stored at dif-
ferent times[27], or by selecting the frequency of recalled
photons from many possible frequency bins occupied by
simultaneously stored photons[26], such memories can be
used as synchronization devices in multi-photon experi-
ments. This will allow increasing the number of photons
that can be harnessed simultaneously for quantum infor-
mation processing beyond the current limit of eight[28].
A subsequent goal is to develop workable quantum re-
peaters or, more generally, quantum networks, for which
longer storage times are additionally needed. Depending
on the required value, which may range from a hundred
micro-seconds[29] to seconds[1], this may be achieved
by storing quantum information in optical coherence, or
it may require mapping of optical coherence onto spin
states[22].

METHODS

Memory operation and properties. A quantum
memory is said to be activated when we configure the
MEMS to allow the optical pumping light to reach the
waveguide during the preparation stage and thus tailor
an AFC in the inhomogeneously broadend absorption
spectrum of thulium ions (see Fig. 5.2.2). If the optical
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pumping is blocked, the memory is said to be deactivated
and light entering the waveguide merely experiences con-
stant attenuation over its entire spectrum. If a memory
is activated, an incident photon is mapped onto a collec-
tive excitation of thulium ions in the prepared AFC and
subsequently re-emitted at a time given by the inverse of
the comb tooth spacing[22], i.e., t = 1/� (see Fig. 5.2.2).
In all cases, we adjust the mean photon number at the
memory inputs so that mean photon numbers are equal
at the HOM-BS inputs. This is required for achieving
maximum visibility with attenuated laser pulses (see Sup-
plementary Information).

The two Ti:Tm:LiNbO
3

waveguides are fabricated
identically but di↵er in terms of overall length, yielding
optical depths of 2.5 for memory a and 3.2 for memory b.
As shown in Figure 1, memory a is placed at the centre
of a solenoid in a uniform magnetic field, while memory b
is placed outside the solenoid and thus experiences only
a much weaker stray field. Therefore it is not possible to
achieve the optimal e�ciency for both memories at the
same time (see Supplementary Information).

Changing degrees of freedom. a) The polariza-
tion degree is easily adjusted using the free-space half-
and quarter-wave plate set at each HOM-BS input. For
our measurements we rotate the half-wave plate in steps
of either 45 or 7.5 degrees. b) The temporal separation
�t between a pulse arriving at one of the HOM-BS inputs
and the next pulse in the train arriving at the other in-
put can be expressed as �t = {nl/c}mod �tr, where n is
the refractive index of the fibres, l ⇡ 10 km is the path-
length di↵erence for pulses interacting with memory a
and b, and �tr is the repetition period of the pulse train
from the AOM, which is set in the range of 350-400 ns.
As we can change �tr with 10 ps precision, we can tune �t
on the ns scale. c) For the storage time scan, the recall ef-
ficiency decreases with storage time due to decoherence.
Hence, we balance the mean photon number per pulse
for stored and transmitted pulses for each storage time.
d) Finally, to change the spectral overlap of the pulses
input to the HOM-BS we can utilize that these pulses
were generated at di↵erent times in the AOM and thus
we can chose their carrier frequencies independently. We
interchangeably drive the AOM by frequencies ⌫a and ⌫b
and thus create two interlaced trains of pulses with dif-
ferent frequencies. By adjusting the pulse timing we can
ensure that the pulses overlapped at the HOM-BS be-
long to di↵erent trains and thus have a spectral overlap
given by �⌫ = ⌫a � ⌫b. Due to the limited bandwidth
of the AOM we are only able to scan �⌫ by 100 MHz,
which, when compared to the 50 MHz pulse bandwidth,
is not quite su�cient to make the pulses completely dis-
tinguishable. To achieve complete distinguishability, we
supplement with a measurement using orthogonal polar-
izations at the inputs (see Supplementary Information).

Preparing states for Bell-state measurement.

For the Bell-state projection measurement we inter-

changeably prepare the time-bin qubits in either |ei or
|li, or in 1p

2

(|ei + |li) and 1p
2

(|ei � |li) by setting the

relative phase and intensity of the AOM drive signal.
Adjusting the timing of the pulse preparation we ensure
that qubits in di↵erent states overlap at the HOM-BS.
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The reversible transfer of quantum states of light into and out of matter constitutes an important
building block for future applications of quantum communication: it will allow the synchronization
of quantum information [1], and the construction of quantum repeaters [2] and quantum networks
[3]. Much e↵ort has been devoted to the development of such quantum memories [1], the key
property of which is the preservation of entanglement during storage. Here we report the reversible
transfer of photon–photon entanglement into entanglement between a photon and a collective atomic
excitation in a solid–state device. Towards this end, we employ a thulium-doped lithium niobate
waveguide in conjunction with a photon-echo quantum memory protocol [4], and increase the spec-
tral acceptance from the current maximum [5] of 100 Megahertz to 5 Gigahertz. We assess the
entanglement-preserving nature of our storage device through Bell inequality violations [6] and by
comparing the amount of entanglement contained in the detected photon pairs before and after the
reversible transfer. These measurements show, within statistical error, a perfect mapping process.
Our broadband quantum memory complements the family of robust, integrated lithium niobate
devices [7]. It simplifies frequency-matching of light with matter interfaces in advanced applications
of quantum communication, bringing fully quantum-enabled networks a step closer.

Quantum communication is founded on the encoding
of information, generally referred to as quantum infor-
mation, into quantum states of light [6]. The resulting
applications of quantum physics at its fundamental level
o↵er cryptographic security through quantum key dis-
tribution without relying on unproved mathematical as-
sumptions [8] and allow for the disembodied transfer of
quantum states between distant places by means of quan-
tum teleportation [6]. Reversible mapping of quantum
states between light and matter is central to advanced ap-
plications of quantum communication such as quantum
repeaters [2] and quantum networks [3], in which mat-
ter constitutes nodes that hold quantum information un-
til needed, and thereby synchronize the information flow
through the communication channel or network. Fur-
thermore, such a quantum interface allows the genera-
tion of light–matter entanglement through the mapping
of one of two entangled photons into matter. To de-
termine whether and how di↵erent physical systems can
be entangled, and to localize the fundamental or techno-
logical boundaries where this fascinating quantum link
breaks down, are central goals in quantum physics and
have received much attention over the past decades [6].

The reversible light–matter interface can be realized
through the direct transfer of quantum states from light
onto matter and back, or through the generation of light–
matter entanglement followed by teleportation of quan-
tum information from an externally provided photon into
matter, and eventually back. Experimental capabilities
have advanced rapidly over the past years and quan-
tum state transfer between light and atomic vapour [9–
13], solid–state ensembles [4,14], or single absorbers [15],
as well as the generation of light–matter entanglement

through the absorption of photons [16–18], or the emis-
sion of photons from atomic ensembles [19–21] or single
emitters [22, 23] have all been reported.
For quantum memory to become practical, it is impor-

tant to reduce the complexity of experimental implemen-
tations, and the recent addition of rare-earth-ion-doped
crystals [4,14] to the set of storage materials has been a
valuable step towards this goal. The promise of such crys-
tals is further enhanced through potentially long stor-
age times–up to several seconds in Pr:Y2SiO5 [24]. In
addition, given the large inhomogeneous broadening of
optical zero-phonon lines, up to 100 Gigahertz (GHz),
rare-earth-ion-doped crystals in principle o↵er storage of
photons with less than 100-picosecond duration when be-
ing used in conjunction with a suitable quantum mem-
ory protocol [4]. Yet, the reversible state transfer be-
tween light and solid–state devices has so far not been
shown to preserve entanglement. This is largely due to
the limited spectral bandwidth of current implementa-
tions, 100 Megahertz (MHz) at most [5], which is orders
of magnitude smaller than that of entangled photon pairs
generated in the widely used process of spontaneous para-
metric down-conversion [6]. In this work, we approach
the problem from both ends: we increase the acceptance
bandwidth of our storage device to 5 GHz and narrow the
bandwidths of our entangled photons to similar values.
Furthermore, by using a wave-guiding storage medium,
we move fundamental quantum memory research further
towards application. The layout of our experiment is de-
picted in Fig. 5.3.1. Short pulses of 523-nm wavelength
light travel through an unbalanced interferometer. For
su�ciently small pulse energies, subsequent spontaneous
parametric down-conversion yields, to a good approxima-
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FIG. 5.3.1. Schematics of the experimental set-up: a. Generating and measuring entanglement. Six-picosecond-long pump
laser pulses (1,047.328 nm wavelength, 80 MHz repetition rate) are frequency doubled (FD) in a periodically poled lithium
niobate (PPLN) crystal. Each resulting 16-ps-long pulse (523.664-nm wavelength, 90 mW average power) is coherently split into
two by the unbalanced pump interferometer, featuring a 1.4-ns travel-time di↵erence. Spontaneous parametric down-conversion
(SPDC) in a second PPLN crystal followed by frequency filtering using an etalon and a fibre Bragg grating (FBG) (bandwidths
of 6 GHz and 9 GHz, respectively), yields maximally entangled pairs of photons centred at 795.506-nm and 1,532.426-nm
wavelength (DM, dichroic mirror). The 1,532-nm photon travels through a 30-m telecommunication fibre, and the 795-nm
photon is either stored in the memory or sent through a fibre delay line (not pictured). To characterize the bi-photon state,
we use qubit analysers consisting of delay lines or unbalanced interferometers connected to single-photon detectors. Detection
events are collected with a time-to-digital converter (TDC) connected to a personal computer (PC). All interferometers are
phase-locked to stable reference lasers (not shown). b. Memory set-up. The 795.506-nm continuous-wave memory laser beam
is intensity- and phase/frequency-modulated using an acousto-optic modulator (AOM) and a phase modulator (PM). The
waveguide is cooled to 3 K and exposed to a 570-G magnetic field aligned with the crystal’s C3-axis. Waveplates allow adjusting
the polarization of the beam to the waveguide’s transverse magnetic (TM) mode, and optical switches combine and separate
the optical pump beam and the 795-nm photons. c. Timing sequence. We use three continuously repeated phases: the 10 ms
“prepare” phase for optical pumping, the 2.2-ms “wait” phase, which ensures stored photons are not polluted by fluorescence
from the excited state, and the 40-ms “store and retrieve” phase, during which many 795-nm photons are successively stored
in the waveguide and recalled after 7 ns.

tion, individual pairs of photons, centred at wavelengths
around 795 nm and 1,532 nm, in the time-bin entangled
qubit state [25]:

|�+i = 1p
2
(|e, ei+ |l, li) (1)

Here, |ei and |li denote early and late temporal modes
and replace the usual spin-down and spin-up notation
for spin-half particles. More specifically, |i, ji denotes a
quantum state in which the 795-nm photon has been cre-
ated in the temporal mode i, and the 1,532-nm photon
has been created in the temporal mode j. We point out
that, owing to the spectral filtering, our source gener-
ates frequency-uncorrelated entangled photons at wave-
lengths that match the low-loss windows of free-space
and standard telecommunication fibre. It can thus be
readily used in real-world applications of quantum com-
munication that involve quantum teleportation and en-
tanglement swapping.

The 1,532-nm photon is directed to a qubit analyser.
It consists of either a fibre delay line followed by a single-
photon detector that monitors the photon’s arrival time,

or a fibre-optical interferometer that is unbalanced in the
same way as the pump interferometer, followed by single-
photon detectors. The role of the delay line is to perform
projection measurements of the photon’s state onto early
and late qubit states. Alternatively, the interferometer
enables projections onto equal superpositions of early and
late modes [25]. Using the language of spin-half systems,
this corresponds to projections onto �

z

and, for appro-
priately chosen phases, �

x

and �
y

, respectively.

The 795-nm photon is transmitted to the quantum
memory where its state –specifically that it is entangled
with the 1,532-nm photon– is mapped onto a collective
excitation of millions of thulium ions. Some time later,
the state is mapped back onto a photon that exits the
memory through a fibre in well-defined spatio-temporal
modes and is probed by a second qubit analyser.

To reversibly map the 795-nm photon onto matter, we
use a photon-echo quantum memory protocol based on
atomic frequency combs (AFC) [4]. It is rooted in the
interaction of light with an ensemble of atomic absorbers
(so far rare-earth-ion-doped crystals cooled to cryogenic
temperatures) with an inhomogeneously broadened ab-
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FIG. 5.3.2. The storage medium: a. Waveguide geometry.
The measured thulium (Tm) concentration profile is given
on the left and the calculated intensity distribution of the
fundamental TM-mode at the 795-nm wavelength is shown
below. Iso-intensity lines are plotted corresponding to 90%,
87.5%, 75% and so on of the maximum intensity. b. Simplified
energy level diagram of thulium ions. The optical coherence
time of the 3H6 $3H4 transition at 3 K is 1.6 µs, the radiative
lifetimes of the 3H4 and 3F4 levels are 82 µs and 2.4 ms,
respectively, and the branching ratio from the 3H4 to the 3F4

level is 44%. Upon application of a magnetic field of 570 G,
the ground and excited levels split into magnetic sublevels
with lifetimes exceeding one second [27].c. Atomic frequency
comb. The bandwidth of our AFC is 5 GHz (shown here is
a 1-GHz broad section). The separation between the teeth
is � ⇡ 143 MHz, resulting in 7 ns storage time. The line
width of the peaks is � ⇡ 75 MHz, yielding a finesse F = 2,
as expected for the sinus-type comb.

sorption line that has been tailored into a series of equally
spaced absorption peaks (see Fig. 5.3.2). The absorption
of a single photon leads to a collective excitation shared
by many atoms. Owing to the particular shape of the
tailored absorption line, the excited collective coherence
rapidly dephases and repeatedly recovers after multiples
of the storage time T

s

. This results in the re-emission of
a photon in the state encoded into the original photon.

In our implementation the moment of photon re-
emission is predetermined by the spacing of the teeth
in the comb, T

s

= 1/�, and the storage process can be
described as arising from the linear response of an op-
tical filter made by spectral hole burning. Yet, readout
on demand can be achieved by temporarily mapping the
optically excited coherence onto ground-state coherence
where the comb spacing is smaller or the comb structure
is washed out [4], or by combining the AFC protocol with
controlled reversible inhomogeneous broadening of each
absorption line, similar to the storage mechanism used in
another photon-echo quantum memory protocol [1].

Our storage device, a Ti:Tm:LiNbO3 optical waveg-
uide cooled to 3 K, is detailed in Fig. 5.3.2. It was
previously characterized to establish its suitability as a
photon-echo quantum memory material [26]. It combines
interesting properties from the specific rare-earth element
(795-nm storage wavelength), the host crystal (allowing
for controlled dephasing and rephasing by means of elec-
tric fields), and from the wave-guiding structure (ease-of-
use). Lithium niobate waveguides have also been doped
with neodymium, praseodymium and erbium [7], and we
conjecture that other rare-earth ions could also be used.
This could extend the properties of LiNbO3 and allow an
integrated approach to other storage wavelengths, ions
with di↵erent level structures, and so on.
To generate the AFC, we use a sideband-chirping

technique (see Supplementary Information) to transfer
atomic population between magnetic sublevels and cre-
ate troughs and peaks in the inhomogeneously broad-
ened absorption line. They form a 5-GHz-wide comb
with tooth spacing of 143 MHz, setting the storage time
to 7 ns. The system e�ciency in our implementation is
currently about 0.2%. This is in part due to the 90%
fibre-to-waveguide input and output coupling loss, which
we attribute to imperfect mode overlap. In addition, ow-
ing to the specific level structure of thulium under cur-
rent experimental conditions, the finesse of the comb in
the broadband approach is two, which limits the memory
e�ciency to about 10%. However, imperfections in the
creation of the comb decrease this e�ciency to around
2%. The system e�ciency can be increased by improving
the spectral tailoring of the AFC, and triggering photon
re-emission in the backward direction. By also optimiz-
ing the mode overlap, we anticipate that it could reach
approximately 15%. Furthermore, if the two long-lived
atomic levels between which population is transferred
during the optical pumping procedure (in our case the
two magnetic ground states; see Fig. 5.3.2) are spaced
by more than the storage bandwidth, the memory e�-
ciency can theoretically reach unity (see Supplementary
Information).
To assess the quantum nature of our light–matter in-

terface, we first make projection measurements with the
795 nm photons and the 1532 nm photons onto time-
bin qubit states characterized by Bloch vectors aligned
along aaa, bbb , respectively, where a, ba, ba, b 2 [±�

x

,±�
y

,±�
z

]
(see Fig. 5.3.3). Experimentally, this is done by means
of suitably adjusted qubit analyzers, and by counting the
number C(a, ba, ba, b) of detected photon pairs. From two such
spin-measurements, we calculate the normalized joint-

detection probability

P (a, ba, ba, b) =
C(a, ba, ba, b)

C(a, ba, ba, b) + C(a,�ba,�ba,�b)
(2)

The measurement and the results with the fibre delay
line, as well as the memory, are detailed in Fig. 5.3.3 and
the Supplementary Information. From this data, we re-
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FIG. 5.3.3. Measurement of density matrices: a. Visu-
alization of projection measurements. The measurement set-
tings for the 795-nm (or 1,532-nm) qubit analyser are depicted
on the upper (or lower) Bloch sphere. The example shows
joint settings that enable calculating normalized probabilities
for projections onto �

z

⌦ �
z

�
z

⌦ ��
z

. b. Results for joint
projection measurement after storage. The top (bottom) his-
togram displays joint detection events for the projection onto
�
z

⌦�
z

and �
z

⌦��
z

(��
z

⌦�
z

and ��
z

⌦��
z

) as a function
of the time di↵erence between detections of the 795-nm and
the 1,532-nm photons. The desired events are those within
the red-highlighted time windows. This allows us to calculate
the joint-detection probabilities for projections onto �

z

⌦ �
z

and �
z

⌦ ��
z

(for results with other joint settings see the
Supplementary Information). c. Density matrices. Density
matrices were calculated using a maximum-likelihood estima-
tion for the bi-photon states before and after storage. Only
the real parts are shown-the absolute values of all imaginary
components are below 0.04.

construct the bi-photon states before and after storage in
terms of their density matrices ⇢

in

and ⇢
out

, depicted in
Fig. 5.3.3, using a maximum likelihood estimation [27].
This, in turn, allows us to examine the entanglement of
formation [28], a measure that indicates entanglement
if it exceeds zero; it is upper-bounded by one. The re-
sults, listed in Table 5.3.1, clearly show the presence of
entanglement in ⇢

in

and ⇢
out

and, within experimental
uncertainty, establish that the storage process preserves
entanglement without measurable degradation. Further-
more, we note that the fidelity F between ⇢

in

and ⇢
out

is close to one, and hence the unitary transformation in-

troduced by the storage process is almost the identity
transformation.
In addition, as a second entanglement measure, we per-

form tests of the Clauser–Horne–Shimony–Holt (CHSH)
Bell inequality [6]. This test indicates non-local correla-
tions and thus the possibility of using the bi-photons for
entanglement-based quantum key distribution [8] if the
sum:

S = |E(aaa,bbb) + E(a0a0a0, bbb) + E(aaa,b0b0b0)� E(a0a0a0, b0b0b0)| (3)

of four correlation coe�cients

E(aaa,bbb) =
C(aaa,bbb)� C(aaa,�b�b�b)� C(�a�a�a,bbb) + C(�a�a�a,�b�b�b)

C(aaa,bbb) + C(aaa,�b�b�b) + C(�a�a�a,bbb) + C(�a�a�a,�b�b�b)
(4)

with appropriately chosen settings aaa, a0a0a0 and bbb, b0b0b0 exceeds
the classical bound of two; quantum mechanically it is
upper-bounded by 2

p
2. As detailed in Table 5.3.1, we

find S
in

= 2.379 ± 0.034 > 2 before the memory and,
crucially, S

out

= 2.25 ± 0.06 > 2, which is in agreement
with the value S

th

= 2.2±0.22 predicted from the recon-
structed density matrix ⇢

out

. This validates the suitabil-
ity of our set-up for quantum communication.
Our investigation provides an example of entanglement

being transferred between physical systems of di↵erent
nature, thereby adding evidence that this fundamental
quantum property is not as fragile as is often believed.
Furthermore, our broadband integrated approach per-
mits the linkage of a promising quantum storage device
with extensively used, high-performance sources of pho-
tons in bi- and multi-partite entangled states [6]. Al-
though the storage e�ciency and the storage time need
to be significantly increased, and the moment of recall
was pre-set, this study opens the way to new investi-
gations of fundamental and applied aspects of quantum
physics. Having increased the storage bandwidth also
significantly facilitates the building of future quantum
networks, because mutual frequency matching of photons
and distant quantum memories will be simple. In addi-
tion, a large storage bandwidth –that is, the possibility
to encode quantum information into short optical pulses–
allows us to increase the number of temporal modes that
can be stored during a given time. This enhances the
flow of quantum information through a network and de-
creases the time needed to establish entanglement over a
large distance using a quantum repeater [1,2].
We note that, parallel to this work, Clausen et al. have

demonstrated the storage of an entangled photon using
a neodymium-doped crystal [29].
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Entanglement of formation (%) Purity (%) Fidelity with |�+i Input/output fidelity (%) Expected S
th

Measured S
⇢
in

64.4 ±4.2 75.7 ± 2.4 86.2±1.5 2.235 ±0.085 2.379 ±0.034
⇢
out

65 ±11 76.3±5.9 86.6 ±3.9 95.4 ±2.9 2.2 ±0.22 2.25 ±0.060

TABLE 5.3.1. Entanglement measures, purities and fidelities: Entanglement of formation (normalized with respect to

the entanglement of formation of |�+i, purity P=tr(⇢2)), fidelity with |�+i, input–output fidelity F =
�
tr
pp

⇢
out

⇢
in

p
⇢
out

�2

(referring to the fidelity of ⇢
out

with respect to ⇢
in

), and expected and experimentally obtained S values for tests of the CHSH
Bell inequality (measured for aaa = �

x

, a0a0a0 = �
y

, bbb = �
x

+ �
y

and b0b0b0 = �
x

� �
y

). The correlation coe�cients used to compute
S and the calculation of S

th

are detailed in the Supplementary Information. We note that the original state (and hence the
recalled state) has limited purity and fidelity with |�+i. This is due to the probabilistic nature of our spontaneous parametric
down-conversion source, which features a non-negligible probability of generating more than two photons simultaneously [26].
Uncertainties indicate one-sigma standard deviations and are estimated from Poissonian detection statistics and using a Monte
Carlo simulation
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Chapter 6

Outlook and Summary

EPR quickly realized that the surprising correlations between measurement results on en-

tangled particles were at odds with the widely held beliefs of locality and realism. However,

it took another thirty years before Bell was able to mathematically prove that the correla-

tions allowed by quantum mechanics were impossible to explain by local hidden variables.

Twenty years later, applications based on quantum correlations began to appear. Among

those applications is QKD, which enables secure transmission of cryptographic keys. Today,

fundamental tests of quantum mechanics continue through continued violations of Bell in-

equalities in increasingly exotic situations. Most believe that a loophole free Bell test with

photons will be performed soon. Commercial QKD systems have already been released and

are used over short distances within cities. Research groups continue to develop new sys-

tems with higher key-rates over longer distances and with less vulnerabilities to side-channel

attacks. Researchers are also working to achieve quantum communication over more than a

few hundred kilometres, which requires the development of new technologies to circumvent

exponential loss with distance. Quantum repeaters, involving entangled photon pairs, entan-

gling measurements over long-distances as well as quantum memories, are one solution being

actively researched. Quantum repeaters may one day allow for world-wide quantum com-

munication, including quantum cryptography and fundamental tests of quantum mechanics.

The main goal of this thesis was to study quantum entanglement from a novel funda-

mental perspective and harness its correlations for applications in quantum communication.

Towards this goal, we have built and characterized a high-fidelity source of entanglement

and used it for a variety of tests of quantum mechanics. This has included Bell inequalities,

a Leggett inequality as well as a general bound on the predictive power about measure-
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ment results on members of entangled qubits, with which one can rule out general non-local

alternative theories. Our hope is that this work will continue and lead to higher-fidelity

entanglement sources and experiments that close loopholes.

In terms of applications of quantum entanglement, we have studied a new protocol

for quantum cryptography, MDI-QKD, that uses entangling measurements to remove all

detector-based side-channel attacks. We developed a detailed model of the protocol, con-

firmed its validity by comparing its predictions to measurements with our MDI-QKD system,

and then used it to optimize parameters to maximize secret key rates. We then deployed

our system across the city of Calgary and demonstrated the feasibility of both real-world

MDI-QKD and Bell-state measurements. The results of these studies suggest several direc-

tions for near future research activities. We are working towards an automated system that

produces higher secret key rates with more stringent security bounds. Automating the sys-

tem requires integration with the QC2 Cryptography team’s hardware to facilitate random

state selection and necessary post processing as well as further development of the control

systems that maintain indistinguishability, such as an automatic laser-frequency adjustment

system operating with high-stability lasers. To achieve higher key rates we are also pursuing

integrating the system with high-e�ciency, low-noise SSPDs (discussed in Chapter 4), and

changing the existing state generation hardware to allow projection measurements onto mul-

tiple Bell states. Finally, we believe that with further upgrades (such as higher extinction

intensity modulators) we can close state preparation side channels arising from imperfectly

prepared states. These, mostly technological upgrades, will move our existing experiments

towards a fully developed, real-world system.

In moving towards long-distance applications we have demonstrated a number of impor-

tant steps towards a functioning quantum repeater. By interfacing a source of entangled

photon pairs with our quantum memories we demonstrated high-fidelity quantum state stor-

age and that quantum entanglement is preserved during storage. In addition, by performing
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two-photon interference experiments and Bell-state measurements, we demonstrated that

the memories preserve the photonic wave function in all degrees of freedom. We are now

preparing to perform further proof-of-principle experiments towards implementing a quan-

tum repeater. These involve using current entanglement sources to entangle two quantum

memories via entanglement swapping. Afterwards, we plan to develop frequency multi-mode

sources of entangled photon pairs suitable for storage in our quantum memories. Such sources

could be used to generate heralded entangled photon pairs and also to implement quantum

repeater architectures based on multi-mode storage and mode shu✏ing. Our longer term

goal is to demonstrate an elementary link of a quantum repeater and in the future, use

quantum repeaters to out perform the direction transmission of entanglement.

This thesis has focused on fundamental tests and applications with quantum entangle-

ment. We have demonstrated the usefulness of new technologies for quantum communication

in general. Overall, this thesis has contributed to the merging of once-independent experi-

mental research directions towards a collective goal. Specifically, work on entangled photon

pair sources and work on quantum memories was combined and to allow for the storage of

entangled photons. In addition, the MDI-QKD protocol required implementing a real-world

BSM, which is also needed in quantum repeaters. For the future, it is clear how to advance

individual directions while at the same time developing tools that are compatible with, and

can be directly implemented in, quantum repeater architectures.

The important achievements for next-generation quantum cryptography systems and

future quantum repeaters has advanced the field towards future quantum communications

and, I hope, inspired additional e↵orts. The quantum world may be a strange one, but it is

destined to become an ever increasing part of our communication infrastructure.
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[8] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters. Tele-

porting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen

Channels. Phys. Rev. Lett., 70:1985, 1993.

[9] M. Zukowski, A. Zeilinger, M. A. Horne, A. K. Ekert. “event-ready-detectors” bell

experiment via entanglement swapping. Phys. Rev. Lett., 71:4287, 1993.

[10] C. H. Bennett, D. P. DiVincenzo. Quantum information and computation. Nature,

404:247, 2000.

96



[11] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn. Linear

optical quantum computing with photonic qubits. Rev. Mod. Phys., 79:135, 2007.

[12] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt. Proposed experiment to test local

hidden-variable theories. Phys. Rev. Lett., 23:880, 1969.

[13] S. J. Freedman, J. F. Clauser. Experimental Test of Local Hidden-Variable Theories.

Phys. Rev. Lett., 28:938, 1972.

[14] G. Roger A. Aspect, P. Grangier. Experimental tests of realistic local theories via bell’s

theorem. Phys. Rev. Lett., 47:460, 1981.

[15] A. Aspect, P. Grangier, G. Roger. Experimental Realization of Einstein-Podolsky-

Rosen-Bohm Gedankenexperiment : A New Violation of Bell’s Inequalities. Phys. Rev.

Lett., 49:91, 1982.

[16] A. Aspect, J. Dalibard, G. Roger. Experimental Test of Bell’s Inequalities Using Time-

Varying Analyzers. Phys. Rev. Lett., 49:1804, 1982.

[17] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih. New High-

Intensity Source of Polarization-Entangled Photon Pairs. Phys. Rev. Lett., 75:4337,

1995.

[18] W. Tittel, J. Brendel, H. Zbinden, N. Gisin. Violation of Bell Inequalities by Photons

More Than 10 km Apart. Phys. Rev. Lett., 81:3563, 1998.

[19] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger. Violation of Bell’s

Inequality under Strict Einstein Locality Conditions. Phys. Rev. Lett., 81:5039, 1998.

[20] M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Monroe, D. J.

Wineland. Experimental violation of a Bell’s inequality with e�cient detection. Nature,

409:791, 2001.

97



[21] R. Ursin, F. Tiefenbacher, T. Shmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal,

B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trokek, B. Omer, M. Furst, M. Meyen-

burg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, A. Zeilinger. Entanglement-based

quantum communication over 144 km. Nature Physics, 3:481, 2007.

[22] T. Scheidl, R. Ursin, J. Kofler, S. Ramelow, X. Ma, T. Herbst, L. Ratschbacher, A.

Fedrizzi, N. Langford, T. Jennewein, A. Zeilinger. Violation of local realism with free-

dom of choice. Proceedings of the National Academy of Sciences USA, 107:19708, 2010.

[23] M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B.

Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger. Bell violation using entangled

photons without the fair-sampling assumption. Nature advance online publication, 2013.

[24] P. H. Eberhard. Background level and counter e�ciencies required for a loophole-free

Einstein-Podolsky-Rosen experiment. Phys. Rev. A, 47:747, 1993.

[25] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, A. Zeilinger. Wave-

particle duality of C60 molecules. Nature, 401:680, 1999.

[26] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity Optomechanics.

arXiv:1303.0733, 2013.

[27] A. J. Leggett. Nonlocal hidden-variable theories and quantum mechanics: An incom-

patibility theorem. Foundations of Physics, 33:1469, 2003.
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I. PROOF OF THE BOUND

In this section, we prove the bound given in Equation (1) in the main text, which is stated as Lemma 1 below.
We use a bipartite scenario in which two spacelike separated measurements are performed on a maximally entangled
state. We denote the choices of observable A 2 {0, 2, . . . , 2N � 2} and B 2 {1, 3, . . . , 2N � 1} and their outcomes
X 2 {+1,�1} and Y 2 {+1,�1}, respectively1. We additionally consider information that might be provided by an
alternative theory (denoted ⌅), which is modelled as an additional system with input C and output Z [1]. We assume
that this information is static, in the sense that its behaviour is independent of the coordinates associated with C and
Z. If one makes the assumption that the measurements can be chosen freely, then the joint distribution PXY Z|ABC

satisfies the non-signalling conditions

PXY |ABC = PXY |AB (1)

PXZ|ABC = PXZ|AC (2)

PY Z|ABC = PY Z|BC . (3)

A proof of this was given in [1], which we now recap for completeness.
Recall that the free choice assumption states that for a parameter, A, to be free, it must be uncorrelated with

all variables outside its future lightcone2. The setup is such that the measurements specified by A and B are
spacelike separated and, since ⌅ is static, we can consider its observation to also be spacelike separated from the other
measurements.

We assume A is a free choice, which corresponds mathematically to the condition

PA|BCY Z = PA. (4)

Furthermore, using the definition of conditional probability (PQ|R := PQR/PR), we can write

PY ZA|BC = PY Z|BC ⇥ PA|BCY Z = PA ⇥ PY Z|BC ,

where we inserted (4) to obtain the second equality. Similarly, we have

PY ZA|BC = PA|BC ⇥ PY Z|ABC = PA ⇥ PY Z|ABC .

Comparing these two expressions for PY ZA|BC yields the non-signalling condition (3). Repeating this argument
symmetrically, the other non-signalling conditions can be similarly inferred.

Note that standard proofs of Bell’s theorem and related results assume both no-signalling and that measurements
are chosen freely (see, for example, [3] for a statement of Bell’s notion of free choice, which is the same as ours).
Although free choice implies no-signalling, the converse does not hold. Instead, no-signalling is needed for free choices
to be possible, but does not imply that they are actually made.

1
Note that the measurements we speak of in the Supplemental Material have a slightly di↵erent form than those in the main text.

Specifically, we now assume that measurements behave ideally, projecting onto one of two basis elements and leading to one of the two

outcomes ±1. In a real experiment, there is always the additional possibility of no photon detection (let us denote this outcome 0). The

measurements discussed in the main text are configured to distinguish +1 from either �1 or 0, or to distinguish �1 from either +1 or

0. Both of these measurements are used in the experiment to infer the distribution of the ideal measurement with outcomes ±1.

2
Note that this requirement can be seen as a prerequisite for non-contextuality, as pointed out in [2], where an alternative proof that

quantum theory cannot be extended, based on the assumption of non-contextuality, is o↵ered.



Lemma 1 gives a bound on the increase in predictive power of any alternative theory in terms of the strength of
correlations and the bias of the individual outcomes. The bound is expressed in terms of the variational distance
D(PW , QW ) := 1

2

P
w |PW (w)�QW (w)|, which has the following operational interpretation: if two distributions have

variational distance at most �, then the probability that we ever notice a di↵erence between them is at most �.
The bias is quantified by3 ⌫N := maxa D(PX|a, PX̄), where PX̄ is the uniform distribution on X. To quantify the

correlation strength, we define

IN := P (X = Y |A = 0, B = 2N � 1) +
X

a,b
|a�b|=1

P (X 6= Y |A = a,B = b) . (5)

This is equivalent to Equation (6) in the main text. We remark that IN � 1 is a Bell inequality, i.e. is satisfied by
any local hidden variable model.

Lemma 1. For any non-signalling probability distribution, PXY Z|ABC , we have

D(PZ|abcx, PZ|abc)  �N :=
IN

2
+ ⌫N (6)

for all a, b, c, and x.

To connect this back to the main text, we remark that the Markov chain condition X $ A $ ⌅ is equivalent to
PZ|abcx = PZ|abc (which corresponds to ⌅ not being of use to predict X). Hence, from the operational meaning of the
variational distance (given above), (6) can be interpreted that X and Z can be treated as uncorrelated, except with
probability at most �N .

The proof is an extension of an argument given in [1] which is based on chained Bell inequalities [4–6] and generalizes
results of [7–9]. Many steps of this proof mirror those in [1], which we repeat here for completeness. However, note
that the bound derived in this Lemma is tighter than that of [1].

Proof. We first consider the quantity IN evaluated for the conditional distribution PXY |AB,cz = PXY |ABCZ(·, ·|·, ·, c, z),
for any fixed c and z. The idea is to use this quantity to bound the variational distance between the conditional distri-
bution PX|acz and its negation, 1� PX|acz, which corresponds to the distribution of X if its values are interchanged.
If this distance is small, it follows that the distribution PX|acz is roughly uniform.

For a0 := 0, b0 := 2N � 1, we have

IN (PXY |AB,cz) = P (X = Y |A = a0, B = b0, C = c, Z = z) +
X

a,b
|a�b|=1

P (X 6= Y |A = a,B = b, C = c, Z = z)

� D(1� PX|a0b0cz, PY |a0b0cz) +
X

a,b
|a�b|=1

D(PX|abcz, PY |abcz)

= D(1� PX|a0cz, PY |b0cz) +
X

a,b
|a�b|=1

D(PX|acz, PY |bcz)

� D(1� PX|a0cz, PX|a0cz)

= 2D(PX|a0b0cz, PX̄) . (7)

The first inequality follows from the fact that D(PX|⌦, PY |⌦)  P (X 6= Y |⌦) for any event ⌦ (a short proof of
this can be found in [9]). Furthermore, we have used the non-signalling conditions PX|abcz = PX|acz (from (2)) and
PY |abcz = PY |bcz (from (3)), and the triangle inequality for D. By symmetry, this relation holds for all a and b. We
hence obtain D(PX|abcz, PX̄)  1

2IN (PXY |AB,cz) for all a, b, c and z.

3
A note on notation: we usually use lower case to denote particular instances of upper case random variables.
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We now take the average over z on both sides of (7). First, the left hand side gives

X

z

PZ|abc(z)IN (PXY |AB,cz) =
X

z

PZ|c(z)IN (PXY |AB,cz)

=
X

z

PZ|a0b0c(z)P (X = Y |a0, b0, c, z) +
X

a,b
|a�b|=1

X

z

PZ|abc(z)P (X 6= Y |a, b, c, z)

= P (X = Y |a0, b0, c) +
X

a,b
|a�b|=1

P (X 6= Y |a, b, c)

= IN (PXY |AB,c) , (8)

where we used the non-signalling condition PZ|abc = PZ|c (which is implied by (2) and (3)) several times. Next, taking
the average on the right hand side of (7) yields

P
z PZ|abc(z)D(PX|abcz, PX̄) = D(PXZ|abc, PX̄ ⇥ PZ|abc), so we have

2D(PXZ|abc, PX̄ ⇥ PZ|abc)  IN (PXY |AB,c) = IN (PXY |AB). (9)

The last equality follows from the non-signalling condition (1) (if P (X = Y |a, b, c) or P (X 6= Y |a, b, c) depended on
c, then there would be signalling from C to A and B).
Furthermore, note that

2D(PXZ|abc, PX̄ ⇥ PZ|abc) =
X

z

��
PXZ|abc(�1, z)� 1

2
PZ|abc(z)

��+
X

z

��
PXZ|abc(+1, z)� 1

2
PZ|abc(z)

��

and that both of the terms on the right hand side are equal (since PZ|abc(z) = PXZ|abc(�1, z) + PXZ|abc(+1, z)) i.e.P
z

��
PXZ|abc(x, z)� 1

2PZ|abc(z)
��  IN

2 for all a, b, c and x. Note also that D(PX|a, PX̄) =
��
PX|a(x)� 1

2

�� for all x.
Combining the above, we have

D(PZ|abcx, PZ|abc) =
X

z

��1
2
PZ|abcx(z)�

1

2
PZ|abc(z)

��


X

z

��1
2
PZ|abcx(z)� PX|abc(x)PZ|abcx(z)

��+
X

z

��
PX|abc(x)PZ|abcx(z)�

1

2
PZ|abc(z)

��

=
X

z

PZ|abcx(z)
��1
2
� PX|abc(x)

��+
X

z

��
PXZ|abc(x, z)�

1

2
PZ|abc(z)

��

 D(PX|a, PX̄) +
IN (PXY |AB)

2
.

This establishes the relation (6).

Tightness

We can also establish that this bound is tight, as follows. Consider a classical model in which, with probability ",
we have X = Y = Z = �1, and otherwise X = Y = Z = +1 (independently of A, B and C). This distribution has
IN (PXY |AB) = 1 and ⌫ = 1

2 � ". It also satisfies D(PZ|abcX=�1, PZ|abc) = 1� ", which is equal to the bound implied
by (6).

Use of bipartite correlations

The argument leading to the bound in Lemma 1 is based on a bipartite scenario. As mentioned in the main text,
measurements on a single system can always be explained by a local hidden variable model. We give a simple argument
for this here.

For a single system, we wish to recreate the correlations PX|A. To do so, we introduce a hidden variable, Za for each
possible choice of measurement, A = a, distributed according to PZa = PX|a (i.e. this hidden variable is distributed
exactly as the outcomes of the measurement A = a would be and has the same alphabet). When measurement A = a

is chosen, the outcome is given by X = Za. This local hidden variable model recreates the correlations PX|A precisely.
In other words, no experiment on a single system can rule out a local hidden variable model of this type.
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Comment on the free choice assumption and the de Broglie-Bohm model

We now discuss our result in light of the de Broglie-Bohm model [10, 11]. There, C is not used, and the parameter
Z includes both the wavefuction and the (hidden) particle trajectories that make up that model. Thus, according to
the argument we give above, if A can be chosen freely, PY Z|AB = PY Z|B (this is (3) in the case without C), and hence
PY |ABZ = PY |BZ . However, the de Broglie-Bohm model does not, in general, satisfy this relation: the outcome Y is a
deterministic function of the wavefunction, the particle positions and both A and B. The dependence on A is crucial
in order that the model can recreate all quantum correlations. It hence follows that the de Broglie-Bohm model does
not satisfy our free choice assumption, and hence it is not in contradiction with our main claim.

II. APPLICATION TO LEGGETT MODELS

In the Leggett model [12], one imagines that improved predictions about the outcomes for measurements on spin-
half particles are available. More precisely, each particle has an associated vector (thought of as a hidden direction of
its spin) and the outcome distribution is expressed via the inner product with the vector describing the measurement
(see Figure 1 in the main text). Denoting the hidden vector for the first particle by z, and its measurement vector
↵ (this is the Bloch vector associated with the chosen measurement direction; it was denoted SA (SB) in the main
text), its outcomes are distributed according to

PX|↵z(±1) =
1

2
(1±↵ · z). (10)

To relate this back to the discussion above, the Leggett model corresponds to the case that there is no C, and where
the hidden vectors are contained in Z. Note that Leggett already showed his model to be incompatible with quantum
theory [12] and experiments have since falsified it using specific inequalities [13–16]. Here we discuss the model in
light of our experiment, which, it turns out, is su�cient to falsify it.

As presented above, the model is not fully specified since the distribution of the hidden vectors, z, is not given.
To discuss the implications of our experimental results we refer to four cases (corresponding to di↵erent distributions
over z). In order to agree with existing experimental observations, the distribution should be such that the uniform
distribution is approximately recovered when z is unknown, i.e. PX|↵ =

P
z PZ(z)PX|↵z

⇠= 1
2 .

Before describing the four cases, we first note that adapting our previous analysis (starting from (9), for example)
to the case of no C implies

hD(PX|↵z, PX̄)iz  �N , (11)

for all ↵, where h·iz denotes the expectation value over the vectors z. In order to falsify a particular version of the
Leggett model, we compute �

crit
N , the smallest increase in predictive power under the assumption that a particular

version of the Leggett model is correct (i.e. the smallest value of the left-hand-side of (11) over all ↵). We then
show that �critN is above the maximum increase in predictive power compatible with the experimental data, �N , hence
falsifying that version of Leggett’s model.

First Case: We imagine that the vector z is uniformly distributed between two opposite vectors (i.e. PZ(z0) =
PZ(z̄0) =

1
2 for some fixed vector z0 = �z̄0) in the same plane on the Bloch sphere as our measurements. From (10),

we have D(PX|↵z0
, PX̄) = D(PX|↵z̄0

, PX̄) = |↵·z0|
2 . Hence, from (11) we require |↵·z0|

2  �N for all ↵. In order to
make max↵ |↵ · z0| as small as possible, i.e. find �

crit1
N , we require the vector z0 to be as far as possible from any of

the possible ↵ vectors. If the fixed vector z0 is in the plane containing the measurements, this condition leads to
max↵ |↵ · z0| = cos ⇡

2N (i.e. z0 is positioned exactly in between two settings for ↵). Hence, this specific version of the
Leggett model is falsified if the measured �N < �

crit1
N = 1

2 cos
⇡
2N . As shown in Supplemental Table A1.1, this is the

case for all values of N assessed.
According to quantum theory, appropriately chosen measurements on a maximally entangled state lead to corre-

lations for which �N = N
2 (1 � cos ⇡

2N ). However, no experimental realization can be noise-free, and this a↵ects the
minimum �N attainable (see [1, 17]). One way to characterize the imperfection in the experiment is via the visibility.
In an experiment with visibility V

4, we instead obtain �N = N
2 (1 � V cos ⇡

2N ), which for fixed V has a minimum at

4
The visibility is an alternative measure of the quality of the experiment (the fidelity was used in the main text). The visibility can be

directly measured, while the fidelity (to the desired state) can be calculated from the state reconstructed tomographically. Assuming

isotropic noise as the dominant source of imperfection (i.e. that we actually measure Werner states), fidelity and visibility are related

through V = (4F � 1)/3.
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N �crit1N �crit2N �crit3N �crit4N �1N �2N

2 0.3536 0.2 0.25 0.1768 0.3131±0.0018 0.3125±0.0025

3 0.4330 0.3062 0.25 0.2165 0.2294±0.0016 0.2437±0.0023

4 0.4619 0.3266 0.25 0.2310 0.1904±0.0015 0.2094±0.0023

5 0.4755 0.3362 0.25 0.2378 0.1792±0.0014 0.2015±0.0023

6 0.4830 0.3415 0.25 0.2415 0.1676±0.0019 0.1942±0.0021

7 0.4875 0.3447 0.25 0.2437 0.1644±0.0014 0.1948±0.0021

Vmin 0.821 0.906 0.946 0.951

Supplemental Table A1.1: Leggett models: critical values and experimental data. This table shows the critical values
of �N required to rule out each of the four Leggett-type models discussed in the text. Also shown are measured values for �1N
and �2N , where the superscript refers to measurements in the |Hi � |+i plane, and the |+i � |Li plane of the Bloch sphere,
respectively. Bold values have �1N < �crit i

N and, if required �2N < �crit i
N , i.e. the Leggett model i is ruled out by the data for

that N . The values of �2N are relevant for ruling out the second and fourth model. In the last row of the table, we note the
minimum visibility required to rule out each of the four models.

finite N . In the case of this model, the minimum visibility required to falsify it is 0.821 (with such a visibility the
model could be ruled out with N = 3).

Second case: We now suppose z is distributed as in the first case, but that z0 is no longer confined to the plane
of measurements. In this case our basic measurements cannot strictly rule out this model: in principle, z0 could be
close to orthogonal to the plane containing the measurement vectors. (We remark that if z0 is completely orthogonal
to this plane, then it would not be useful for making predictions.) However, in order to rectify this we can include a
second set of measurements in the set of random choices. This set should be identical to the first apart from being
contained in an orthogonal plane. We denote the sets A1 and A2 and we separately measure the �N values for each
plane, generating values denoted �

1
N and �

2
N . Analogously to the first case discussed above, this version of the Leggett

model is falsified unless for all ↵ 2 A1 [ A2, |↵ · z0|/2  min(�1N , �

2
N ). In order to make max↵ |↵ · z0| as small as

possible, we require the vectors z0 to be as far as possible from any of the possible ↵ vectors. Consider now the
four vectors (0, sin�, cos�), (0,� sin�, cos�), (cos�, sin�, 0) and (cos�,� sin�, 0) for �  ⇡

4 (these represent two
neighbouring pairs of measurement vectors (one in each plane), where we have chosen the coordinates such that they
are symmetric). The vector equidistant from these (in their convex hull) is ( 1p

2
, 0, 1p

2
). It is then not possible that

for all ↵ 2 A1 [A2, |↵ ·z0|/2  min(�1N , �

2
N ) provided max(�1N , �

2
N ) < �

crit2
N = 1

2
p
2
cos ⇡

2N . As shown in Supplemental

Table A1.1, our experiment, which includes measurements of �N in an orthogonal plane, also rules out this version of
the Leggett model. (The minimum visibility required to rule out this model is 0.906, which could do so using N = 4.)

Third case: We consider a slightly modified model in which z is distributed uniformly over the Bloch sphere.
This model is arguably more natural since it is somewhat conspiratorial for z to be confined to a particular set of
orientations with respect to the measurements we perform (particularly if that measurement is chosen freely), and is
the model referred to in the main text. In this case, defining ✓ as the angle between ↵ and z, we compute the left
hand side of (11) as

hD(PX|↵z, PX̄)iz =

Z ⇡

✓=0
d✓

| cos ✓| sin ✓
4

=
1

4
.

This model is hence excluded if one finds �N < �

crit3
N = 1

4 (measurements are needed only in one plane). As shown
in Supplemental Table A1.1, this is the case for N � 3. (The minimum visibility required to rule out this model is
0.946, which could do so for N = 5.)

Fourth case: Here we return to our measurements in two orthogonal planes and ask whether our data is su�cient
to falsify the model for any distribution over z. (We can think of this in terms of an adversarial picture. Suppose the
set of possible measurement choices is known to an adversary, who can pick the vector z according to any distribution
he likes. The aim is to show that our measurement results are not consistent with any such adversary.) For this model
to be correct we need

h|↵ · z|iz
2

 �

1
N for all ↵ 2 A1

h|↵ · z|iz
2

 �

2
N for all ↵ 2 A2.

Again we can parameterize in terms of the four vectors introduced previously. When minimizing with respect to these
four, we should take PZ to have support only on the set (sin ✓, 0, cos ✓) (going o↵ this line increases the inner product
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with measurement vectors in both sets). We thus have

h|↵ · z|iz =

( R
✓
d✓⇢(✓) cos ✓ cos ⇡

2N for all ↵ 2 A1R
✓
d✓⇢(✓) sin ✓ cos ⇡

2N for all ↵ 2 A2

where ⇢(✓) is the probability density over ✓.
In other words, non-zero ⇢(✓) gives contribution cos ✓ cos ⇡

2N to the first integral, and sin ✓ cos ⇡
2N to the second.

In order that both integrals are equal, we should take ⇢(✓) to be symmetric about ✓ = ⇡
8 . For functions with

this symmetry, non-zero ⇢(✓) gives contribution (sin ✓ + cos ✓) cos ⇡
2N to both integrals. The minimum of this over

0  ✓  ⇡
8 is cos ⇡

2N , which occurs for ✓ = 0. It follows that the most experimentally challenging distribution to rule
out is ⇢(✓) = 1

2 (�✓,0 + �✓,⇡4
), where �x,y is the Kronecker delta (this being the distribution that requires the lowest

measured �N to eliminate). For this distribution, we have max↵h|↵ · z|iz/2 = 1
4 cos

⇡
2N , so this model is ruled out for

max(�1N , �

2
N ) < �

crit4
N = 1

4 cos
⇡
2N . Again, as detailed in Supplemental Table A1.1, our experimental data is su�cient

to do so. (The lowest visibility that could rule out this case is 0.951, which would do so for N = 5).
Note that, while discussing this case, we have so far ignored the requirement

P
z PZ(z)PX|↵z = 1

2 . However, this
condition can be ensured (without changing the critical value �

crit4
N ) by replacing the probability density ⇢(✓) with

1
2 (⇢(✓)+⇢(⇡+ ✓)), i.e. by distributing the density of each vector evenly between itself and the vector orthogonal to it.

Comment on minimum visibilities required to rule out Leggett models

Here we briefly compare the visibilities required to rule out Leggett models using our approach with those needed in
previously considered Leggett inequalities. We remind the reader that the technique used in the present work generates
conclusions that apply to arbitrary theories and were not developed with Leggett’s model in mind. Nevertheless, use
of this new approach to rule out Leggett models requires comparable visibilities to those of previously discussed
inequalities. More specifically, the claimed minimum visibilities are 0.974 in Gröblacher et al. [13] and 0.943 for the
alternative inequality of Branciard et al. [15, 16], which is only slightly below the value we require to rule out all of
the four models above.

We note that the average visibility for measurements in the plane used in the main text was 0.9781 ± 0.0008, while
the average visibility in the orthogonal plane (measured for the purposes of ruling out the second and fourth cases)
was 0.9706 ± 0.0014.

III. VISIBILITY VERSUS �

As discussed in the main manuscript, assuming the quantum theoretical predictions to be optimum, the minimum
measurable value for �N , hence the bound on �, depends on the quality of the generated bi-photon state and the
measurement apparatus (characterized, e.g., through the visibility). This is depicted in Supplemental Figure A1.1
where, for simplicity, we assume a bias of zero (i.e. ⌫N = 0 8 N). In order to decrease � by more than a factor
of two compared to our result, the average visibility on the measurement plane must exceed 0.995 (assuming zero
bias and perfect measurement settings), and the required value of N increases to 15 or beyond, resulting in 120 or
more high-precision coincidence measurements. To decrease � below 1%, we require V > 0.9999 and N > 111. We
emphasize that the precision required in the waveplate settings (that determine the spin measurements) increases
with N , which rapidly constitutes another limitation to obtaining small values for �, in addition to the need for a
high-quality source.

IV. RAW DATA

The experimental settings as well as the associated measurement results that allow reconstruction of the density
matrix are given in Supplemental Table A1.2. The most likely density matrix is detailed in Supplemental Table A1.3.
Note that this density matrix is not used for the calculation of experimental values for �N , IN or ⌫N , but is included to
characterize our source. The measurements settings used to experimentally determine �7 are depicted in Supplemental
Figure A1.2, and Supplemental Table A1.4 lists the results used to calculate �7 from the bi-partite correlation I7 and
the bias ⌫7.
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N,

15 30 111

 = 0.1644

V = 0.9781

7

7
1

Supplemental Fig. A1.1: � (minimum possible �N) and required number of bases per side N as a function of
visibility V . The stepped curve (N) uses the right y-axis. The curves are calculated using Werner states of varying visibility.
The vertical and horizontal lines correspond to the average visibility for measurements in the plane used in the main text
(V = 0.9781), and �17 = 0.1644 respectively. The slight discrepancy between the intersection of these two lines and the curve
showing �(V ) can be attributed to non-zero bias, imperfect measurements, and deviation of the experimental state from a
Werner state. The dashed diagonal lines show �N as a function of visibility for N = 7, 15, 30, and 111. Note that, as V ! 1
and � ! 0, N ! 1. Hence, significantly lowering � requires not only higher visibilities than currently feasible [14, 15], but
significantly more measurement settings (hence higher precision) also.
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Supplemental Fig. A1.2: Measurement settings for N = 7. All settings are in the |Hi-|+i plane in the Bloch sphere. The
settings on one side of the bipartite setup are indicated in red (even numbers) and those on the other side are indicated in blue
(odd numbers).
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Setting HWPA QWPA HWPB QWPB RC �RC

a b (

�
) (

�
) (

�
) (

�
) (cps) (cps)

|Hi |Hi 0 0 0 0 899.0 4.7

|Hi |V i 0 0 45 0 10.8 0.5

|Hi |+i 0 0 22.5 45 474.9 3.4

|Hi |�i 0 0 -22.5 45 463.0 3.4

|Hi |Ri 0 0 0 45 464.5 3.4

|Hi |Li 0 0 0 -45 479.6 3.5

|V i |Hi 45 0 0 0 9.8 0.5

|V i |V i 45 0 45 0 919.1 4.8

|V i |+i 45 0 22.5 45 454.2 3.4

|V i |�i 45 0 -22.5 45 451.9 3.4

|V i |Ri 45 0 0 45 461.1 3.4

|V i |Li 45 0 0 -45 458.6 3.4

|+i |Hi 22.5 45 0 0 421.2 3.2

|+i |V i 22.5 45 45 0 499.7 3.5

|+i |+i 22.5 45 22.5 45 906.8 4.8

|+i |�i 22.5 45 -22.5 45 17.7 0.7

|+i |Ri 22.5 45 0 45 443.0 3.3

|+i |Li 22.5 45 0 -45 437.8 3.3

|�i |Hi -22.5 45 0 0 507.5 3.6

|�i |V i -22.5 45 45 0 410.1 3.2

|�i |+i -22.5 45 22.5 45 22.2 0.7

|�i |�i -22.5 45 -22.5 45 902.3 4.7

|�i |Ri -22.5 45 0 45 483.7 3.5

|�i |Li -22.5 45 0 -45 485.1 3.5

|Ri |Hi 0 45 0 0 472.4 3.4

|Ri |V i 0 45 45 0 455.1 3.4

|Ri |+i 0 45 22.5 45 438.8 3.3

|Ri |�i 0 45 -22.5 45 469.9 3.4

|Ri |Ri 0 45 0 45 19.1 0.7

|Ri |Li 0 45 0 -45 920.1 4.8

|Li |Hi 0 -45 0 0 484.3 3.5

|Li |V i 0 -45 45 0 446.9 3.3

|Li |+i 0 -45 22.5 45 456.0 3.4

|Li |�i 0 -45 -22.5 45 491.3 3.5

|Li |Ri 0 -45 0 45 935.4 4.8

|Li |Li 0 -45 0 -45 21.4 0.7

Supplemental Table A1.2: Tomographic Data. This table shows raw data collected to find the density matrix shown in
Supplemental Table A1.3. The coincidence rates between the Si avalanche photodiode (APD) and the triggered 1550 nm
InGaAs APD (RC) for each set of photon analyzer settings are given in average counts per second (cps), as are their one
standard deviation uncertainties (�RC). Settings a and b were implemented using one quarter wave plate followed by one half
wave plate in each analyzer. These waveplates were set at angles HWPA, QWPA, HWPA, and QWPA. Data collection time
for each point was 30 seconds.

(a) ⇢Re

hHH| hHV | hV H| hV V |
|HHi 0.5031 0.0056 -0.0196 0.4828

|HV i 0.0056 0.0033 0.0006 0.0113

|V Hi -0.0196 0.0006 0.0032 -0.0115

|V V i 0.4828 0.0113 -0.0115 0.4904

(b) ⇢Im

hHH| hHV | hV H| hV V |
|HHi 0.0000 0.0020 0.0046 -0.0007

|HV i -0.0020 0.0000 0.0002 -0.0012

|V Hi -0.0046 -0.0002 0.0000 -0.0036

|V V i 0.0007 0.0012 0.0036 0.0000

Supplemental Table A1.3: Density matrix. The real and imaginary parts of the density matrix generated by maximum
likelihood quantum state tomography.
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Setting HWPA HWPB RSi RC 1 � P (m,n) P (m,n) �P (m,n) ⌫ �⌫

m n (�) (�) (cps) (cps)

0 13 0 41.79 41885 10.6

0 27 0 86.79 41825 546.0

14 27 45 86.79 41908 12.5

14 13 45 41.79 42068 544.3

0.0207 0.9793 0.0007 0.0008 0.0002

0 1 0 3.21 41847 545.2

0 15 0 48.21 41855 9.2

14 15 45 48.21 41954 547.9

14 1 45 3.21 42121 9.1

0.9836 0.0164 0.0006 0.0011 0.0002

2 1 6.43 3.21 41826 540.5

2 15 6.43 48.21 41871 11.4

16 15 51.43 48.21 42028 552.5

16 1 51.43 3.21 42102 11.1

0.9798 0.0202 0.0007 0.0013 0.0002

2 3 6.43 9.64 41829 546.3

2 17 6.43 54.64 41880 11.5

16 17 51.43 54.64 42024 544.2

16 3 51.43 9.64 41886 12.9

0.9781 0.0219 0.0007 0.0006 0.0002

4 3 12.86 9.64 41871 541.0

4 17 12.86 54.64 41806 13.4

18 17 57.86 54.64 41929 543.0

18 3 57.86 9.64 42037 15.0

0.9745 0.0255 0.0007 0.0009 0.0002

4 5 12.86 16.07 41739 545.4

4 19 12.86 61.07 41757 11.4

18 19 57.86 61.07 41975 555.4

18 5 57.86 16.07 41967 13.5

0.9779 0.0221 0.0007 0.0013 0.0002

6 5 19.29 16.07 41595 541.2

6 19 19.29 61.07 41776 17.5

20 19 64.29 61.07 42043 548.8

20 5 64.29 16.07 42109 14.2

0.9717 0.0283 0.0008 0.0023 0.0002

6 7 19.29 22.5 41752 548.7

6 21 19.29 67.5 41805 12.5

20 21 64.29 67.5 42181 548.1

20 7 64.29 22.5 42121 14.6

0.9760 0.0240 0.0007 0.0022 0.0002

8 7 25.71 22.5 41886 540.4

8 21 25.71 67.5 41907 14.3

22 21 70.71 67.5 42189 549.7

22 7 70.71 22.5 42143 16.3

0.9727 0.0273 0.0008 0.0016 0.0002

8 9 25.71 28.93 41763 548.9

8 23 25.71 73.93 41795 12.9

22 23 70.71 73.93 42180 545.4

22 9 70.71 28.93 42135 16.7

0.9737 0.0263 0.0008 0.0023 0.0002

10 9 32.14 28.93 42097 554.4

10 23 32.14 73.93 42260 14.1

24 23 77.14 73.93 42038 548.7

24 9 77.14 28.93 42055 14.9

0.9744 0.0256 0.0007 0.0008 0.0002

10 11 32.14 35.36 42039 554.5

10 25 32.14 80.36 42306 12.2

24 25 77.14 80.36 42063 557.4

24 11 77.14 35.36 42116 14.3

0.9768 0.0232 0.0007 0.0005 0.0002

12 11 38.57 35.36 42515 556.4

12 25 38.57 80.36 42325 14.0

26 25 83.57 80.36 41993 544.0

26 11 83.57 35.36 42005 13.1

0.9753 0.0247 0.0007 0.0025 0.0002

12 13 38.57 41.79 42281 534.4

12 27 38.57 86.79 42324 9.4

26 27 83.57 86.79 41879 535.9

26 13 83.57 41.79 41985 9.7

0.9825 0.0175 0.0007 0.0022 0.0002

Supplemental Table A1.4: Raw Data used to calculate �17. This table shows raw data collected to find �17 = 0.1644±0.0014.
HWPA/B are the half wave-plate settings that realize the measurements corresponding to m and n as shown in Supplemental
Figure A1.2. The Si APD rates (RSi) and the coincidence rates between the Si APD and the triggered InGaAs APD (RC) are
both given in average cps. P (m,n) is the probability of correlated outcomes and ⌫ is the bias for individual measurements as
detailed in the Methods section. Data collection time for each point was 40 seconds. Uncertainties are one standard deviation.
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I. ENSURING INDISTINGUISHABILITY

In order to ensure the indistinguishability of photons arriving at Charlie’s and to allow Bell state measurements in
a real-world environment, we developed and implemented three stabilization systems (see Fig. 2 in the main text):
fully-automatic polarization stabilization, manual adjustment of photon arrival time, and manual adjustment of laser
frequency. Note that automating the frequency and timing stabilization systems is straightforward, particularly if the
active control elements are placed in Charlie’s setup.

The polarization stabilization system [1, 2] employed an additional laser (at Charlie’s) and two polarization con-
trollers (one at Alice’s and one at Bob’s). Every 10 s, Charlie disabled data collection for 0.5 s and sent high intensity,
vertically polarized stabilization light to Alice and Bob. This light was detected by photodiodes at Alice’s and Bob’s,
and used to trigger their commercially available polarization controllers (POCs), which were programmed to adjust
the polarization of the stabilization light to vertical. This implies that Alice’s and Bob’s attenuated laser pulses,
which were emitted horizontally polarized, both arrive horizontally polarized at Charlie’s.

To stabilize the frequency di↵erence between Alice’s and Bob’s lasers, Alice used a frequency shifter (FS) that
employed a linear phase chirp via a serrodyne modulation signal applied to a phase modulator. Whenever the error
rate in the x-key increased significantly, Charlie communicated the frequency di↵erence after measuring the beat
frequency by mixing their unmodulated and unattenuated laser outputs on the beam splitter. Adjustments, in the
worst case, were required every 30 minutes to maintain the di↵erence below 10 MHz.

To enable temporal synchronization, Charlie sent a master clock signal via a second set of fibers to Alice and
Bob. Roughly every minute, Charlie measured the qubit arrival-time di↵erence using his SPDs and high-resolution
electronics and sent this information to Alice and Bob. They then adjusted their qubit generation times using function
generators to apply a phase shift to the recovered master clock. This maintained the arrival-time di↵erence under
30 ps.

II. DECOY-STATE ANALYSIS

In MDI-QKD the secret key rate is given by

S � Q

z

11

�
1� h2(e

x

11)
�
�Q

z

µ�

fh2(e
z

µ�

), (1)

where h2(X) denotes the binary entropy function evaluated on X, and f describes the e�ciency of error correction
with respect to Shannon’s noisy coding theorem. Furthermore, Qz

11, e
x

11, Q
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µ�

, and e

z
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are gains (Q – the probability
of a projection onto | �i per emitted pair of pulses) and error rates (e – the ratio of erroneous to total projections
onto | �i) in either the x- or z-basis for Alice and Bob sending single photons (denoted by subscript “11”), or for
pulses emitted by Alice and Bob with mean photon number µ and � (denoted by subscript “µ�”), respectively. While
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11 have to be bounded using a decoy state method.
We use a three-intensity decoy state method for the MDI-QKD protocol [3] that derives a lower bound for Q

x

11
and Q

z

11 and an upper bound for ex11, to calculate a lower bound for the secure secret key rate. We denote the signal,
decoy, and vacuum intensities by µ
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, µ
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, and µ

v

, respectively, for Alice, and Bob (note that µ
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= 0 by definition).
In our implementation Alice and Bob both select the same mean photon numbers for the three intensities and use
channels of equal transmission. For compactness of notation, we omit the µ when describing the gains and error
rates (e.g. we write Q
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ss

to denote the gain in the z-basis when Alice and Bob both send photons using the signal
intensity). Under these assumptions, the lower bound on Q
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where the various P
i

(µ) denote the probabilities that a pulse with Poissonian photon number distribution and mean
µ contains exactly i photons, and Q
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Similar equations are used to bound Q

z

11 (we replace the superscript x by z). Finally, the error rate e

x

11 can then be
computed as
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where the upper bound holds if a lower bound is used for Qx

11. Note that Qx,z

11 , Qx,z
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) and e

x

11 (Eqs. 2-5)
are uniquely determined through measurable gains and error rates.

Our analysis in [4] determined that lowering µ

d

as much as possible maximizes secret key rate. In these experiments,
we select µ

d

= 0.05 in order to obtain statistically significant data in a reasonable amount of time (see Suplementary
Table A2.1)

III. SECURE KEY DISTRIBUTION USING MDI-QKD

In this section we describe the assumptions underpinning secure key distribution in MDI-QKD as well as further
technological and theoretical developments required for our current proof-of-principle demonstration to meet this goal.
We note that any QKD system used to distribute secret key must be vetted against attacks arising from imperfections
in its implementation1. Protection against such attacks requires the development of hardware that strives to be as
ideal as possible, in conjunction with the development of security proofs that are able to take into account those
imperfections that inevitably remain in any realistic implementation. (Such proofs would bound the information
leaked to an eavesdropper, which, in turn, allows removing it by means of privacy amplification). Even for the heavily
studied prepare-and-measure BB84 protocol, this is an area of ongoing research [6], and more needs to be done for the
new MDI-QKD protocol. Yet, MDI-QKD constitutes a very important development in this context as it eliminates all
potential attack strategies related to imperfections in the measurement apparatus, including arbitrary measurement-
basis misalignment errors as well as detector attacks that have recently been shown to provide the eavesdropper full
information about the key without leaving a trace [7–10]. Remaining assumptions and required developments are:

1. Quantum mechanics is correct and complete. This assumption is generally believed to be true.

2. Alice’s and Bob’s laboratories are private. This assumption entails that no undesired signals, e.g. RF
electromagnetic radiation, escape from Alice’s and Bob’s apparatus when working in normal conditions. Infor-
mation gain through such passive observation can be avoided using appropriate shielding, which, as is standard
in academic QKD implementations, we have not spent any particular e↵ort on. Furthermore, the assumption
implies that Eve cannot actively obtain information about the experimental settings, e.g. by sending a probe,
such as light, into the laboratories using the fiber that connects Alice or Bob, respectively, with the outside
world, and analyzing the back reflection. This is often referred to as a Trojan horse attack [11, 12]. And
finally, Eve cannot actively influence Alice’s or Bob’s devices to modify their functioning. Protection against
active attacks requires that the laboratories are isolated from signals sent by Eve, e.g. using optical isolators
or attenuators. No such countermeasures were realized in our proof-of-principle demonstration. However, their
implementation is straightforward, at least in what concerns attenuators and isolators [13]. We emphasize that
there is no need to protect Charlie’s laboratory; the MDI-QKD protocol ensures that it can even be run by the
eavesdropper.

3. Alice and Bob send phase-randomized attenuated pulses of light produced by a laser operated

well above threshold. This ensures that the generated light pulses are correctly described by the density

1
A notable exception is fully device independent QKD (DI-QKD) [5], which, however, is currently impossible to realize due to the need

for a loophole free violation of a Bell inequality.
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TABLE A2.1: List of experimentally obtained error rates, ex,z
µ�

, and gains, Qx,z

µ�

, used to calculate the secret key rate in four
di↵erent configurations. For each configuration we show the mean photon numbers for the signal and decoy states, µ

s

and
µ
d

, employed by Alice and Bob. The vacuum state corresponds to a mean photon number of µ
v

= 0. We remind the reader
that we omit the µ when writing the gains and error rates, writing only the subscript denoting the signal (s), decoy (d), or
vacuum (v) state. We also indicate the lengths of fiber connecting Alice and Charlie (`

A

), Bob and Charlie (`
B

) and the total
transmission loss (l). Finally, the computed secret key rate (S) is shown in bits per detector gate. Additionally, we measured
Qx,z

vv

= (7.1± 0.30)⇥ 10�10 and ex,z
vv

= 0.49± 0.021, which is applied to all distances.
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n! is the Poisson distribution with mean photon number µ, and
|nihn| denotes the density matrix of an n-photon Fock state. This condition is easily met by generating every
light pulse using a laser diode triggered by a short electrical pulse. However, as we carve qubits out of a laser
beam with large coherence time using an intensity modulator, it is not fulfilled in our setup (more precisely,
subsequent pulses are coherent). Yet, we point out that the solution to our problem is well understood and has
been implemented before [14]: it simply requires adding a phase modulator that randomizes the global phase of
each qubit.

4. The mean values of photons per pulse, as well as the encoded states are chosen randomly. No
random choices have been implemented in our current proof-of-principle demonstration. Instead, we sent pulses
with the same mean photon number and encoded the same qubit state during several minutes before changing
the state or mean number. However, operating the phase and amplitude modulators that generate qubit states
using adequate drivers connected to quantum random number generators is well understood [13], and meeting
the requirement of random modulation is straightforward, though time consuming.

5. Alice and Bob generate qubits in states that are su�ciently close to those that form two maximally

conjugate bases. These states were denoted in the main text as |0i, |1i, |+i ⌘ 1p
2
(|0i + |1i) and |�i ⌘

1p
2
(|0i � |1i), respectively. This assumption may currently not be satisfied (see [4] for a detailed description
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of our experimental imperfections). For instance, considering states in di↵erent bases (for which the overlap
should be 0.5), we find an average deviation of 0.074, and for di↵erent states in the same basis (for which we
expect an overlap of zero), the average deviation is 0.013. According to the analyses in [3, 15] these overlaps,
together with the current detector performance, are insu�cient to securely distribute key. However, we point
out that both proofs lead to very conservative bounds. For instance, the proof in [3] requires a state generation
procedure that artificially increases error rates and applies non-tight bounds, and hence underestimates secure
key rates. We believe that future investigations will rapidly improve proof techniques and yield higher secret
key rates (and result in secret key in cases in which current proofs predict no secret key). Furthermore, we
note that straightforward technological improvements allow reducing the maximum deviation from the ideal
overlap values to around 1 part in 1000. For instance, this can be accomplished by reducing ringing in our
pulse generation by a factor of 5, and using commercially-available, state-of-the-art intensity modulators that
allow suppressing the background by an additional 10-20 dB [16]. In addition, using state-of-the-art detectors
with 93% quantum e�ciency and 1kHz noise [17] leads, according to simulation results with a theoretical model
of MDI-QKD that we presented in [4], to secret key rates similar to or above the ones reported in the main
document, even using the conservative approach in [3].

6. Su�ciently weak correlations between qubit states and all degrees of freedom not used to encode

the qubit. In principle, the various states generated by Alice and Bob could have di↵erences in other degrees
of freedom (i.e. polarization, spectral, spatial, or temporal modes), which could open a security loophole [18]
if not properly quantified and taken into account during privacy amplification. However, for MDI-QKD, the
link between correlations with unobserved degrees of freedom and Eve’s information gain is not yet clear. In
particular, correlations are likely to degrade the visibility of the BSM, thus creating observable errors. The upper
bound on Eve’s information gain, possibly zero, can only be assessed using plausible arguments based on the
actual implementation of the setup supplemented by careful measurements. For instance, in our implementation,
the use of a single laser to generate all qubits states and of a single-mode fiber to transmit qubits from Alice,
or Bob, to Charlie, respectively, makes it highly unlikely that correlation between states and photon spectra
or spatial modes exist. Furthermore, careful programming of the function generator that generates all states
through interaction with the same intensity modulator makes it very plausible that no temporal distinguishability
is observable in our experiment. And finally, the polarization beam splitter at the exit of Alice’s and Bob’s
laboratories ensures equal polarization of all time-bin qubit states.

7. Appropriate classical post-processing of the sifted key, i.e. error correction and privacy amplifi-

cation. Note that while we have not implemented error correction, we have used a realistic estimation of the
error correction e�ciency [13] to determine the potential secret key rate of our system. Furthermore, we did
not consider finite key size e↵ects in our proof-of-principle demonstration (in other words, we assumed that we
could run our QKD devices during an infinitely long time and produce an infinite amount of measured data),
which, in the case of MDI-QKD, have so far only been investigated using an overly conservative approach [19].

8. A short secret authentication key exists before starting QKD. This key is used to authenticate the
classical communication channel during error correction and privacy amplification. As we did not implement
any of these post-processing steps, we did not need any pre-established secret key. In an actual implementation,
this step can, for instance, be accomplished during a personal meeting between Alice and Bob.

We recall that some of the above topics are currently not as thoroughly studied for MDI-QKD as for prepare-
and-measure QKD. However, the ability to close all side channels in measurement devices represents a significant
step forward in closing the gap between theoretical security proofs and experimentally viable implementations. In
particular, it has, for the first time, allowed for the development of security proofs in QKD that take arbitrary state
generation and measurement errors into account, even though the e�ciency of the current approaches can certainly
be increased2. In addition, for actual key distribution, our experimental implementation has to be improved along
the lines discussed above. We leave these interesting and important topics for future investigations and emphasize
that our work has focused on previously undemonstrated requirements for MDI-QKD, such as the Bell state
measurement over deployed fiber, on improving the understanding of the capabilities and current limitations of our
setup (including optimization and e�ciency calculations of a decoy state analysis; for more information see [4]) and
on experimental demonstrations of the protocol over various distances as well as over deployed, real-world optical fiber.

2
In comparison, the only security proof for BB84 QKD dealing with arbitrary state generation errors at the source and arbitrary

misalignment of the measurement bases is limited to individual attacks but does not apply to more powerful coherent attacks [6].
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IV. DISCUSSION OF ERROR RATES ex,z
µ�

Let us briefly discuss the ideal case in which the quantum states encoded into attenuated laser pulses, as well as the
projection measurements, are perfect. To gain some insight into how the di↵erence in the error rates, ex,z

µ�

, arises3, we
consider only the most likely case that can cause the detection pattern associated with a projection onto | �i (this
projection occurs if the two detectors indicate detections with 1.4±0.4 ns time di↵erence). Specifically, we consider
only the case in which two photons arrive at the beam splitter. Note that these photons can either come from the
same person, or from di↵erent persons.

• z-basis: Assuming that Alice and Bob both prepare states in the z-basis, only photons prepared in orthogonal
states can cause a projection onto | �i. This implies that one photon has to come from Alice, and the other
one from Bob (if generated by the same person, both photons would be in the same state). Hence, taking into
account Bob’s bit flip, Alice and Bob always establish identical bits, i.e. ez

µ�

(ideal) = 0.

• x-basis: Assuming that both Alice and Bob prepare states in the x-basis, it is no longer true that only photons
prepared in orthogonal states and by di↵erent persons can cause a projection onto | �i. Indeed, if the two
photons have been prepared by the same person, it is possible to observe the detection pattern associated with
a projection onto | �i. In this case, given that all detected photons have been prepared by either one or the
other person, the detection does not indicate any correlation between the states prepared by Alice and Bob.
In turn, this leads to uncorrelated key bits. Thus, ex

µ�

(ideal) is determined by the probability that one photon
arrived from each person relative to the probability that two photons arrived from the same person. A detailed
analysis for attenuated laser pulses with Poissonian photon number distribution, assuming an equal probability
of photons arriving from either party, yields ex

µ�

(ideal) = 1/4.
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Supplementary Information

A. Properties of waveguide LiNbO
3

crystal and AFC.

In the experimental configuration in which the HOM-interference occurs between two pulses recalled from separate
quantum memories we pointed, in the main text, to the di↵erent properties of the two memory devices. In this section
we wish to elaborate on the di↵erences between the two memories based on their physical dissimilarity and measured
optical depth as a function of frequency. Memory waveguide a is 10.4 mm long and crystal b is 15.4 mm long. The
optical depths at 795.43 nm are around 2.5 and 3.2 for waveguide a and b, respectively, as shown by the light-grey
curves in Fig. A3.1 a,b, corresponding to the case in which the memories are not activated.
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FIG. A3.1: Measured optical depths of our two Ti:Tm:LiNbO
3

waveguides as a function of frequency shift of the probing
light imparted by the phase-modulator. Light grey traces show optical depths when the memories are inactive, i.e. no AFC is
prepared. Dark red traces show the prepared AFCs at a magnetic field of 900 Gauss at the centre of the solenoid.

In order to spectrally tailor an AFC in Tm:LiNbO
3

, a magnetic field must be applied along the crystal’s c-axis so
as to split the ground and excited level multiplets into their two nuclear Zeeman sublevels[1]. However, as one crystal
is located at the centre of the setup’s solenoid and the other outside the solenoid (see Fig. 2 in the main text) it is
not possible to apply the same B-field at the two crystals. Thus when we activate both memories we generally apply
a magnetic field, which provides a reasonable balance in recall e�ciencies but is not optimal for either memory. This
circumstance is reflected by the di↵erent shapes of optical-depth profiles of the AFCs shown in red in Fig. A3.1a,b.

B. Two-photon interference in imperfectly prepared memories.

In all our demonstrations of the HOM interference we consistently observe that the HOM visibility is close to the
theoretical maximum for coherent states. Yet, it is important to realize that an improperly configured AFC quantum



memory does alter a stored photon’s wavefunction, resulting in imperfect HOM interference with a non-stored photon.
To support this claim we activate only memory a, whose performance we change by varying the bandwidth of the

AFC, and interfere the recalled pulses with pulses directly transmitted through the deactivated memory b. As the
AFC bandwidth decreases below that of the probe pulses, the AFC e↵ectively acts as a bandpass filter for the stored
photons and we thus expect the recalled pulses to be temporally broadened w.r.t. the original pulse. This is observed
in the insert of Fig. A3.2, which shows smoothed histograms of photon detection events as a function time. It is worth
noting that the small bandwidth AFC also acts as a bandpass filter for the transmitted pulse by virtue of the di↵erent
e↵ective optical depths inside and outside the AFC. Thus the broadened transmitted pulse starts to overlap with the
echo for the narrow AFC bandwidth traces, as is also observed in the insert of Fig. A3.2.
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FIG. A3.2: HOM interference visibility if HOM-BS input pulses are recalled from AFCs with varying bandwidths. Insert: His-
tograms of recalled pulse detection times for di↵erent AFC bandwidths clearly showing broadening of recalled (and transmitted)
pulses for bandwidths below 100 ns.

Another consequence of reducing the AFC bandwidth is that the overall e�ciency of the quantum memory de-
creases, which causes an imbalance between the mean photon numbers at the HOM-BS inputs and thus reduces HOM
interference visibility. We circumvent the change to the echo e�ciency by adapting the mean photon number at the
memory input so as to keep the mean photon number of the recalled pulse constant. With this remedial procedure,
we assess the HOM visibility by changing the HOM-BS inputs from parallel to orthogonal polarizations for a series
of di↵erent AFC bandwidths. The HOM visibility in Fig. A3.2 is steady for bandwidths from around 100 MHz and
up. However, below 100 MHz the visibility begins to drop significantly. The dashed line is a fit of the visibilities to a
Gaussian function with full-width at half-maximum (FWHM) of 79± 4 MHz. Note, that the reason for the visibility
being limited to around 40% is solely that, for this measurement, we do not go through the usual careful optimization
steps.

With these measurements we have illustrated how a quantum memory could alter the photonic wavefunction
resulting in a reduced HOM interference visibility. A combination of spectral and temporal distortion of the photonic

122



wavefunction is indeed a common type of perturbation by quantum memories.[2, 3] It is particularly worth noting
that the gradient-echo memory (GEM) quantum memory protocol, though similar to the AFC protocol, imparts a
frequency chirp to the recalled pulse[4]. If not corrected, this feature constitutes a perturbation of the wavefunction
of the recalled pulse, which may render it unsuitable for applications relying on two-photon interference.

C. Analytical model of second-order interference in coincidence measurements.

In the following theoretical treatment we will derive expressions for the coincidence and single-detector counts in
terms of probabilities. By multiplying these probabilities with the average experimental repetition rate we can easily
calculate the predicted experimental count rates. To a large extent though, we will mainly be interested in relative
probabilities or count rates between di↵erent settings of the degrees of freedom of pulses.

It is reasonably straightforward to derive the rates of detection of photons at the outputs of a BS (note that in
this Supplementary Information, the HOM-BS of the main text will be referred to as just BS) In our case coherent
states |↵i and |�i, characterized by mean photon numbers hâ†âi = |↵|2 and hb̂†b̂i = |�|2, occupy the two spatial input
modes of the BS. In the Fock-basis the coherent state can be represented as

|↵i =
1X

n=0

e�
|↵|2
2

↵n

p
n!
|ni =

1X

n=0

e�
|↵|2
2

↵n

n!
(â†)n|0i, (1)

and similarly for |�i.
To account for the cases of photons being distinguishable and indistinguishable at the BS we must allow for an

additional degree of freedom in each of the spatial modes, e.g. polarization, frequency, or time. Thus we write the
input state at one of the BS inputs as |↵

1

, ↵
2

i ⌘ |↵
1

i ⌦ |↵
2

i, where ↵
1

and ↵
2

are the coherent state amplitudes in
the two orthogonal modes of the auxiliary degree of freedom within the same spatial mode. We treat the coherent
state at the other BS input in a similar way.

For the case in which the fields at the inputs of the BS are distinguishable with respect to the auxiliary degree
of freedom, the inputs to the BS are described as being in the state |↵, 0i|0, �i ⌘ |↵, 0i ⌦ |0, �i, whereas in the
case of them being indistinguishable (up to a di↵erence in the mean photon number) the input fields are written as
|↵, 0i|�, 0i.

The BS is characterized by its reflection amplitude r and transmission amplitude t =
p

1� |r|2, which cause

the input creation operators to transform as â† ! tĉ† + ird̂† and b̂† ! irĉ† + td̂†. With this in hand, we can
compute the state in the BS outputs for any combination of Fock states at the inputs. When the two input states are
indistinguishable, i.e. in the same auxiliary degree of freedom, we get[5]

|n, 0i|m, 0i !
nX

j=0

mX

k=0

Kk(n,m, j, k) |j + k, 0i|n+m� j � k, 0i (2)

Kk(n,m, j, k) = tm�k+j(ir)n�j+k

s✓
n

j

◆✓
m

k

◆✓
j + k

j

◆✓
n+m� j � k

n� j

◆
,

where the binomial coe�cient
�
x

y

�
= x!

y!(x�y)!

. For distinguishable input fields the output state is slightly simpler

|n, 0i|0,mi !
nX

j=0

mX

k=0

K?(n,m, j, k) |j, ki|n� j, m� ki (3)

K?(n,m, j, k) =
nX

j=0

mX

k=0

tm�k+j(ir)n�j+k

s✓
j

k

◆✓
n� j

m� k

◆
.

The above calculated output modes impinge on the single photon detectors (SPDs). These may be characterized by
the probability of detecting an incident single photon. From this single photon detection probability ⌘ it is also possible
to deduce the probability of detecting a pulse consisting of multiple photons, keeping in mind that, irrespective of the
number of photons, only a single detection event can be generated. We write p

1

(n) for the probability for generating
one detector event given n incident photons, and it is useful to note that it relates to the probability p

0

(n) of detecting
nothing as p

1

(n) = 1� p
0

(n). The probability for not detecting n photons is, on the other hand, easily computed as
p
0

(n) = (1� ⌘)n. Since the two detectors at the BS outputs are independent, the probability p
11

(n,m) of generating
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a coincidence event, i.e. having simultaneous detection events in each of the detectors, given n and m photons in one
and the other output is simply p

11

(n,m) = p
1

(n)p
1

(m). Thus the probability for a coincidence detection becomes

p
11

(n,m) = [1� (1� ⌘
1

)n] [1� (1� ⌘
2

)m] , (4)

where ⌘
1

and ⌘
2

are the single photon detection probabilities for detector 1 and 2, respectively. Expressing the
coincidence detection probability in terms of Fock states at the BS input we have

P
k
11

(n,m) =
nX

j=0

mX

k=0

|Kk(n,m, j, k)|2 p
11

(j + k, n+m� j � k) (5)

=
nX

j=0

mX

k=0

|Kk(n,m, j, k)|2
⇥
1� (1� ⌘

1

)j+k

⇤ ⇥
1� (1� ⌘

2

)n+m�j�k

⇤
,

where Kk(n,m, j, k) should be substituted with the factor from Eq. (2). For distinguishable inputs we find a similar
expression for P?

11

(n,m) using the factor K?(n,m, j, k) from Eq. (3). It is assumed that the detector at a given spatial
output mode is equally sensitive to photons in both auxiliary modes, i.e. it detects the states |k, ji and |j, ki with
equal probability.

We are now in the position to formulate an expression for the di↵erent detection probabilities given a particular set
of coherent input fields. The probability to generate a detection event in both detectors, given coherent input fields
of amplitudes ↵ and �, is

Pk(?)

11

(↵,�) =
1X

n=0

1X

m=0

e�|↵|2�|�|2 (↵
n�m)2

n!m!
P

k(?)

11

(n,m) . (6)

(Note that to distinguish the probability in Eq. (5), which is applicable to Fock states, from that inEq. (6), which
applies to coherent state inputs, we use P to denote the former and P for the latter.) This allows us to derive the
visibility of the HOM interference on the two detectors as

V
11

(↵,�, ⌘
1

, ⌘
2

, r) =
P?
11

(↵,�)� Pk
11

(↵,�)

P?
11

(↵,�)
, (7)

where we have spelled out the parameters that a↵ect the value of the visibility. The quantity V
11

is referred to as the
HOM visibility.

D. Simplified model for HOM visibility.

To gain some intuitive understanding of the way the HOM visibility is a↵ected by the experimental parameters
we resort to a couple of approximations. Firstly, we assume equal mean photon numbers at the inputs of the beam-
splitter, |↵|2 = |�|2 ⌘ µ, the BS ratio to be 50:50 (i.e. r = t = 1/

p
2), and the detectors to have equal single photon

detection probability ⌘
1

= ⌘
2

⌘ ⌘. Secondly, since we normally work at very low mean photon numbers µ < 1 only
the first couple of terms of Eq. (1) need to be included. Specifically, we Taylor expand e�µ/2 and keep only terms in
the sum up to 2nd order in µ. Thus, for the coincidence detection events we get the probabilities

Pk
11

= ⌘2
µ2

2
(8)

P?
11

= ⌘2µ2 , (9)

which results in a HOM visibility of

V
11

=
1

2
. (10)

A key point is that the HOM visibility of 50% is independent of the mean photon number µ. This observation can be
explained by noting that in this low order treatment the coincidences in the case of indistinguishable input modes stem
mostly from events in which two photons are present at the same input, which occurs with probability p

0

p
2

+ p
2

p
0

.
For distinguishable input modes the coincidences stem from all events that contain two photons at the input, i.e.
p
1

p
1

+ p
0

p
2

+ p
2

p
0

. Since, according to Eq. (1), for coherent input states, all of these probabilities scale in the same
way with the mean photon number, their ratio, and thus the visibility of Eq. (7), is constant for all mean photon
numbers.
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E. Compilation of experimental results for HOM interference at the few-photon level.
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FIG. A3.3: HOM interference manifested in coincidence counts between BS outputs with inactive memories. a) Changing the
polarization angle between the pulses yields a HOM visibility of V = 50.96 ± 5.56%. b) Varying the temporal overlap of the
pulses produces V = 42.43± 2.27%. c) Altering the frequency overlap of the pulse spectra results in V = 43.72± 1.70%.

Here we show the plots of coincidence count rates on which the few-photon values in Table 1 of the main text
are based. We restate that coincidence count rates are proportional to coincidence probabilities by a factor that is
given by the average experimental repetition rate. Moreover, when calculating the HOM visibility, only the relative
probabilities or count rates in a measurement are important. In the experiments we change the mutual polarization,
time separation, or frequency di↵erence of the pulses at the BS (in the main text referred to as HOM-BS) input as
explained in the Methods.

Deactivated memories: We present the data in order of the number of activated memories starting with none, i.e.
pulses merely pass through attenuated to the BS. In Fig. A3.3a) we show the coincidence counts as we vary the
polarization di↵erence of the pulses at the two inputs of the BS. Fitting the data to a sine function we obtain a
visibility of V = 50.96± 5.56%. In Fig. A3.3b) we display the coincidence counts as we step the temporal separation
of the pulses at the two inputs of the BS. The count rates for these measurements are generally higher than all the
other count rates presented. This is because this data was acquired by looking at coincidences between the transmitted
part of the probe pulses in the configuration of two active quantum memories (shown in Fig. A3.5b)). Hence, the
balancing of the mean photon number in the transmitted pulses done less meticulously, which is the most likely reason
for the observed lower visibility of V = 42.43± 2.27% in this case.
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Fig. A3.3c) shows the coincidence count rates as function of the frequency di↵erence of the two pulses at the BS
inputs. The horizontal line and surrounding shaded band shown in Fig. A3.3c) – as well as in Fig. A3.4c) – give the
coincidence counts for completely distinguishable input photons as obtained by making the polarizations orthogonal.
As noted in the Methods, it is necessary to resort to the polarization degree of freedom in order to make the pulses
completely distinguishable. The visibility from the fit is noticeably lower than that obtained when we change the
other degrees of freedom. There are two main reasons for this. The first is that, in order to generate pulses with
di↵erent frequencies, we drive the AOM at the limits of its bandwidth. This, in turn, necessitates setting the RF
drive signal amplitude high whereby the frequency purity of the signal is contaminated by higher-order harmonics.
Although it is not expected to change the maximal interference value occurring when the pulses are generated with the
same modulation frequency, it will alter the shape of the interference as a function of the pulse frequency di↵erence.
Hence, the fitted Gaussian curve, assuming a Fourier limited pulse, may not correctly reproduce the actual frequency
dependence of the interference. Indeed, the minimum coincidence rates consistently fall below the fitted curve. A
second factor reducing the observed visibility is related to the need to adjust the AOM drive amplitude to balance
the bandwidth limitation. The limited accuracy with which we are able to estimate the appropriate RF amplitude
results in significant scattering of the coincidence counts due to variations in input pulse intensities. To amend this we
have found that it is necessary to normalize the points to the count rates on the individual detectors, as indicated on
the y-axis of plot Fig. A3.4c. Unfortunately, the manifestation of the HOM interference in the single-detector count
rates – which will be elaborated later in the Supplementary Information – means that such a normalization procedure
tends to reduce the visibility in the coincidence counts.

One active memory: Next in line are the plots for the case in which only memory a is activated, while the other is
left inactive. In Fig. A3.4 we present the coincidence count rates when changing the same degrees of freedom as in
case of both memories being inactive. Additionally, in Fig. A3.4d, we plot the coincidence count rates when changing
the storage time in the quantum memory.

Two active memories: Lastly, we present the plots for the case in which both memories are activated. Due to
limitations in our current setup it is not possible to simultaneously generate two quantum memories with di↵erent
storage times, and therefore we do not acquire a storage time scan when both memories are active. Furthermore, we
skip the characterization with respect to the spectral degree of freedom. The coincidence count data for the remaining
two degrees of freedom are plotted in Fig. A3.5, which also includes the appropriate fits.

F. Manifestation of HOM interference in single detector counts.

We also evaluate the e↵ect of the two-photon interference on the counts registered by a single detector. This is
easily done by amending the detection probability to the case of one detection event in one detector and any number
of events x (i.e. x = 0, 1) in the other detector. We arrive at

p
1x

(n,m) = 1� (1� ⌘
1

)n . (11)

This expression can be inserted into Eq. (5) to calculate P
k(?)

1x

(n,m), which, through Eq. (6), gives us Pk(?)

1x

(↵,�),
and from which the single-detector visibility V

1x

is defined analogous to Eq. (7).
We can formulate a simplified expression by using the same approximations as in the case of coincidence detections:
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µ2 (12)
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1x

= ⌘µ+ ⌘
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2� ⌘

2

⌘
µ2 , (13)

from which we get the single-detector visibility

V
1x

=
⌘µ

4 + 2(4� ⌘)µ
. (14)

In the limit of low detector e�ciency, V
1x

⇡ 0, since, in that case, the probability of detecting two photons impinging
on the detector is simply twice that of detecting one. This nulls the limitation that only a single detection event
can be generated per pulse. Furthermore, the single-detector visibility also goes to zero for very low mean photon
numbers. In this case it is very unlikely to have two photons either at the same or at di↵erent input ports of the BS,
hence most of the single detector counts stem from single photons from either one or the other input of the BS. It is
interesting to note that if ⌘ is known for a detector, then, from observing the single-detector visibility (see Eq. (14)),
it is in principle possible to estimate the mean photon number per pulse µ.
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FIG. A3.4: HOM interference manifested in coincidence counts between BS outputs with one active memory. a) Changing the
polarization angle between the pulses yields a HOM visibility of V = 55.51 ± 4.09%. b) Varying the temporal overlap of the
pulses produces V = 47.57 ± 2.96%. c) Altering the frequency overlap of the pulse spectra results in V = 42.40 ± 3.51%. d)
Varying the storage time of the quantum memory and thus the temporal overlap of the pulses yields V = 44.4± 6.9%.

Another important consequence of the manifestation of two-photon interference in the single-detector counts is that
the single-detector counts cannot generally be used to normalize the coincidence counts w.r.t. fluctuations in the input
pulse intensities. Only for detectors with low detection e�ciency or very low mean photon numbers, in which case
V
1x

⇡ 0, is this normalization possible.

G. Experimental results on HOM interference manifested in single-detector counts

First, in Figure A3.7, we present the single-detector counts corresponding to the coincidence counts depicted in
Figure A3.4a,b. In the case where we vary the polarization and time separation we see a clear change in the single-
detector counts, which, moreover, is evidently correlated with the change in coincidence counts. The count variation
due to the two-photon interference is somewhat masked by the single-detector count scatter, which is due to intensity
fluctuations mainly in the light going through the 10 km delay line. We fit the data in Figures A3.7a and b with a
sine and Gaussian function, respectively. For the former we find a mean photon number of µ = 0.52 while from the
latter we estimate µ = 0.54. From the number of single-detector counts there is some evidence to conclude that the
light intensity is about 15% higher. To this should be added about 25% uncertainty for the intensity at the BS w.r.t.
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FIG. A3.5: HOM interference manifested in coincidence counts between BS outputs with two active memories. a) Changing
the polarization angle between the pulses yields a HOM visibility of V = (53.1± 5.3)%. b) Varying the temporal overlap of the
pulses produces V = (46.1± 3.2)%.
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FIG. A3.6: Plots of single-detector visibility as a function of the mean photon number for detectors with a range of single photon
detection probabilities ⌘. The ⌘ = 70% trace, highlighted with a dashed line, corresponds approximately to our detectors, which
have 65%  ⌘  75%.

the intensity at the detector due to variation in the loss in the fibre mating sleeves. Finally, the scatter of the counts
makes the fits themselves rather uncertain. Nevertheless, the mere fact that the two-photon interference is manifested
in the single-detector counts validates the order of magnitude of the mean photon number, as depicted in Fig. A3.6.

Figure A3.8 depicts the single-detector counts corresponding to the coincidence counts depicted in Figure A3.5a,b.
Again, from fitting the appropriate functions to the polarization and time data yields visibilities around 7%, corre-
sponding to mean photon numbers of around µ = 0.5.
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FIG. A3.7: HOM interference manifested in single-detector counts in the case of one active quantum memory when changing
a) polarization and b) time di↵erence between pulses at BS input. For the polarization scan in a) we find V

1x

= (7.51± 3.80)%
and for the time scan in b) we get V

1x

= (7.75 ± 3.25)%. For this measurement we only recorded the single-detector counts
from Si-APD 1.
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FIG. A3.8: HOM interference manifested in single-detector counts in the case of two active quantum memories when changing
a) polarization and b) time di↵erence between pulses at BS input. For the polarization scan in a) we find V

1x

= (8.64± 2.50)%
and V

1x

= (7.60 ± 2.36)% for Si-APD 1 and 2, respectively. For the time scan in b) we measure V
1x

= (6.38 ± 2.01)% and
V
1x

= (6.23± 1.61)% for Si-APD 1 and 2, respectively.

H. Bell-state measurement.

In this section we derive an analytical expression for the coincidence count rates corresponding to projections onto
the | �i Bell state for time-bin qubits detected by the two detectors at the output of the HOM-BS. To that end, we
will introduce a number of approximations as we did previously in order to calculate the HOM interference in the
coincidence counts. In the limit of low mean photon numbers, two coherent states impinging onto the two inputs of
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a 50:50 BS can be represented in terms of Fock states as

| i
ab

=
p
p(1, 1)|11i

a,b

+
p
p(2, 0)|20i

a,b

+
p
p(0, 2)|02i

a,b

(15)

=
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p(1, 1)(â† ⌦ b̂†) +

1p
2!

hp
p(2, 0)((â†)2 ⌦ I) +

p
p(0, 2)(I ⌦ (b̂†)2)

i◆
|00i

a,b

,

where the subscripts on the state vector refer to the order of listing the input modes, i.e. |00i
a,b

⌘ |0i
a

⌦ |0i
b

. The
factors written as p(n,m) denote the probability of having n and m photons in mode a and b, and are given by

p(n,m) = |(
a

hn| ⌦
b

hm|)(|↵i
a

⌦ |�i
b

)|2 = e

�(|↵|2+|�|2)

n!m!

(|↵|2)n(|�|2)m. Stemming from the low mean photon number
assumption, we do not include terms with more than two photons. Assuming that our detectors are noiseless, terms
with a total of one or no photons are also left out as they cannot generate any coincidence counts.

For a time-bin qubit, the Fock state is created in a superposition of two temporal modes, i.e., an early (e) and a
late (l) mode, by the creation operators for the spatial input mode x† (x† = a†, b†) of the beam-splitter, as
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
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where cos
�
✓

x

2

�
and sin

�
✓

x

2

�
are the amplitudes of, and �

x

is the relative phase between, the two temporal modes
composing the time-bin qubit. The subsript xe refers to the early time-bin of the spatial mode x and similarly for
xl. Note, that we sometimes simplify the notation for the time-bin qubit states as |ei

x

⌘ |10i
xe,xl

= (x̂†
e

⌦ I)|00i
xe,xl

.

If we insert the expression in Eq. (16) in place of the â and b̂ operators in Eq. (15) we get the expression for the
wavefunction | (✓

a

,�
a

, ✓
b

,�
b

)i
ab

for time-bin qubits at the HOM-BS inputs. We split this expression into the various
contributions given in Eq. (15)
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ĉ†
e

d̂†
l

+ ĉ†
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and similarly for (I ⌦ (b̂†)2)|00i
ab

. Again, the subscripts on the state vector refer to the order of listing the temporal
and spatial modes, e.g. ce labels the early bin of the spatial output mode c.

We will look for coincidence detection events that correspond to projections onto the Bell state | �icd =
1p
2

(ĉ†
e

d̂†
l

� ĉ†
l

d̂†
e

)|0000i
ce,cl,de,dl

. Such projections correspond to a detection event in the early time-bin in one detector

followed by a detection event in the late time-bin in the other detector. This projection occurs with a probability
P�(✓a,�a, ✓b,�b) = |

cd

h �| (✓a,�a, ✓b,�b)icd|2, which can be computed by combining Eq. (17) with Eq. (15). As-
suming equal mean photon numbers at the two inputs |↵|2 = |�|2 ⌘ µ and averaging over the coherent state phases,
i.e. the complex angle between ↵ and �, we get the expression
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With this we are able to calculate the probabilities of projection onto | �i for di↵erent combinations of qubits at the
two BS inputs, i.e. for di↵erent choices of the angles ✓

x

and �
x

. In turn, this allows us to calculate the | �i Bell-state
measurement error rate as

e ⌘
Pk
�

Pk
� + P?

�
, (19)

where Pk
� is the projection probability when the two input qubit states are identical, i.e. �

a

= �
b

and ✓
a

= ✓
b

, while
P?
� is the projection probability for two orthogonal input qubit states. This is also defined in terms of count rates in

Eq. (1) in the main text. We will now treat a number of relevant cases.
Expected and observed error rates in the case of �

a

= �
b

= 0. Using the simplified notation this corresponds to the

case were the input qubit states are of the form | i = cos
�
✓

x

2

�
|ei + sin

�
✓

x

2

�
|li. When depicted on the Bloch sphere

these qubits span the xz-plane. Using Eq. (18) we compute the projection probability as
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We are interested in the probability Pk
� for the case in which the input qubits are parallel (✓

a

= ✓
b

) and P?
� for the

case in which the input qubit states are orthogonal (✓
a

= ✓
b

� ⇡). Specifically, when we prepare two qubits (one

at each input of the BS) in state |ei, or two qubits in state |li, we expect Pk
� = 0. The probability for observing a

projection onto | i increases as we change ✓
a

(or ✓
b

), and reaches a maximum P?
� if one qubit is in state |ei and the

other one in |li. Hence, using the expression for the error rate above (Eq. (19)), we find e
(att)

e/l

= 0.

We now turn to measuring the coincidence rates for all combinations of |ei and |li input states, and thus extracting

Pk
� and P?

� , using 0.6 photons per qubit at the memory input. More precisely, we prepare the input qubit state

|ei
a

⌦ |ei
b

to measure Pk(1)
� and then |ei

a

⌦ |li
b

to measure P?(1)

� . Subsequently, we prepare the input qubit state

|li
a
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b

to measure Pk(2)
� and then |li

a

⌦|ei
b

to measure P?(2)

� . These yield the average values Pk
� = (Pk(1)

� +Pk(2)
� )/2

and P?
� = (P?(1)

� + P?(2)

� )/2, from which we compute the experimental error rate e
(exp)

e/l

= 0.039 ± 0.037, which is

near the theoretical lowest value of e(att)
e/l

= 0.

Expected and observed error rates in the case of ✓
a

= ✓
b

= ⇡/2. In this case the two input qubits are in equal su-

perpositions of early and late bins, that is of the form | i = 1p
2

�
|ei+ ei�x |li

�
. On the Bloch sphere these are qubits

that lie in the xy-plane. In this case we compute

P�(⇡/2,�a,⇡/2,�b) /
µ2e�2µ

4

�
2� cos(�

a

� �
b

)
�
, (21)

Thus the | �i Bell-state projection probability is smallest – but nonzero – when �
a

��
b

= 0, i.e. the qubit states are

parallel, and largest when the phases di↵er by ⇡, i.e. the qubit states are orthogonal. Inserting these values for Pk
�

and P?
� into Eq. (19) results in an expected error rate of e(att)

+/� = 0.25.

Using again 0.6 photons per qubit, we measure the coincidence counts for �
a

� �
b

= 0 and ⇡ giving us P
k
� and

P?
� , respectively. From these we get an error rate of e(exp)

+/� = 0.287 ± 0.020, which is slightly above the theoretical
bound. This indicates that either the measurement su↵ers from imperfections such as detector noise or the modes
at the BS are not completely indistinguishable, which in turn could be due imperfectly generated qubit states or
imperfect storage of the qubit in the quantum memory. To be conservative in our assessment of our quantum memory
we assume that the entire increase of the measured values of e(exp) is due to the memory fidelity being less than one.

Bounds for attenuated laser pulses stored in quantum and classical memories: We now compare the performance of
our Bell-state measurement to a number of relevant bounds assuming always that any imperfections arise from the
imperfect storage of the photon in the memory. We will derive bounds to the error rate in the case of one qubit being
stored in either a classical memory (CM) or quantum memory (QM). To accommodate this scenario we assume that
the memory performs the following operation | ih | ! F | ih | + (1 � F )| ?ih ?|, where F denotes the fidelity
of the stored state and | ?i is the state orthogonal to | i. For a classical memory FCM = 0.667 [6] whereas for a
quantum memory FQM = 1.

Doing the replacement Pk
� ! FPk

� + (1� F )P?
� and likewise for P?

� we can express the error rate expected after
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imperfect storage of one of the pulses partaking in the Bell-state measurement:

e =
FPk

� + (1� F )P?
�

Pk
� + P?

�
, (22)

where in this case the probabilities Pk
� and P?

� refer to those expected without the memory. Since the expected values

for Pk
� and P?

� di↵er between the e/l and +/� bases we treat them separately.
Beginning with the e/l basis we use Eq. (22) with the values from Eq. (20) to derive a bound for the error rate of

the Bell-state measurement for one of the two qubits being recalled from a quantum or a classical memory. We find

that e
(att)

e/l

= 1 � F , and hence we establish the two bounds e
(att,QM)

e/l

= 0 and e
(att,CM)

e/l

= 0.333. This clearly shows

that a classical memory would cause a larger error rate than the e
(exp)

e/l

= 0.039± 0.037 measured after storage in our
memory. We can also reverse the equations and estimate our memory’s fidelity based on the measured error rate. In

this case, inserting e
(exp)

e/l

into Eq. (22), we deduce the value F exp

e/l

= 0.961± 0.037.

We now turn to the +/� basis. For attenuated laser pulses we insert into Eq. (22) the values Pk
� = 1/4 and P?

� = 3/4
computed from Eq. (21), which enables us to relate the error rate to the memory fidelity as e

+/� = (3 � 2F )/4.

Thus, one obtains the theoretical lower bound on the error rate e
(att,QM)

+/� = 0.250 for an ideal quantum memory

(FQM = 1) and e
(att,CM)

+/� = 0.417 with an optimal classical storage device (FCM = 2/3). We make the observation

that our experimental error rate e
(exp)

+/� = 0.287 ± 0.020 is much below the bound for a classical memory. Based

on the experimental error rate e
(exp)

+/� = 0.287 ± 0.020 we derive an experimental value for the memory fidelity of

F exp

+/� = 0.926 ± 0.041. The estimates of the memory fidelity F exp

e/l

and F exp

+/� derived from our measurements in two
bases are equal to within the experimental error. This together with the fact that their values are well above 0.667
rea�rms our claim that our storage device outperforms a classical memory.

We emphasize once more that we have assumed that the reduction in error rates is due solely to the memory and
thus indicates the fidelity of the memory. However, this is likely not the case as imperfections in the state preparation
and detector noise also contribute to the reduction in error rate.

Bounds for single photons stored in quantum and classical memories: Although we do not use single photon sources
for the experiments reported here, it is interesting to determine how well our results measure up to those that could
have been obtained if single photon sources had been employed. In the following we will derive the error rate for the
Bell-state measurement using qubits encoded into single photons. To this end we step back to Eq. (15), and note that
for single photon sources all probabilities are 0 except for p(1, 1), which describes the probability of having a single
photon at each BS input. Thus, in the output state we only need to keep the terms from Eq. (17a), which in turn
means that the Bell-state projection probability can be written as

P�(✓a,�a, ✓b,�b) /
1

4


sin2

✓
✓
a

+ ✓
b

2

◆
+ sin2

✓
✓
a

� ✓
b

2

◆
� sin

�
✓
a

�
sin

�
✓
b

�
cos

�
�
a

� �
b

��
. (23)

It is easily seen that for any two parallel input qubit states (✓
a

= ✓
b

and �
a

= �
b

) we get P k
� = 0. Therefore, irrespective

of the projection probability for orthogonal input qubit states the expected error rate is always e(sing) = 0, where sing
identifies this value as belonging to the single photon case.

Gauging the e↵ect of storing one of the single photons partaking in the Bell-state measurement in a memory is thus
independent of the basis and using Eq. (22) we derive e(sing,QM) = 1� FQM = 0 and e(sing,CM) = 0.333. Contrasting

the error rate expected for a photon stored in a classical memory with the two values e
(exp)

e/l

= 0.039 ± 0.037 and

e
(exp)

+/� = 0.287 ± 0.020 obtained experimentally, we recognize that both are well below e(sing,CM). This means that
even with a single photon source at ones disposal the error rates that we measured could not have been attained with
a classical memory.

Experiments at mean photon numbers above one. In this final section we will explore in greater detail the HOM

interference dependence on the angle �
a

��
b

between a set of equal superposition qubit states | i
x

= 1p
2

�
|ei+ei�x |li

�
,

which in line with the preceding sections belong to the +/� basis. According to Eq. (21) the coincidence count rates
vary as function of cos

�
�
a

� �
b

�
. In Fig. A3.9 we show measured coincidence count rates as function of �

a

� �
b

for a
mean photon number per qubit before the memory of around 20. As expected the coincidence detection probability
reaches its maximum P?

� when two input qubits are orthogonal (�
a

��
b

= ⇡) and when they are identical (�
a

��
b

= 0)
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it reaches a minimum Pk
�. It is natural to define a Bell-state measurement visibility as

V =
P?
� � Pk

�
P?
�

(24)

analogous to Eq. (1) in the main text. Using values obtained from a cosine fit to the data in Fig. A3.9 yeilds
Vexp

+/� = (62.9 ± 5.2)%. Comparing Eq. (24) with Eq. (19) it is easily seen that V and e are related as e = (1 �
V
+/�)/(2 � V

+/�). We can then use the expected error rates to find the corresponding Bell-state measurement
visibilities. Using eatt

+/� = 0.25 we get a theoretical value Vatt

+/� = 66.7%. In conclusion, our experimental Bell-state
measurement visibility is only slightly below and within the experimental error actually equal to the expected value.
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I. PREPARATION OF THE ATOMIC FREQUENCY COMB (AFC)

The AFC amounts to a periodic modulation in frequency of the optical density of the inhomogeneously broadened
3H6 $3H4 thulium absorption line. It can be generated by optically pumping atoms to o↵-resonant shelving levels -
in our case nuclear Zeeman levels [27,31]. To that end, we modulate the intensity of the 795 nm memory laser while
scanning its frequency [32]. The frequency sweep is implemented using a lithium niobate phase modulator driven by
a 20 GS/s arbitrary waveform generator. To avoid overlap of first and higher order modulation, the sweep extends
from 5 GHz to 10 GHz, thus e�ciently preparing a 5 GHz-bandwidth AFC memory. The laser intensity modulation
is achieved by beating two frequency components, generated in an acousto-optic modulator (AOM) placed before the
phase-modulator.

The memory storage time T
s

is set by the frequency spacing between the teeth of the AFC, and is determined by
T
s

= �/↵, where � = 0.35 MHz is the di↵erence between the two frequency components and ↵ = 50⇥ 1012 MHz/s is
the sweep rate. This yields 142.85 MHz spacing between the AFC teeth, which translates into 7 ns memory storage
time. For a high contrast AFC, the chirp cycle is repeated 100 times leading to a 10 ms overall optical pumping
duration. The 2.2 ms wait time following the preparation corresponds to 27 times the radiative lifetime of the 3H4

excited level, and ensures no fluorescence masks the retrieved photons.
The optical pumping involves population transfer between ground-state sublevels. As the comb structure extends

over all these levels, we carefully chose the magnetic field to make sure that those ions that initially absorb at
frequencies where we desire a trough are transferred to frequencies where we desire a peak.

II. THE MEASUREMENT

First, we stabilize the pump interferometer and the 1532 nm interferometer to arbitrarily chosen phase values. We
define the phase introduced by the pump interferometer to be zero, i.e. we absorb it into the definition of the “early”
and “late” qubit states, leading to the maximally entangled state

|�+i = 1p
2
(|e, ei+ |l, li) (1)

Furthermore, we define the measurement performed by the 1532 nm qubit analyzer to be +�
x

. Next, we change the
phase of the 795 nm interferometer and maximize the normalized joint detection probability

P (a, ba, ba, b) =
C(a, ba, ba, b)

C(a, ba, ba, b) + C(a,�ba,�ba,�b)
(2)

with a fibre delay line in place of the memory. We define this setting to correspond to a projection onto +�
x

, and we
measure P

in

(�
x

⌦ �
x

) over 5 minutes. This measurement (without the memory) is taken as being on the state ⇢
in

,
i.e. the bi-photon state before storage.

⇤
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  xx xy xz x-z yx yy yz y-z 

Pin  [%] 902 491 491 511 521 102 511 491 

Pout [%] 896 498 484 524 496 145 494 514 

  zx zy zz z-z -zx -zy -zz -z-z 

Pin  [%] 461 461 94.20.1 5.80.1 461 451 7.60.2 93.00.2 

Pout [%] 516 566 941 61 485 525 61 941 

TABLE A4.1: Joint-detection probabilities for density matrix reconstruction: Measured joint-detection probabilities
for all projection measurements required to calculate the density matrices for the bi-photon state emitted from the source
(P

in

), and after storage and recall of the 795 nm photon (P
out

). Uncertainties indicate one-sigma standard deviations based
on Poissonian detection statistics.

  y(xy) y(x-y) x(xy) xx-y) 

Ein  [%] 59.71.7 -55.41.9 52.01.5 70.81.8 

Eout [%] 543 -644 533 533 

TABLE A4.2: Correlation coe�cients for Bell-inequality tests: Measured correlation coe�cients (see Eq. 3) required to
test the CHSH Bell inequality. Uncertainties indicate one-sigma standard deviations based on Poissonian detection statistics.

Next, we add the memory and similarly measure P
out

(�
x

⌦ �
x

) over approximately 5 hours. When necessary
to change the setting of either qubit analyzer to �

y

, we increase the phase di↵erence introduced by the respective
interferometer by ⇡/2. For projection measurements onto �

z

, we use the delay line in the qubit analyzer. Each joint
projection measurement is done with and without memory; the results, given in supplementary table A4.1, allow
calculating the density matrices ⇢

in

and ⇢
out

describing the photon pair states before and after storage, respectively
[28].

To measure the correlation coe�cients

E(aaa,bbb) =
C(aaa,bbb)� C(aaa,�b�b�b)� C(�a�a�a,bbb) + C(�a�a�a,�b�b�b)

C(aaa,bbb) + C(aaa,�b�b�b) + C(�a�a�a,bbb) + C(�a�a�a,�b�b�b)
(3)

required for testing the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality [33]. we chose, aaa = �
x

, a0a0a0 = �
y

,
bbb = �

x

+ �
y

, and b0b0b0 = �
x

� �
y

. Projections onto �
x

± �
y

require changing phase di↵erences by ±⇡/4 as compared to
those defining projections onto �

x

. For this measurement we added a detector to the second output of the interfer-
ometer in the 795 nm qubit analyzer so that C(aaa,bbb), C(-a-a-a,bbb), C(aaa,-b-b-b) and C(-a-a-a,-b-b-b) could be measured simultaneously.
Measurements without memory are done over 15 min, those with memory over 12-15 hours. The resulting correlation
coe�cients are detailed in supplementary table A4.2. From these we calculate S

in

= 2.379 ± 0.034 > 2 before
storage and S

out

= 2.25± 0.06 > 2 after storage. Both are approximately equal, larger than 2, and hence violate the
CHSH Bell inequality, proving again the presence of entanglement and, beyond that, the suitability of the bi-photon
states for quantum key distribution [9]. Moreover, the measured S–values are in good agreement with the respective
theoretical values of S

th

= 2.235 ± 0.085 and S
th

= 2.2 ± 0.22 calculated using the measured density matrix with
uncertainties estimated from Monte-Carlo simulations.

III. CALCULATION OF PURITY, ENTANGLEMENT MEASURES [29] AND FIDELITIES

Assuming an arbitrary two-qubit input state ⇢, the concurrence is defined as C(⇢) = max {0,�1 � �2 � �3 � �4},
where the �

i

’s are, in decreasing order, the square roots of the eigenvalues of the matrix ⇢(�
y

⌦ �
y

)⇢⇤(�
y

⌦ �
y

) and
⇢⇤ is the element wise complex conjugate of ⇢. The entanglement of formation is then calculated as

E
F

(⇢) = H
⇣
0.5 + 0.5

p
1� C2(⇢)

⌘
(4)
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FIG. A4.1: Simplified level diagram for Tm:LiNbO3.

where H(x) = �xlog2x� (1� x)log2(1� x). Finally, fidelity between ⇢ and � is

F (⇢,�) =

✓
tr
qp

⇢�
p
⇢

◆2

(5)

and the purity of a state ⇢ is

P = tr(⇢2) (6)

IV. THE TI:TM:LINBO3 WAVEGUIDE

To fabricate the Ti:Tm:LiNbO3 waveguide, a commercially available 0.5 mm thick Z-cut wafer of undoped, optical
grade congruent lithium niobate (CLN) was cut into samples of 12 mm x 30 mm size. Tm doping was achieved
by indi↵using a vacuum-deposited (electron-beam evaporated) Tm layer of 19.6 nm thickness. The di↵usion was
performed at 1130 �C during 150 h in an argon-atmosphere followed by a post treatment in oxygen (1 h) to get a
full re-oxidization of the crystal. Tm occupies regular Li-sites when incorporated in CLN by di↵usion [34]. The Tm
indi↵usion leads to a 1/e penetration depth of about 6.5 µm. The maximum Tm concentration of about 1.35⇥ 1020

cm�3 corresponds to a concentration of 0.74 mole %, which is considerably below the solid solubility of Tm in CLN
[35]. Subsequently, the waveguide was formed by the well-known Ti–indi↵usion technique. At first, a 40 nm thick
titanium layer was electron-beam deposited on the Tm-doped surface of the CLN substrate. From this layer, 3.0 µm
wide Ti stripes were defined by photo-lithography and chemical etching and subsequently in-di↵used at 1060�C for 5
h to form 30 mm long optical strip waveguides. In the wavelength range around 795 nm, the waveguides are single
mode for TE- and TM-polarization. To finish the fabrication, the waveguide was cut to 15.7 mm and end faces were
carefully polished normal to the waveguide axis.

V. LIMITATION TO EFFICIENCY

While the current system e�ciency (characterizing the probability for a photon that enters the cryostat to leave it
after recall) of around 0.2% is su�cient to show the entanglement-preserving nature of the storage process, it is clear
that this number has to be improved to make the memory more practical and to allow for more involved fundamental
measurements.

First, we note that better optical mode matching between the fibre and the LiNbO3 waveguide can be expected to
improve the fibre-to-fibre transmission from 10% to 50%.

Second, assuming storage in optical coherence and Gaussian-shaped teeth, the e�ciency of the first recall in the
forward direction is given by

✏ = (d1/F )2e�d1/F e�7/F 2

e�d0 (7)

where F = �/� denotes the finesse of the comb, and d1/F and d0 are the reversible and irreversible optical depth
[36] (see supplementary figure A4.1). As discussed above, our comb structure extends over all ground state levels.
This fixes the fidelity of the comb to two, as ions can only be “shu✏ed around” but not removed from the spectral
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region covered by the SPDC photons. This impacts on the memory e�ciency and sets, according to Eq. 7, an
upper bound of ⇡ 10%. Yet, we note that the memory e�ciency can be increased when applying a phase-matching
operation that results in backward emission of the stored photon. Further improvement is expected when changing
the teeth shape from Gaussian to square [37]. All options combined, it seems possible to achieve a system e�ciency
of around 15%, which is 75 times larger than in the current implementation. We point out that the limitation due to
the comb finesse is not necessarily a consequence of generating broadband combs, but of the small Zeeman splitting
of the thulium ground state levels relative to the storage bandwidth. Provided the splitting between the long-lived
atomic levels involved in the optical pumping procedure exceeds the storage bandwidth, the finesse can be increased
beyond two, and memory e�ciencies up to 100% are possible. This may be possible when using the 3F4 level as
shelving level, or for other RE impurities featuring greater sensitivity to magnetic fields [38].

VI. LONGER STORAGE TIME AND ON-DEMAND READOUT

Currently, the maximum storage time of our memory is approximately 300 ns. This value is determined by the
minimum tooth spacing of the AFC, which is limited by spectral di↵usion [27,31]. However, spectroscopic investigation
of a Tm:LiNbO3 bulk crystal shows that spectral di↵usion decreases when lowering the temperature, similar to the
observed improvement of the optical coherence time [31]. This implies the possibility to extend the storage time.

In addition, it may be possible to further improve the storage time and achieve on-demand recall by temporarily
transferring the optical excited coherence between the 3H6 and 3H4 levels to coherence between the 3H6 and 3F4

electronic levels, similar to storage of coherence in spin-waves [39]. However, the coherence properties and the
suitability of the 3F4 state for such a transfer remains to be investigated. Furthermore, combining the AFC protocol
with a quantum memory approach based on controlled reversible inhomogeneous broadening (CRIB) [38] allows one
to inhibit the pre-set rephasing of coherence by adding additional, controlled inhomogeneous broadening of each line
in the AFC. Rephasing would occur only after reversing, i.e. undoing, the additionally introduced dephasing, and
readout would be possible after any multiple of the AFC recall time determined by the tooth spacing.

[30] Thiel, C.W., Sun, Y., Böttger, T., Babbitt, W.R. and Cone, R.L. Optical decoherence and persistent spectral hole burning
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