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Abstract

Quantum optics provides tools for the accurate control of light using atoms and also for

manipulating atomic states using light. These techniques are being used for many appli-

cations, including quantum information processing and the generation of exotic quantum

states. This thesis contains proposals for implementing a photonic quantum memory and a

photon-photon gate, which are essential elements of photonic quantum information process-

ing. Furthermore it proposes a scheme for the creation of many-body entangled states.

First a proposal for a new quantum memory protocol, called the atomic frequency sweep

quantum memory, is presented. A two-level polariton model is derived that explains the

coherent storage and retrieval of light through the manipulation of the atomic resonance

frequency.

This is followed by a scheme for a deterministic photonic controlled-PHASE gate based

on the strong interaction between two stationary collective Rydberg excitations in an atomic

ensemble. Distortion effects caused by nonuniform interaction are quantified and compen-

sation techniques for these effects are proposed.

Finally a proposal is presented that uses Rydberg dressing for the generation of energy

cat states in an atomic medium, i.e. superposition states of all the atoms being in the ground

or excited state, where these two states are connected by an optical transition and thus have

a significant difference in energy. Considering the fragility of the state, the effects of many

different imperfections and decoherence sources are quantified. The resulting cat state would

allow testing of energy decoherence models with greatly improved sensitivity.
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Chapter 1

Introduction

The counter-intuitive concepts of quantum mechanics have inspired a range of new ideas and

technologies over the last decades. Quantum computation [1] is much faster than classical

computation for certain tasks such as factorization [2], searching [3] and the simulation of

quantum systems [4, 5, 6]. The exponential speedup of factorization with quantum computers

poses a threat to current encryption protocols. This can be addressed by the unbreakable

security of quantum key distribution, which comes from the fact that measurements disturb

the quantum state; this can be used to reveal the presence of an eavesdropper [7, 8, 9]. In

addition to quantum computation and communication, the field of quantum metrology has

demonstrated very high precision measurements that are out of reach for classical devices

[10, 11, 12].

The key elements that enable these improvements are the concepts of superposition and

entanglement, which were recognized already in the early years of quantum mechanics [13, 14,

15]. A quantum system can be in a linear superposition of more than one distinct state, e.g.

a particle can be in two places at the same time. Under a unitary evolution this superposition

can interfere like in the electron double slit experiment. Superposition can also involve states

of more than one particle, in which case the particles can be in correlated states and thus

become entangled. Entangled states can not be described by identifying the individual states

of each system. For example, in a two-spin Bell state (| ↑〉1| ↑〉2 + | ↓〉1| ↓〉2)/
√

2, the state

of one particle depends on the state of the other.

Quantum theory does not distinguish between the microscopic and macroscopic worlds.

This can be seen in Scrödinger’s famous thought experiment, which brings a cat into a super-

position state of being dead and alive at the same time [15]. However, quantum concepts like
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superposition have not been observed at the macroscopic scale. This is typically interpreted

as being due to the increasing fragility of quantum superposition at larger scales because of

environment-induced decoherence [16, 17, 18]. However, there are also spontaneous wave-

function collapse models (e.g. trace dynamics and gravity induced collapse models) that can

reproduce quantum behavior for microscopic systems and classical behavior for macroscopic

systems, while making predictions that are different from both quantum and classical physics

in the mesoscopic range [19]. The creation of mesoscopic superpositions involving physical

degrees of freedom such as spatial separation and energy can be used as an experimental

test of such collapse models.

The implementation of quantum technology requires the practical realization and manip-

ulation of the mentioned effects in a quantum system. The main difficulty is in the interaction

of the system with the environment, which destroys the coherence and entanglement. In the

past decades dramatic progress in quantum control has been achieved in different platforms

including quantum optics and atomic physics.

Photons are ideal carriers of quantum information due to their fast transmission nature

and weak interaction with the environment, which increases their coherence time. However

for the same reason they are not an ideal platform for quantum memories and deterministic

two qubit gates where one needs stationary qubits and large photon-photon interaction

respectively. Atomic media on the other hand are an ideal platform for both tasks and could

be used as an interface. Therefore on demand light-matter and matter-matter interaction,

which allows the coherent transfer of quantum information between photonic and atomic

qubits and strong non-linearity between the two qubits, is essential in the realization of

photonic quantum information technology. Implementation of quantum memory is essential

in photonic quantum information tasks such as creating deterministic single photon sources,

synchronizing the steps in quantum computation and implementation of quantum repeaters

for long range quantum communications [20, 21, 22]. Implementation of photonic two qubit
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gates could specifically improve quantum repeaters performance and also complete a set of

universal gates as a platform for quantum computation.

Efficient quantum interfaces require strong light-matter interaction at the single quantum

level. This can be achieved by trapping both atoms and electromagnetic field in high finesse

cavity [23, 24, 25, 26, 27]. An experimentally less demanding way that is easier to scale up, is

to enhance coupling by using a large atomic ensemble [28, 29]. As the number of atoms in the

ensemble increase the probability that the incident photon fails to interact with the atoms

reduces exponentially. The focus of this thesis is entirely on the light interaction with atomic

ensembles. In atomic ensembles there are two different protocols for on demand control of

atom-photon interaction. Some protocols for quantum memory introduce a control beam

in a three-level atomic configuration to manipulate the interaction between the signal pulse

and the atoms (e.g. EIT [30], and Raman schemes [31, 32, 33]). Other protocols use the

phenomenon of photon echo [34] to achieve controlled atom-photon interaction (e.g. AFC

[35], CRIB [36], and GEM [37]). In this type of memory the atom-photon interaction is

controlled by a dephasing-rephasing process owing to the inhomogeneous broadening of the

medium. There have been different schemes towards the realization of deterministic two-

photon gates using atomic interface [38, 39, 40, 41, 42, 43, 44] where the most successful one

is based on Rydberg interaction [45].

As much as atoms can be used to create and manipulate the quantum state of light

coherently, modern optical techniques provide a tool for the coherent manipulation of atoms

using light. Atomic media not only are promising platform for quantum computation [44]

but are also appealing for the creation of large many-body quantum states [46, 47, 48, 49,

50, 51, 52, 53, 54, 55].

Laser excitation of atoms to very high principal number states (known as Rydberg states)

with large dipole moments, results in a strong interaction between the excited atoms[44],

see Sec. 5.8. This strong switchable interaction and its resulting phenomena like Rydberg
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Blockade (which prevents more than one excitations within Blockade radius, see Sec. 5.9)

and a plateau type interaction caused by off-resonant excitation to the Rydberg level (see

Sec. 5.10) have been widely used in variety of applications, see sec. 5.2. Of special interest

in the context of this thesis are applications of Rydberg states for the realization of photonic

gates [44, 45, 56, 57, 58, 59] and for the generation of many body entangled states [60, 61, 62].

In this thesis, we use the light-matter and Rydberg interaction in atomic ensembles to

propose new schemes for photonic quantum information processing and for testing collapse

models. The thesis is organized as follows.

-Chapter 2 discusses basic concepts of atom-field interaction. These techniques can be

applied for manipulation of the atomic states coherently using optical field and also the

quantum state of light using atoms.

-Chapter 3 is a brief introduction about quantum communication and quantum memories.

-Chapter 4 introduces a quantum memory protocol that helps in unification and better

understanding of two other existing protocols. The results of this project are published in:

H Kaviani*, M Khazali*, R Ghobadi, E Zahedinejad, K Heshami and C Simon, ”Quantum

storage and retrieval of light by sweeping the atomic frequency”, New J. Phys. 15 085029

(2013) * These authors contributed equally to this work.

-Chapter 5 is an introduction of Rydberg physics, where the exaggerated properties of

highly excited atoms are introduced and their different interaction types are discussed.

-Chapter 6 proposes a controlled-phase gate between stored photons, where non-linearity

comes from many-body interaction between collective excitation of Rydberg atoms. The

results of this project are published in:

M. Khazali, K. Heshami, C. Simon, ”Photon-photon gate via the interaction between two

collective Rydberg excitations”, Phys. Rev. A 91, 030301(Rapid Communication) (2015)

-In Chapter 7 a scheme is proposed to create large energy superposition based on Rydberg

dressing interaction [64], allowing tests of energy decoherence models with greatly improved
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sensitivity. The results of this project will be appear in Phys. Rev. A and can be find in:

M. Khazali, H. W. Lau, A. Humeniuk, C. Simon, ”Large Energy Superpositions via

Rydberg Dressing”, arXiv:1509.01303v2 (2015) (to appear in PRA)
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Chapter 2

Atom-Field Interaction

2.1 Preface

Modern optical techniques provide a tool for accurate controlling of light using atoms and also

manipulating atomic states using light. A strong laser field can be applied for manipulating

the atomic populations, off resonant dressing of the states, optical trapping, and also creating

an induced transparency. Section 2.2 explains this interaction and corresponding atomic

dynamics, which will be used widely in this thesis. The interaction between atoms and a

single photon is explored in section 2.3. In addition the propagation dynamics of a single

photon and the coupled atomic polarization field is discussed, which will be used in chapter 4.

2.2 Interaction Between Two Level Atom and Classical Field

An electron with charge q and mass m within the atomic potential of V (r) interacts with an

external electric field under the minimal coupling Hamiltonian [65]

H =
1

2m
[p− qA(r, t)]2 + qU(r, t) + V (r), (2.1)

where p is the canonical momentum operator, A(r, t) and U(r, t) are the vector and scalar

potentials of external field. Considering the electrons wave-function ψ(r, t), applying a local

gauge transformation of

ψ(r, t)→ ψ(r, t)eiχ(r,t), (2.2)
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preserves its local probability P (r, t) = |ψ(r, t)|2 while it modifies the Schrödinger equation

by the following transformation [65]

A(r, t)→ A(r, t) +
~
q
∇χ(r, t) (2.3)

U(r, t)→ U(r, t)− ~
q

∂χ(r, t)

∂t
. (2.4)

Since the size of an atom is much smaller than the wavelength of the laser field (k.r� 1),

dipole approximation states that spatial variation of the field is negligible over atomic exten-

sion A((r0 + r), t) ≈ A(r0, t), where r is the position of electron with respect to the nucleus

at r0. By applying a gauge transformation of χ(r, t) = −eA(r0, t).r/~ and considering the

radiation gauge regime where U(r, t) = 0 and ∇.A = 0, Schrödinger equation will be

i~ψ̇(r, t) = [Hatom +Hint]ψ(r, t), (2.5)

where

Hatom =
p2

2m
+ V (r) (2.6)

Hint = −qr.E(r, t), (2.7)

is the atomic and interaction Hamiltonians and E = −Ȧ is the electric field.

Let us consider |e〉 and |g〉 as eigenstates of the atomic Hamiltonian Hatom, with corre-

sponding energies of Eg = 0 and Ee = ~ωe. By the completeness relation (|e〉〈e|+ |g〉〈g| = 1)

we can write the atomic Hamiltonian in the atomic bases as

Ĥatom = (|e〉〈e|+ |g〉〈g|)Ĥatom(|e〉〈e|+ |g〉〈g|) (2.8)

= ~ωeσ̂ee,

where σ̂ee = |e〉〈e| is the projection operator. Considering the interaction of atoms with a

laser field of

E(r, t) =
ei(ωLt−k.r) + e−i(ωLt−k.r)

2
E0, (2.9)
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the interaction Hamiltonian in the atomic bases can be written as

Ĥint = 〈g|qr̂.E(r̂0, t)|e〉σ̂ge+〈e|qr̂.E(r̂+0, t)|g〉σ̂eg+〈g|qr̂.E(r̂0, t)|g〉σ̂gg+〈e|qr̂.E(r̂0, t)|e〉σ̂ee.

(2.10)

Permanent dipoles 〈e|̂r|e〉 = 0, 〈g|̂r|g〉 = 0 are zero for the atoms in free space and isolated

from external fields due to the parity. Applying the unitary transformation of (Û = e−iωatσ̂ee),

the Hamiltonian in the interaction picture looks like

ĤI
0 =

~Ω

2
(σ̂ege

i(ωa+ωL)t + σ̂gee
−i(ωa+ωL)t + σ̂gee

−i∆t + σ̂ege
i∆t) (2.11)

where Ω = E0.d
~ is called the Rabi frequency and d = 〈g|qr|e〉 is the dipole matrix element

(which can be considered real without the loss of generality) and ∆ = ωe − ωL is detuning.

In the regime of weak coupling Ω << ωe we can apply the ”rotating wave approximation”

to simplify the Hamiltonian. This approximation states that fast oscillating terms with

frequencies ωe+ωL >> ∆,Ω will average to zero on any interesting time scales of the system

(∆−1 or Ω−1) and therefore can be neglected.

To partially remove the time dependence we apply another unitary transformation Û =

ei∆σ̂eet to equation 2.11 to find

Ĥ = ~∆σ̂ee +
~Ω

2
[σ̂eg + σ̂ge]. (2.12)

Considering an initial state defined in the Hilbert space of {|e〉, |g〉} i.e.

|ψ(t)〉 = Cg(t)|g〉+ Ce(t)|e〉, (2.13)

with initial amplitudes of Ce(0) = 0 and Cg(0) = 1; evolution of the excited state amplitude

(Ce(t)) under the Hamiltonian of Eq. 2.12 will be

Ce(t) = i
Ω

Ω̃
e−

i∆t
2 sin(

Ω̃t

2
). (2.14)

Effective Rabi frequency in this equation is presented by Ω̃ =
√

∆2 + Ω2. Time evolution

of excitation probability is plotted in Fig. 2.1, which indicates that increasing the detuning

reduces the excitation probability and increases the effective Rabi frequency.
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Figure 2.1: (Color online) excitation probability over time for different detunings of
∆ = 0 (yellow line), ∆ = Ω (red line) and ∆ = 2Ω (blue line). Increasing the detuning
reduces the excitation probability and increases the effective Rabi frequency.

2.3 Atom-photon Interaction and Equations of Motion

In this section we derive the propagation dynamics of a single photon and also the created

polarization field in the atomic medium. These results are especially important for the

following chapter.

2.3.1 Quantized Fields

A non-classical signal field in the Schrödinger picture can be written as a dimensionless

operator

Ê(z) = iε

∫
g(ω)â(ω)eikzdω + h.c. (2.15)

where

g(ω) =

√
~ω

4πε0Ac
(2.16)

is the mode amplitude, with A being the cross section of the signal, c is the speed of light

and ε the signal polarization. The photon annihilation operator satisfies the commutation
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relation

[â(ω), â†(ω′)] = δ(ω − ω′). (2.17)

The annihilation operator in the Heisenberg picture is

â(ω, t) = â(ω)e−iωt. (2.18)

The quantum properties of the two level atoms can be quantified by the collective polarization

operator, which is the average of the atomic polarization in a small volume δV containing

Nz � 1 atoms at position z

P̂(z) =
n(z)

Nz

Nz∑
j=1

(dgeσ̂
j
ge + h.c) (2.19)

where dge = 〈e|r|g〉 is the dipole moment and n(z) is the local atomic density. The longitu-

dinal size of each segment should be δz � λs to make sure that the optical phase is constant

over each segment. The flipping operators σ̂ige, σ̂
i
eg, satisfy the bosonic commutation relation

[σ̂ige, σ̂
j
eg] = δij (2.20)

and in the Heisenberg picture can be written as

σ̂jeg(t) = σ̂jege
−iωegt (2.21)

where ωeg = Eeg
~ is the energy separation between two atomic states.

2.3.2 Slowly Varying Envelope (SVE) Approximation

Realistic electromagnetic fields are not plane waves; they have finite spatial and temporal

extent. In the regime of SVE approximation (see Eq. 2.25), the field (Ê(z, t)) is considered

as a carrier plane wave (ei(k0z−ω0t)) multiplied by an envelope (Ê(z, t)) that its significant

change in time and space occurs at a rate much slower than the period and the wavelength

respectively. Considering the case where the signal bandwidth is much smaller than its

central frequency ω0, the dependence of g(ω) (defined in Eq. 2.16) on frequency will be
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relatively weak and we approximate it as constant over the range of band-width (gs = g(ω0)).

As a result electric field can be written as

Ê(z, t) = Ê(z, t)gse
i(k0z−ω0t) + h.c = ei(k0z−ω0t)iεgs

∫
â(ω, t)ei

ω
c
zdω + h.c., (2.22)

where ω0 and k0 = ω0

c
are signal’s central frequency and wave-vector. The slowly varying op-

erator Ê(z, t) satisfies the commutation relation in a spatio-temporal rather than in spectral

mode

[Ê(z, t), Ê†(z′, t′)] = δ(t− z/c− (t′ − z′/c)). (2.23)

The slowly varying operator for the atomic polarization is expressed accordingly as

P̂(z, t) = P̂(z, t)ei(k0z−ω0t). (2.24)

The slowly varying condition for both electromagnetic and polarization envelopes, is given

by  ∂t

∂z

 (Ê , P̂)�

 ω0

k0

 (Ê , P̂). (2.25)

2.3.3 Maxwell Equations

Maxwell’s equations are the signal field’s equation of motion in an atomic medium. Atomic

medium can be considered as a dielectric medium, which results in the Maxwell equations of

∇.D̂ = ρfree (2.26)

∇.B̂ = 0

∇× Ê = −∂tB̂

∇× Ĥ = Jfree + ∂tD̂,

where D̂ is the displacement field, Ĥ is the magnetic field, Ê is the electric field and B̂ is

the magnetic induction. Free charge density and currents (ρfree and Jfree) are both zero in a

neutral atom ensemble that we consider in this thesis. Furthermore our considered mediums

are non-magnetic; as a result B̂ = µ0Ĥ where µ0 is the permeability of free space.
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To find a wave equation for the electric field we start by time derivation of the Ĥ equation

∇× ∂tĤ = ∂2
t D̂. (2.27)

where ∂tĤ can be substituted by 1
µ0
∇ × Ê from the third Maxwell equation (Eq. 2.27) to

find

∇×∇× Ê = µ0∂
2
t D̂. (2.28)

Using the vector calculus, the double curl in the left can be replaced by

∇×∇× Ê = ∇(∇.Ê)−∇2Ê. (2.29)

The signal is a transverse propagating wave with zero divergence. As a result Equation 2.28

simplifies to

∇2Ê = µ0∂
2
t D̂. (2.30)

Displacement operator is defined as

D̂ = ε0Ê + P̂, (2.31)

where P̂ is the polarization density (see Eq. 2.19) and ε0 is the vacuum permittivity. Sub-

stituting Eq. 2.31 into Eq. 2.30 results to the wave equation

[∇2 − 1

c2
∂2
t ]Ê = µ0∂

2
t P̂ (2.32)

where c = 1√
εoµ0

is the speed of light. This equation relates the propagation of the signal

field with the component of atomic polarization that interacts with the signal field. Since in

chapter 4, signal propagates within the optical fiber, we are interested in a one dimensional

propagation method and therefore drop the transverse coordinate.

SVE approximation provides a chance to only deal with the propagation of the envelope

Ê(z, t) defined in Eq. 2.22, without the fast oscillating carrier wave, which simplifies the

equation of motion. Substituting Eq. 2.22 and Eq. 2.24 into Eq. 2.32 results to

[∇2 − 1

c2
∂2
t ][Êgsei(k0z−ω0t)] = µ0∂

2
t [P̂ei(k0z−ω0t)]. (2.33)

12



Applying the derivation on the oscillating carrier wave part and dividing out both sides by

[ei(k0z−ω0t)] followed by a scalar product of ε∗ results to

[(∂2
z −

1

c2
∂2
t ) + 2i

ω0

c
(∂z +

1

c
∂t)− (

ω2
0

c2
− ω2

0

c2
)]Ê = −µ0

gs
ε∗.(∂2

t − 2iω0∂t − ω2
0)P̂ . (2.34)

Considering the SVE condition explained in Eq. 2.25, we drop the small terms to find

(∂z +
1

c
∂t)Ê =

µ0ω
2
0

2gsk0

ε∗.P̂ . (2.35)

Considering equations 2.19 and 2.24 and defining a set of collective operators

σ̂gg =
1

Nz

Nz∑
j=1

σ̂jgg (2.36)

σ̂ee =
1

Nz

Nz∑
j=1

σ̂jee

σ̂ge =
1

Nz

Nz∑
j=1

σ̂jgee
i(ω0t−k0z)

the equation of motion looks like

(∂z +
1

c
∂t)Ê = igNσ̂ge, (2.37)

where

g =
ε∗.deg

~
gs, (2.38)

is the atom-photon coupling constant.

2.3.4 Bloch Equations

The Hamiltonian of two level atoms that are interacting with a single photon (see Eq. 2.15)

within the dipole approximation and rotating wave approximation is given by

Ĥ =

∫
~ωâ†(ω)â(ω)dω +

1

Nz

Nz∑
j=1

~ωeσ̂jee −
~g
Nz

Nz∑
j=1

∫
(â(ω)eikzj σ̂jeg + h.c.)dω (2.39)

where ωe is the resonant frequency of state |e〉 and g is the atom photon coupling constant

defined in equation 2.38. The atomic projection-transition operators are defined by σ̂ij =
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|i〉〈j|. Since we are aiming for the storage of weak fields with a few photons, most of the

atoms remain in the ground state. As a result we can use the expectation values of the

population operators 〈σ̂gg〉 = 1, 〈σ̂ee〉 = 0 and ignore their dynamics. The dynamics of the

atomic transition operators can be obtained from the Heisenberg equation

∂tσ̂ge =
i

~
[Ĥ, σ̂ge] +

∂

∂t
σ̂ge + F̂ge (2.40)

=
iωe
Nz

Nz∑
i,j=1

[σ̂iee, σ̂
j
ge]e

i(ω0t−k0z) − ig

Nz

Nz∑
i,j=1

ei(ω0t−k0z)[σ̂ieg, σ̂
j
ge]

∫
â(ω)eikzidω + iω0σ̂ge + F̂ge,

where F̂ge is the Langevin noise. By substituting the collective operators of Eq. 2.36 and

slowly varying photonic operator introduced in Eq. 2.22 we find

∂

∂t
σ̂ge = −i∆σ̂ge − ig(σ̂ee − σ̂gg)Ê + F̂ge, (2.41)

where ∆ = ωe−ω0 is the detuning. Since the time scales of interest in the following chapter

are far shorter than the decoherence time, we ignore the Langevin term.

In chapter 4 we replace photonic and atomic coherence field operators with their corre-

sponding wave functions E = 〈0|Ê |ψi〉 and σge = 〈0|σ̂ge|ψi〉 where |ψ〉 is the single excitation

in the atom-photon Hilbert space. Due to the linearity the wave-function dynamics of a sin-

gle excitation would be the same with the field operator dynamics, and can be represented

as

(∂z +
1

c
∂t)E = igNσge (2.42)

∂

∂t
σge = −i∆σge − igE .

2.4 Conclusion

In this section we discussed the evolution dynamics of atoms interacting with laser field.

We also discussed the propagation dynamics of a single photon field and its corresponding

polarization field in the atomic medium. These results will be used widely in the following

chapters.
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Chapter 3

Quantum Communication and Quantum Memories

3.1 Preface

This chapter provides a brief introduction to quantum communication and the importance

of quantum memories in the realization of quantum networks. It also introduces two well-

known quantum memory protocols based on photon echo and slow light. In chapter 4 we

propose a quantum memory that can be considered as a bridge between these two well-known

protocols.

3.2 Quantum Network

Creating global quantum network (i.e. quantum Internet) is an appealing goal [66]. It is

desired for the quantum key distribution (QKD), where the quantum protocols (e.g. BB84)

lead to inherently safe transfer of information. Even small transition rate allows frequent

key changes that can be deployed in classical cryptography. The quantum Internet would

connect quantum computers through quantum teleportation, resulting in a more powerful

cluster similar to the idea of classical Internet. Other proposals for the application of quan-

tum networks include private database queries based on a quantum-key-distribution [67],

proposals for blind quantum computing [68], quantum clock networks [69] and protocols for

improving telescopes [70].

3.3 Encoding the Information (Qubit)

Quantum Information can be encoded into a two mutually exclusive states of a quantum

system, which is called a qubit [71]. A pure qubit state is a linear superposition of the basis
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states or in the other word it is a linear combination of |0〉 and |1〉: |ψ〉 = α|0〉 + β|1〉,

where α and β are probability amplitudes fulfilling the equation |α|2 + |β|2 = 1. Because of

the superposition characteristic of quantum states, a qubit carries much more information

comparing to classical bit. While a classical system can be explained with n bits a complete

description of a quantum system requires 2n − 1 complex numbers. In photonic systems

information can be encoded into many degrees of freedom namely polarization, number of

photons in the Fock state, spatial and temporal separations that leads to dual rail qubits

and time bins respectively.

3.4 No Cloning Theorem

Unlike the classical bits, qubits can not be copied, which is known as the no-cloning theorem

[72]. Therefore to store the quantum information one needs to transfer the actual quantum

state to the quantum memory in a way that the stationary qubit acquires all the information,

and nothing left in the flying qubit. This means that we cannot have back up similar to

classical computers. No cloning also deprives quantum communication from the classical

repeater station in long distance communications as well as classical error correction, where

the quantum version of each has been pursued [71, 73, 74].

3.5 Quantum Repeater

Direct quantum communication over 144km has been realized with free propagating photons

in Vienna [75], and also direct QKD has been reported over 300km in optical fibers in Geneva

[76]. Very recently a measurement device independent QKD has been reported over 404km

in an ultralow-loss optical fiber [77]. However direct transmission over long distances suffers

from loss and decoherence. A successful direct transmission of a photon over 1000km would

take 300 years in a fiber with 0.2dB/km loss rate and with the source repetition of 10GHz.

Considering the no-cloning theorem one possible solution is quantum repeater.
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Quantum repeaters [73, 74] are based on the idea of splitting a long distance into small

segments, where each segment contains stored entangled photons across it that are generated

independently. Following entanglement swapping between adjacent nodes will lead to the

entanglement distribution over the far distances. Created entanglement can be used for

quantum key distribution using Ekert protocol [78] and also quantum teleportation [79, 80].

Considering the current non-deterministic nature of entanglement swapping gates and

entangled photon sources, successful entangled photons should be stored in quantum mem-

ories until the successful process in the neighboring segments are made. Application of

quantum memory can improve the operation time of quantum repeaters from an exponential

scale with respect to the number of segments to a polynomial one [81]. Therefore quantum

memory has a crucial role in the generation of scalable network.

3.6 Quantum Memories for Light

A quantum memory is a system that can store and retrieve quantum states on demand.

Considering a photonic quantum memory, non-classical states of light could include single

photons, qubit states, entanglement, and in the continuous variable case, squeezing. Im-

plementation of quantum memory is essential in photonic quantum information tasks such

as creating deterministic single photon sources, synchronizing the steps in quantum com-

putation and implementation of quantum repeaters for long range quantum communication

[82, 83, 84].

The physical system of quantum memory could be atoms, ions or defects in solids. As

explained before the focus of this thesis is on the atomic ensemble. A photonic quantum

memory converts flying qubit (an incident photon) into a stationary qubit (an atomic excita-

tion) that are in resonance, via an electric dipole transition. However the continuing presence

of dipole interaction results in the re-emission of photons by the atom. This absorption and

re-emission happens continuously and is known as Rabi flopping [85]. The Rabi frequency
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of this cycle Ω depends on the strength of this coupling. This coupling alone does not result

in the storage of photonic state.

There are two types of schemes to control atom-photon interaction for on demand storage

and retrieval of photons. In one type a long lived spin state |s〉 is used, which is uncoupled

from the signal mode, to freeze the Rabi oscillation. A control field that couples |e〉 and

|s〉 states manipulates the atom-signal’s interaction. The two famous examples of these

memories are electromagnetically induced transparency (EIT) [86] and Raman [87, 88, 89],

where the former one will be explained in Sec. 3.6.1. Other schemes use the phenomenon of

photon echo to control the atom-photon interaction. In this method the signal is stored in

an inhomogeneously broadened medium where the atom-photon interaction is controlled by

dephasing-rephasing process. Controlled reversible inhomogeneous broadening (CRIB) [90]

and atomic frequency comb (AFC) [91] quantum memories are examples of this type where

the former one is explained in Sec. 3.6.2.

3.6.1 EIT

In the electromagnetically induced transparency scheme, shining a strong control field makes

an opaque medium transparent to the weak signal field. Looking at the lambda scheme level

in Fig. 3.1a, one can see that in the absence of control field signal will be absorbed in the

excited state |e〉. However the presence of control field creates a coupling between |e〉 and |s〉

states with the coupling terms of (Ω|e〉〈s| + h.c.). Diagonalizing the Hamiltonian results in

H = Ω(|+〉〈+| − |−〉〈−|) where the atomic dressed states are |±〉 = (|e〉 ± |s〉)/
√

2 [92, 93].

As can be seen in fig. 3.1b non of the dressed states are in resonance with the signal. The

new resonance peaks are known as Autler-Townes doublet [94]. Susceptibility of probe field

is shown in fig. 3.1c as a function of detuning from |e〉 − |s〉 resonance. The absorption

associated with the imaginary part of susceptibility completely vanishes due to destructive

interference of two contributing dressed states.

In addition to transparency, group velocity of the signal reduces significantly due to the
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Figure 3.1: (Color online) Electromagnetically Induced Transparency (EIT). a) While
the weak signal is propagating within the medium, control field couples the excited and
metastable spin states. b) Coupling of excited and spin states results in an effective Aut-
ler-Townes splitting. None of these dressed states are in resonance with the signal. c)
Imaginary (blue line) and real (green line) parts of the susceptibility as a function of sig-
nal’s detuning. Imaginary part depicts a transparency window at the atomic transition
resonance. The real part has a steep slope at this resonance causing slow propagation of
the field.

strong dispersion within the transparency window. The trajectory of a multi-mode pulse is

given by the condition of preserving all the components of a photon with bandwidth δω in

phase δωδt = δkδz where the wave vector is k = nω
c

. As a result the group velocity of the

pulse would be vg = dz
dt

= dω
dk

= c
n+ωdn/dω

. The steep variation of Re(χ) at the center of

transparency window lead to a large n′ = dn/dω which results in the slow light.

To apply EIT for quantum storage of photons [95, 96, 97, 98, 99, 100], one can attenuate

the control field when the pulse is compressed and accommodated into the medium. This

attenuation reduces the Autler-Townes doublet splitting (transparency window) and makes

the Re(χ) steeper which results to slower velocity. This process continue until the two

peaks collapse and the group velocity approaches to zero and photon is absorbed in atomic

excitation. The reverse process results in the retrieval of photon.

The dark state polariton (DSP) model shows that under the adiabatic process photon does

not couple to the radiative excited state |e〉 [95]. DSP (|ψ〉 = cos(θ)Ê(z, t)+sin(θ)σ̂gs(z, t)) is

a quasi-particle with superposition of both photonic (Ê) and atomic excitation (σ̂gs) natures.
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Figure 3.2: (Color online) Level scheme of Controlled Reversible Inhomogeneous Broad-
ening. a) A gradient of external field over the ensemble makes the transition in resonance
with a broadband signal. b) After the storage, the external field should be turned of fol-
lowed by shelving the excitation in a metastable spin state |s〉 applying a control field. For
the retrieval, shining the control field brings back the excitation to the excited state |e〉. c)
Applying a reversed spatial gradient field results to the rephasing and retrieval of signal.

The ratio of this superposition is determined by the strength of control field tan(θ) = g
√
N

Ω
,

where the nominator and denominator are representing the signal and control coupling

strength to the atomic transitions. The dynamic of the DSP can be obtained from the

Maxwell-Bloch equations as

(
∂

∂t
+ c cos2 θ(t)

∂

∂z
)ψ(z, t) = 0, (3.1)

where the group velocity of DSP approaches zero and speed of light in the two extreme limits

of being all in atomic mode (Ω = 0) and photonic mode (Ω� g
√
N) respectively.

3.6.2 CRIB

In controlled reversible inhomogeneous broadening (CRIB) scheme, spatial gradient of ex-

ternal electric or magnetic field, shifts the ground-excited states transition frequency (ωeg)

based on the position of the atoms. Therefore while each atom has a narrow frequency

bandwidth, the entire ensemble can be in resonance over a broad frequency range, thanks to

the spatially inhomogeneous broadening.

After the absorption of single photon the ensemble acquires a delocalized collective exci-
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tation

|ψ〉 =
N∑
j=1

ei(kzj+δjt)|g1...ej...gN〉. (3.2)

where j labels the excited atom in the ensemble and δj is the detuning of jth atom from

signal’s central frequency. Depending on the position of excited atom in the spatially inho-

mogeneous broadened medium, they experience different phase evolution rates which, makes

them out of phase over time. The distortion of spatial phase pattern prevents re-emission

of photons and results to the storage of signal. Signal retrieval requires the rephasing of the

collective excitation by reversing the dephasing process. That can be done through inverting

the spatial gradient of external field, in a way that previously blue shifted atoms become

correspondingly red shifted. As a result collective excitation eventually becomes in phase

and re-emit photon.

For long time storage, the excitation must be shelved in a metastable state |s〉. This will

be done through the following steps as illustrated in Fig. 3.2: after the storage the external

field is turned off followed by the application of control field which transfers the population

from |e〉 to |s〉 states. For the retrieval shining the control field brings back the excitation

to the |e〉 level and the following reversed spatial gradient field results to the rephasing and

retrieval of signal. This memory can only be used for temporal pulses shorter than excited

states lifetime, otherwise the pulse will be lost before its shelving in the long lived spin state.

Based on the relative direction of spatial gradient field and incoming signal, there are

two types of longitudinal and transversal CRIB memories. The former one is also called

gradient echo memory (GEM) [101] where broadening is along the photon direction of prop-

agation. The other difference of the two types are in the direction of photon retrievals where

in transversal CRIB efficient retrieval can be performed in the backward direction, which

requires the application of an additional control field while in GEM retrieval could be in the

forward direction which would get in phase over time without the application of external

control field.
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3.7 Conclusion

In this section we introduced the concept of quantum networks and explained the role of

quantum memories in improving the quantum communication rates over the long distances.

We also talked about two quantum memory approaches in the atomic ensemble and explained

an example of each type in detail.
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Chapter 4

Quantum Storage and Retrieval of Light by Sweeping

the Atomic Frequency

4.1 Preface

This chapter proposes a quantum memory protocol based on dynamically changing the res-

onance frequency of an ensemble of two-level atoms. By sweeping the atomic frequency in

an adiabatic fashion, photons are reversibly transferred into atomic coherences. We present

a polaritonic description for this type of storage, which shares some similarities with elec-

tromagnetically induced transparency based quantum memories. On the other hand the

proposed memory is also linked to the gradient echo memory due to the effective spatial

gradient that pulses experience in the medium. We discuss a possible implementation of the

protocol in hollow-core photonic crystal fibers.

This work was mainly done in collaboration with a master student, Hamidreza Kaviani.

I contributed to this project by performing analytical calculations namely formulating the

polaritonic model, exploring the effects of decohernce, dispersion and adiabaticity on the po-

lariton dynamics. I also helped in modifying the numerical program to match the numerical

and analytical results.

4.2 Introduction

Storage and retrieval of photons on demand is essential for quantum information process-

ing tasks such as long-distance quantum communication and distributed quantum comput-

ing [102, 103, 104]. Quantum memories for photons can be realized by coherent control

of the atom-photon interaction. Some protocols for quantum memory introduce a control

23



beam in a three-level atomic configuration to manipulate the interaction between the sig-

nal pulse and the atoms (e.g. Electrically Induced Transparency (EIT) [86] and Raman

schemes [87, 88, 89]). Other protocols use the phenomenon of photon echo [105, 106] to

achieve controlled atom-photon interaction. In this type of memory the atom-photon inter-

action is controlled in a more indirect way by a dephasing-rephasing process owing to the

inhomogeneous broadening of the medium. Atomic Frequency Comb memory (AFC) [91],

Controlled Reversible Inhomogeneous Broadening memory (CRIB) [90] and Gradient Echo

Memory (GEM) [101] are examples of this type of protocols. In contrast to EIT and Raman

protocols, which require at least three atomic levels, photon echo based protocols can be

implemented using just two atomic levels, relying on long excited state lifetimes for storage.

Such long lifetimes for optical transitions are common for example in rare-earth ion doped

crystals.

Recently it has been shown that some of these protocols can be emulated by dynamically

changing certain characteristics of an ensemble of two-level atoms. For instance, it has been

shown that by dynamically controlling the transition dipole moment of an ensemble of two-

level atoms, one can emulate Raman-type quantum memories [107]. More recently it has

been shown that changing the refractive index of the host medium of two-level atoms is

equivalent to the GEM memory [108].

Here we study another way of manipulating the atom-photon interaction, namely by

sweeping the atomic frequency of a homogeneously broadened ensemble of two-level atoms

in time. The energy levels of the two-level atoms can be changed by applying a magnetic or

electric field depending on the system.

We demonstrate that the proposed “Atomic Frequency Sweep (AFS)” protocol can be

described in terms of polaritons, which share some similarities with the dark-state polariton

in EIT [109]. By changing the detuning, the pulse slows down and is stored in atomic

coherences. Changing the detuning in AFS plays the role of changing the control field in
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EIT. However there are also differences between AFS and EIT based protocols, in particular,

in our protocol the pulse does not shrink when it enters the medium, in contrast with EIT.

Moreover here the polaritons are associated with the optical transition.

On the other hand, the AFS protocol is similar to the GEM protocol for the regime in

which pulses are short compared to the medium length. While we change the detuning in

time during the propagation of the pulse through the medium, the pulse effectively sees a

spatial gradient in the energy levels of the atoms, and the excited atomic coherences become

dephased.

Due to its similarities with both EIT and GEM, the AFS protocol thus constitutes a

bridge between protocols based on coherent control and those based on photon echo.

This chapter is organized as follows. In section 4.3 we describe the scheme using a po-

laritonic description. In section 4.4 we discuss the experimental requirements and a possible

implementation. In section 4.5 we give our conclusions.

4.3 AFS Quantum Memory: Polaritonic Description

The Maxwell-Bloch equations for the field and atomic polarization (or, equivalently, the

single-excitation photonic and atomic wavefunctions) under the dipole, rotating-wave and

slowly varying envelope approximations are derived in equations 2.42 as [103, 88, 107]

∂

∂t
σge(z, t) = −i(∆(t)− iγ)σge + iβE(z, t), (4.1)

(c
∂

∂z
+
∂

∂t
)E(z, t) = iβσge, (4.2)

where ∆(t) is the detuning, γ is decay rate and β = g
√
N is the collective coupling constant,

with g the single-atom coupling and N the number of atoms.

Our proposed scheme is best described in a polaritonic picture. We can write Eq. (4.1)
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and Eq. (4.2) in k-space as

∂

∂t

 E(k, t)

σge(k, t)

 = i

−kc β

β −∆(t)


 E(k, t)

σge(k, t)

 . (4.3)

For the sake of simplicity, we neglect the decay rate γ for now. We will discuss its effects

at the end of this section.

One can solve this set of equations by looking at its eigenmodes:

Ψ(k, t) = cos θ(k)E(k, t) + sin θ(k)σge(k, t), (4.4)

Φ(k, t) = − sin θ(k)E(k, t) + cos θ(k)σge(k, t), (4.5)

where the mixing angle θ(k) is given by

sin 2θ(k, t) =
2β√

4β2 + (ck + ∆(t))2
, (4.6)

cos 2θ(k, t) =
−(ck + ∆(t))√

4β2 + (ck + ∆(t))2
. (4.7)

In terms of these eigenmodes, the equations of motion become

∂

∂t

Ψ(k, t)

Φ(k, t)

 = i

λ1(k, t) θ̇(k, t)

θ̇(k, t) λ2(k, t)


Ψ(k, t)

Φ(k, t)

 , (4.8)

where λ1 = β cot θ and λ2 = −β tan θ are the eigenvalues of the system and θ̇ = − ∆̇
4β

sin2 2θ

is the time derivative of the mixing angle. One can expand the matrix in equation (4.8) in

the basis of Pauli matrices and the identity matrixλ1(k, t) θ̇(k, t)

θ̇(k, t) λ2(k, t)

 = (
λ1(k, t) + λ2(k, t)

2
)1 + (

λ1(k, t)− λ2(k, t)

2
)σz + θ̇(k, t)σx. (4.9)
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Assuming the adiabatic condition θ̇(k, t) � λ1(k,t)−λ2(k,t)
2

holds during the storage and

retrieval process, we can neglect σx term compared to σz term in Eq. (4.9) so that the

eigenmodes become decoupled.

Now we Taylor-expand the eigenvalues in terms of k. In the regime where the coupling

constant is larger than the bandwidth of the input pulse (β � ∆ω), we can keep terms up

to first order in k and neglect higher orders of k. With that, and transforming the equations

back to z space, we find the equations of motion for the eigenmodes Ψ and Φ in real space:

∂Ψ(z, t)

∂t
+ c cos2 θ(t)|k=0

∂Ψ(z, t)

∂z
= iλ1(t)|k=0Ψ(z, t), (4.10)

∂Φ(z, t)

∂t
+ c sin2 θ(t)|k=0

∂Φ(z, t)

∂z
= iλ2(t)|k=0Φ(z, t). (4.11)

From now on, for simplicity we denote θ(t)|k=0 and λ1,2(t)|k=0, which are the mixing

angle and eigenenergies for the central wave vector, by θ(t) and λ1,2(t). Equations (4.10)

and (4.11) indicate that the polaritons Ψ and Φ travel with group velocity vg = c cos2 θ(t)

and vg = c sin2 θ(t), respectively. Figure 4.1 shows how the mixing angle θ varies with the

detuning ∆.
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Figure 4.1: Mixing angle θ(0) as a function of detuning.

Therefore if we start from a large negative (positive) detuning −∆0 (+∆0) compared

to the coupling, we can couple the input pulse to the polariton Ψ (Φ). By sweeping the

detuning adiabatically to a large positive (negative) +∆0 (−∆0), we can slow down the light

and convert it to the atomic coherence reversibly. The detuning thus plays a role that is

analogous to that of the Rabi frequency of the coupling field in the case of EIT.

We have performed numerical simulations that are in excellent agreement with the de-

scribed polaritonic picture. Figure 4.2 is a simulation of the original Maxwell-Bloch equa-

tions Eq. (4.1), Eq. (4.2). It can be seen that by sweeping the atomic frequency across the

resonance, light is slowed down and converted to atomic coherence.
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Figure 4.2: Propagation of field (a) and polarization (b) in the medium in time and space.

(c) Detuning as a function of time, We start from ∆0 = −50β and sweep to +∆0 = 50β

with the rate of ∆̇ = 0.4β2. The coupling constant is set to β = 30∆ω. The initial

pulse envelope is exp[−(z/z0)2] where z0 is 0.045L. The light is converted into a station-

ary atomic excitation by sweeping the detuning across the resonance. It is then retrieved

by sweeping in reverse direction.

In addition we have compared the group velocity obtained from numerical calculations

with the group velocity found in the polaritonic picture. Figure 4.3 shows the excellent

agreement between the numerical and analytical group velocities.
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Figure 4.3: Comparison between group velocities resulting from analytical (red) and nu-

merical (blue) calculations. The analytical curve is based on the polaritonic description

discussed in the text, while the numerical curve is based on the exact Maxwell-Bloch equa-

tions.

Thus far, we have imposed three conditions for obtaining the polaritonic picture. They

are summarized below:

β � ∆0, (4.12)

θ̇ � λ1(k)− λ2(k)

2
, (4.13)

∆ω � β. (4.14)
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We have investigated the physical significance of these conditions numerically. Figure

4.5 shows that if we start with an initial detuning that is not sufficiently larger than the

coupling, violating condition (4.12), the light couples to both Ψ and Φ modes, which results

in increased loss.

We also examine the adiabatic condition (4.13) in Figure 4.6. If the adiabatic condition

is violated at some time during the storage (retrieval) process, the mode of interest leaks

to the other eigenmode, which accelerates to the speed of light (decelerates to the speed of

zero), again resulting in loss.

Lastly we examine condition (4.14), which allowed the expansion of the eigenenergies

in k space, in Figure 4.7. Violating this condition results in dispersion of the pulse in the

medium and thus decreases the fidelity of the storage.

It is worth mentioning that the condition 4.12 imposes a lower limit on the rate at which

we sweep the atomic frequency. For the case of a linear change of the atomic frequency in

time, the sweeping rate is given by ∆̇ = 2∆0

Tsw
, where Tsw is the duration of sweeping. This

expression for the sweeping rate along with condition 4.12 gives us a lower bound on the

sweeping rate, 2β
Tsw
� ∆̇. On the other hand there is an upper bound for the sweeping rate

imposed by condition 4.13. If we combine the upper and lower bound we get an interval for

the sweeping rate that allows us to store the light efficiently,

2β

Tsw
� ∆̇� 8β2

sin3(2θ)
. (4.15)

The sweeping time should be of the order of the traveling time of the pulse inside the

medium (1/Tsw ≈ c/L). On the other hand, as we discuss in the next section, in the present

protocol the pulse has to fit inside the medium (c/L < ∆ω). This fact along with the

condition 4.14 guarantees that the sweeping rate interval 4.15 is not void and there is always

a way to change the detuning without violating the conditions 4.12-4.14.

So far we have neglected the decay rate γ in our discussion. In the regime where the

coupling constant is much larger than the decay rate (β � γ), the decay results in decay rates
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γ sin2 θ(t) and γ cos2 θ(t) for the polaritons Ψ and Φ, without changing the group velocity.

The dependence of the decay on the mixing angle θ(t) is due to the fact that the decay is

associated with the atomic (polarization) part of the polaritons.

4.4 Experimental Requirements

In order to store the light efficiently, the pulse has to fit inside the medium, otherwise those

frequency components of the pulse that were not in the medium at the time in which the

atoms had the corresponding frequency, do not become absorbed in the medium. This

imposes a condition on the frequency bandwidth of the input pulses (∆ω � c
L

). This

condition along with the requirement for avoiding dispersion of the pulse in the medium

(β � ∆ω), and the requirement that the coupling rate is significantly greater than the

decay rate (β � γ), implies a demanding requirement for the optical depth,

d =
β2L

cγ
� β

γ
� 1. (4.16)

It is worth mentioning that the same condition on the optical depth can be obtained by

using the adiabaticity condition (θ̇ � λ) and the initial detuning requirement (∆0 � β).

We numerically calculated the efficiency of the AFS protocol as a function of optical

depth (for zero storage time). The results are shown in figure 4.4. This graph shows that

high efficiency demands relatively large optical depth. Intuitively the high optical depth

requirement can be understood from the fact that the conditions (4.12-4.14) impose a large

memory bandwidth (swept frequency range) compared to the pulse spectral bandwidth.

Large optical depth is necessary to compensate for the fact that the atoms are spread out

over this large frequency range. However, there is room for lowering the precise optical depth

requirements by optimizing the sweeping of the atomic frequency in time (see section 4.8).

The saturation value of the efficiency in figure 4.4 depends on the decay rate as well as the

initial detuning. The decay rate limits the efficiency by the factor of e−4γ
∫ t
0 sin2 θk=0(τ)dτ . The
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Figure 4.4: Efficiency as a function of optical depth for decay rate of γ = 5× 10−2∆ω (red)
and γ = 2 × 10−3∆ω (black). Here we start from initial detuning ∆0 = −8β and sweep
linearly to +∆0 = 8β in a time of 2L/3c (For the retrieval process we do the reverse). We
fixed the length to 20 cm in accordance with Ref. [110] and changed the optical depth by
changing the coupling constant. The initial envelope is exp[−(z/z0)2], where z0 is 0.15L.

initial detuning, as we mentioned earlier, determines the portion of the input light that is

coupled to the polariton mode of interest (see figure 4.5).

One promising candidate system for implementation of the AFS protocol are atoms in a

hollow-core photonic crystal fiber (HCPCF) [110, 111, 112]. On the one hand, this system

is suitable for accommodating the entire input pulse, as the length of the HCPCF can be

extended to adequate amounts. On the other hand, hot atoms in HCPCF feature large

optical depths. In [110], an effective optical depth of 300 has been demonstrated for the

inhomogeneously broadened optical line. For a similar length and optical depth as in [110],

an efficiency of ≈ 40% for linear sweeping and 57% for nonlinear sweeping is achievable (see

section 4.7) with a fidelity of 99%. A longer HCPCF may provide higher optical depths.

Storage based on the optical coherence limits the storage time to the optical coherence time.

This can be resolved by transferring the excitation to a ground state by applying an optical
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pulse. Another pulse can be used to reconvert the ground-state coherence into an optical

coherence for readout.

Another challenge for the implementation of the AFS memory protocol is the large range

over which the atomic frequency has to be swept. As we discussed earlier, to avoid mixing

the eigenmodes of the system, the range of swept atomic frequency should be larger than

the coupling constant (∆0 � β � ∆ω). For the system proposed here (Ref.[110]), the

swept frequency range should be of the order of 100 GHz. This challenge can be overcome

by increasing the length of medium, which allows decreasing the coupling constant without

compromising the optical depth.

4.5 Conclusions and Outlook

The polaritonic description given above made it clear that the AFS memory has significant

similarities with EIT based memories. As we mentioned in the introduction, the AFS memory

is also connected to the GEM memory in the regime in which the size of the pulses is

smaller than the length of the medium. Numerical calculations (shown in Figure 4.9 in

Appendix 3) also verify this connection. This suggests the notion of a real-space polariton

in the GEM memory which differs from the momentum-space polariton introduced in Ref.

[113]. Nevertheless there are some differences between AFS and GEM protocols even in the

small pulse regime. In AFS the pulse slows down and stops when the atoms are far detuned

from the pulse (after having been swept through the resonance). In contrast, in GEM the

pulse stops close to the resonant part of the medium, or, if the optical depth is high enough,

even before the resonant part of the medium is reached. This fact leads to the shift in the

release time of the output that can be seen in Figure 4.9 of the appendix 3.

The AFS memory is linked to photon echo based memories more generally. When we

sweep the atomic frequency in time, the atomic coherences become dephased and thus

re-emission is inhibited. By sweeping in reverse direction, the atomic coherences become
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rephased and the light is re-emitted. This fact imposes some limits on sweeping the atomic

frequency. The sweep should be fast enough compared to the coupling constant to ensure

that dephasing happens before reemission. The details of the outlined dephasing-rephasing

process for the AFS memory are a subject for future studies.

Our protocol also shares some similarities with the proposal of Ref. [115], where light

guided by Coupled Resonator Optical Waveguides (CROW) is stored by dynamically chang-

ing the resonance frequency of side cavities that are coupled to the CROW. In the AFS

protocol the atoms play the role of the side cavities in Ref. [115].

It is also worth pointing out that there are some similarities between the AFS memory

and Ref. [114], which proposes to store light by dynamically controlling the splitting of two

atomic transitions. These authors also develop a polaritonic picture for their protocol.

In conclusion we have proposed and analyzed a quantum memory protocol based on

sweeping the resonance frequency of two-level atoms. We have shown that this new AFS

memory protocol shares features with several other existing memory protocols, including

EIT and photon-echo based memories. Besides being interesting in its own right, this new

protocol can thus also be seen as a step towards a unified description of the complex zoology

of quantum memory protocols.

4.6 Appendix 1. Investigation of AFS requirements

As discussed in the paper, for obtaining the polaritonic picture we have assumed the three

conditions of Eq. 4.12-4.14. Condition (4.12) is essential for initially exciting only one of

the polaritons. Condition 4.13 guarantees the adiabaticity of the process, thus avoiding

leakage from one polariton to the other polariton. Condition 4.14 prevents dispersion, which

is important for achieving high fidelity. Here we numerically study these conditions.

First, figures 4.5 (a-g) show what happens when condition (4.12) is violated. It can be

seen that by decreasing the initial detuning (while the other conditions are fulfilled), we
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excite polariton Φ (i) more and polariton Ψ (ii) less. According to Eq. (4.10) and Eq.

(4.11) in the paper, as we change the detuning, polariton Ψ slows down and converts to

polarization, while polariton Φ accelerates from zero group velocity to the speed of light and

leaves the medium. Therefore excitation of polariton Φ leads to loss. When the starting

detuning is much less than the coupling rate (Figure 4.5f), θ is almost π/4, so according to

Eq. 4.10 and Eq. 4.11 both polaritons travel with speed c/2 and, since they have opposite

phase (λ1 = β and λ2 = −β), there is beating between them. This means that the light

undergoes a series of re-emission and absorption processes with rate β (see also Figure 4.5d).

Secondly we examine the adiabaticity condition 4.13. Figures 4.6(a-g) show how the

output field changes when we violate the adiabaticity condition. As we increase ∆̇ (while

the other two conditions hold), the process becomes less adiabatic, resulting in leakage of

polariton Ψ (ii) into polariton Φ (i), which accelerates to the speed of light and leaves the

medium. Therefore this condition is necessary for efficient absorption of the light.

Thirdly we study the effect of violating condition (4.14). Figure.4.7 show how the output

changes when the coupling rate approaches the bandwidth of the pulse. It can be seen

that when β approaches the bandwidth of the pulse, the output pulse becomes broader,

which reduces the fidelity of the memory protocol. This can be explained by considering the

expansion of the eigenvalues in terms of k. When β is comparable to the bandwidth of the

pulse, we no longer can neglect second and higher orders of k in expansion of eigenenergies,

resulting in dispersion of the pulse.

4.7 Appendix 2. Optimized Sweeping of Atomic Frequency

Thus far we only considered a linear change of detuning in time. However, the linear change

is not the most efficient way of changing the detuning. When the atoms are far detuned from

the pulse, the sweeping can be made faster without significantly compromising the efficiency,

and when the atoms are in resonance with the pulse, the sweeping can be made slower to
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Figure 4.5: Effect of initial detuning on the output of the memory. The bandwidth of the
input field is set to ∆ω = 0.1β. (a) shows the temporal shape of the input pulse. Note
that the input pulse is initially in the medium . We show the output field for different val-
ues of initial detuning b)∆0 = −10β, d)∆0 = −β, f)∆0 = −0.1β. (c), (e), (g) show how
the detuning changes in each case. (i) is the transmitted and (ii) is the retrieved pulse.
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Figure 4.6: Effect of the rate of changing the detuning on the output of the memory. The
bandwidth of the input field is set to ∆ω = 0.1β. (a) shows the temporal shape of the
input pulse. Note that the input pulse is initially in the medium. The initial detuning
for all of the cases is ∆0 = −10β. We sketch the output field for different values of ∆̇,
b)∆̇ = 0.3β2, d)∆̇ = 3β2, f)∆̇ = 30β2. (c), (e), (g) show the detuning as a function of time.
(i) is the transmitted and (ii) is the retrieved pulse.
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Figure 4.7: Effect of the value of β (compared to the bandwidth of the input pulse) on the
output of the memory. (a) shows the temporal shape of the input pulse. Note that the in-
put pulse is initially in the medium. The initial detuning for all of the cases is ∆0 = −10β.
We sketch the output field for two different values of β b) β = 16∆ω, d)β = 4∆ω. (c),
(e) show the detuning as a function of time. (i) is the transmitted and (ii) is the retrieved
pulse.
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Figure 4.8: nonlinear change of detuning by setting θ̇ = 0.3× (λ1 − λ2/2)

store the light more efficiently. In general any sweeping that obeys the conditions given in

Eq. (4.15) of the paper can store the pulse inside the medium. Here we picked the case

in which the decay rate is γ = 5 × 10−2 and the optical depth is d = 300 and improved

the efficiency by setting the rate of sweeping to θ̇ = 0.3 × (λ1 − λ2)/2. Figure 4.8 shows

the detuning as a function of time under these conditions. With this nonlinear sweeping we

could improve the efficiency from 40% for a linear sweep to 57% for the same input pulse. It

may be possible to obtain further improvements by using numerical optimization algorithms.

4.8 Appendix 3. Connection Between AFS and GEM Memory

We have also performed numerical comparisons between GEM [101] and AFS, where in the

case of AFS the effective spatial gradient for light propagating at velocity c ( ∆̇
c

) is set equal

to the spatial gradient for GEM. Figure 4.9(a) shows the agreement between outputs of the

two protocols. This connection can be captured rigorously by going to the retarded frame

(τ → t−z/c, z′ = z). In the retarded frame the time-dependent detuning ∆(t) is transformed

to ∆(τ + z/c), which depends on both retarded time and space. However, for pulses smaller

than the medium, the term τ can approximately be neglected compared to z/c. As a result
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Figure 4.9: (a) Comparison of the AFS memory output (green) with GEM output (red)
when we send the same input pulse (blue). (b) illustrates the detuning as a function of
time in AFS memory. (c), (d) show the detuning as a function of spatial coordinate re-
spectively for storage and retrieval in GEM memory. In the simulation of GEM, at time
t=1.6L/c the detuning of the atoms is flipped. The effective spatial gradient ( ∆̇

c
) in the

AFS memory is set equal to the spatial gradient in GEM for both storage and retrieval.
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we end up with a space-dependent detuning ∆(z/c).

It is important to note that this connection is valid under the assumption that retarded

time is much smaller than the temporal extension of medium (L/c), which is true for the

short pulses traveling with almost the speed of light. However based on the polaritonic

description we know that the pulse slows down in the medium, and as a result the retarded

time increases more than the time duration of the pulse and our assumption is no longer valid.

What justifies our approximation is that, when the retarded time exceeds L/c, the pulse is

almost absorbed. Thus this factor doesn’t play an important role. The small discrepancy of

the two protocols in figure 4.9 can be explained by the imperfection of this approximation.
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Chapter 5

Rydberg Atoms

5.1 Preface

This chapter summarizes the basic physical concepts underlying Rydberg atoms and different

types of Rydberg interactions within an ensemble of ultracold atoms.

5.2 Introduction

Rydberg atoms, i.e. the atoms that are excited to high principal numbers (n), were studied

in the early days of quantum mechanics [116, 117]. Rydberg excitation of ultracold atoms

[118] revolutionized the field and resulted in a variety of applications. Ultracold Rydberg

physics has been applied in neutral atom quantum computation [119], quantum non-linear

optics [56, 45, 57], strongly correlated plasmas [120, 121], ultracold chemistry (e.g. Rydberg

Molecules)[122], studies of exotic quantum phases [123, 124], and many-body entangled states

[125, 126]. To reduce the experimental complexity, there is currently an effort to perform

Rydberg experiments in hot vapors [127] and also in semiconductors [128, 129], where the

latter might be applicable in the generation of on-chip quantum computers.

Laser manipulation of atomic states can serve as an effective switch for controlling the

Rydberg interaction. This fast switching over 12 orders of magnitude contrast in the inter-

action strength, makes Rydberg atoms attractive for quantum science and technology, see

Fig. 5.1 and [44]. Comparing to the ionic system with permanent strong Coulomb interac-

tion, switchable weaker interaction between neutral atoms might be an advantage for the

realization of many qubit registers.
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Figure 5.1: (Color online) Interaction between two Rubidium atoms in ground state, two
atoms that are excited to 100S Rydberg state and two Rb ions. Laser manipulation of
atomic states can serve as an effective switch for controlling the Rydberg interaction. This
fast switching over 12 orders of magnitude contrast in the interaction strength, makes Ry-
dberg atoms attractive for quantum science and technology. Rydberg interaction changes
from dipole-dipole type C3

r3 at short distances to van der Waals type C6

r6 at large separa-
tions. (This figure is used with the curtesy of [44])

5.3 Rydberg Atom Properties

Rydberg atoms have exaggerated properties compared to the ground state atoms. Their

large size (r ∝ n2) can be of order of 1µm when excited to the principal number of n = 100,

resulting in a large dipole coupling to the neighboring levels µrr′ = 〈r|µ|r′〉 ∝ n2. Large

dipoles along with small level spacing ∆Err′ ∝ n−3 at high principal numbers results in

strong long-range switchable van-der-Waals (∝ n11) and dipole-dipole (∝ n4) interactions

between Rydberg atoms.

On the other hand diminishing overlap of the Rydberg and ground state wave-functions

reduces the transition dipole moments to the ground state µrg ∝ n−3/2, which results in
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longer lifetimes on the order of 100µs at n = 50. Some of the scaling laws of Rydberg atom

characteristics are presented in table 5.1 and are discussed in detail in this chapter.

Property scaling
Binding energy n−2

Level spacing n−3

Orbital radius 〈r〉 n2

Dipole moment µrr′ n2

Transition dipole moment µrg n−3/2

Polarizability α n7

Radiative lifetime n3

Black-body lifetime n2

van der Waals interaction n11

Dipole-Dipole interaction n4

Table 5.1: Rydberg atoms scaling lows.

5.4 Energy Levels

The Hydrogen like energy structure of highly excited Rydberg atoms is due to the small

overlap of the excited electron and the ionic core. Effects of ionic core structure are included

using the state dependent quantum defects δnlj (see table 5.2) term as

Enl =
−R

(n− δnlj)2
(5.1)

where R = 13.61eV is the Rydberg constant and n is the principal quantum number. In

contrast to hydrogen, the energy of Rydberg states are not degenerate for different orbital

quantum numbers (l) belonging to the same n. This is because for low angular momentum

l < 3, the Rydberg electron penetrates the ionic core and the interaction with the core’s

electrons results in nonzero energy defects. Larger angular momentum results in a stronger

centrifugal force (see Eq. 5.5) that pushes the Rydberg electron’s wave-function away from

the core and as a result energy of the state would degenerate (δnlj ≈ 0 ∀ l ≥ 3). The scaling

of the Rydberg energy levels and energy separation of neighboring levels can be found from

Eq. 5.1 as Er ∝ n−2 and ∆Err′ = Er − Er′ ∝ n−3 respectively.
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l j b1 b2

0 1/2 3.1311804 0.1784
1 1/2 2.6548849 0.2900
1 3/2 2.6416737 0.2950
2 3/2 1.34809171 -0.60286
2 5/2 1.34646572 -0.596
3 5/2 0.0165192 -0.085
3 7/2 0.0165437 -0.086

Table 5.2: Quantum defects δn,l,j = b1(l, j) + b2(l, j)/(n − b1(l, j))2 data for Rubidium
[131, 132]. Dependents on j is small.

5.5 Wave-Function

In the case of Alkaline atoms, where the Rydberg electron is far from the finite size closed

shell core the Schrödinger equation of the Rydberg electron can be written as [130]

(− ~2

2µ
∇2 + VC(r))ψnlm(r) = Enlψnlm(r) (5.2)

where ~ and µ are the reduced Planck constant and reduced mass of the Rydberg electron

respectively. The widely used effective core potential is [133, 134]

VC(r) =
q2

4πε0r
[1 + (Z − 1)e−a1(l)r − r(a3(l) + a4(l)r)e−a2(l)r)]− αc

2r4
(1− e−( r

rc
)6

) (5.3)

where q is the electron charge, ε0 is the vacuum permittivity and ai(l) are parameters that

depend on the orbital angular momentum [135, 136]; αc is the core dipole polarizability

[137, 138] and rc is the cut off radius that prevents any divergence at the origin. Eq. 5.3

shows that far from the core, the Rydberg electron experiences a Coulomb like potential. At

distances closer to the nucleus, the potential has significant deviations due to the penetration

of the Rydberg electron into the core as determined by the second and third terms of Eq. 5.3,

and also due to the polarization of the core that is given by the last term of the Eq. 5.3.

The wave-function of the Rydberg electron ψnlm can be decomposed into radial Rnl and

angular Ylm terms.

ψnlm(r) = Rnl(r)Ylm(θ, φ) (5.4)
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The radial part of the schrödinger equation will be

[− ~2

2m
(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
) + VC(r)]Rnl(r) = EnlRnl(r). (5.5)

Applying the following substitution [139]

x =
√
r, u(x) = r3/4R(r) (5.6)

transforms equation 5.5 to a form that can be solved numerically using the Numerov method

namely [140]

d2u

dx2
= f(x)u(x). (5.7)

If x increases in the size increments of h then u(x+ h) can be found from u(x) and u(x− h)

using the equation [140]

u(x+ h)[1− T (x+ h)] + [1− T (x− h)]u(x− h) = [2 + 10T (x)]u(x) +O(h6), (5.8)

where T (x) = h2f(x)
12

. Figure 5.2 plots the Rubidium’s wave-function for two states of |n =

50, l = 0〉 (plotted in blue) and |n = 100, l = 0〉 (plotted in red) which are extended 100 and

400 times beyond the size of Rubidium ground state atom.

5.6 Transition Dipoles

The transition between different atomic states is determined by dipole matrix elements [141]

µnljm,n′l′j′m′ = e〈n′l′j′m′|~r|nljm〉 = (−1)j+l
′−1/2Cj′m′

jmlp

√
2j + 1

 l 1/2 j

j′ 1 l′

 〈n′l′||r||nl〉
(5.9)

where e is the charge of the electron, and the equation contains the radial transition term

rnl,n′l′ = 〈n′l′||r||nl〉 =

∫
r3Rnl(r)Rn′l′(r) dr, (5.10)
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Figure 5.2: (Color online) Rydberg electron’s radial wave-function for |n = 50, l = 0〉
(plotted in blue) and |n = 100, l = 0〉 (plotted in red). The Rydberg wave-function extends
to 5000 a.u. and 20000 a.u. respectively which are far beyond the extension of ground
state atom.

which can be calculated numerically. The angular part is given by Clebsch-Gordon coeffi-

cients [142] and can be calculated in terms of Wigner-3j-symbols [143]. The angular part

gives the dipole selection rules, namely ∆m = 0,±1, ∆l = ±1, ∆j = 0,±1, (When coupling

the Rydberg pairs in Sec. 5.8, the conservation of total angular momentum for the case that

inter-atomic separation is along the quantization axes results to ∆M = ∆m1 + ∆m2 = 0

[144]). The radial part gives the scaling with respect to n. The transition dipoles from a

Rydberg level n to its neighboring levels n−1 ≤ n′ ≤ n+1 scale with n2 (see Fig. 5.3), which

results in larger dipoles and therefore stronger interactions at higher principal numbers (see

section 5.8 for more discussion). On the other hand the diminishing overlap of the Rydberg

and ground state wave-functions reduces the transition dipole moments to the ground state

µrg ∝ n−3/2, which results in longer lifetimes, e.g. of the order of 100µs at n = 50.
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Figure 5.3: Radial matrix elements divided by n2 in Strontium atom for the transitions of
n 1S0 → n′ 3P[0,1,2] . This figure shows that for principal numbers larger than n=30 dipole
moments almost scale with n2. Note that in Alkaline earth Rydberg atoms with principal
numbers below n = 30, effects of the second valance electron should be considered, and the
dipole moments can be calculated via multichannel quantum defect theory [145].

5.7 Lifetime

Natural lifetime of Rydberg state |i〉 is given by the sum of spontaneous transition rates to

the lower states (|f〉) using Einstein A coefficients [146, 147, 148]

τ−1 =
∑
f

Aif =
2e2

3ε0c3h

∑
Ef<Ei

ω3
if |〈i|~r|f〉|2, (5.11)

where ωif =
Ef−Ei

~ is the transition frequency and 〈i|~r|f〉 is the dipole matrix element

between initial and final states. For Rydberg states with small angular momentum (l) the

dominant terms in the sum of Eq. 5.11 are determined by the transition frequency ωif and

therefore the dominant destination will be the dipole allowed ground states. Considering

the scaling, the transition frequency of the Rydberg levels to the ground state is almost

independent of the principal number, which leaves the transition dipole term that scales

as n−3/2 for transitions to small principal number states. Therefore the natural lifetime of
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Rydberg states with low l scales with n3. For Rydberg states with large orbital angular

momentum (l ≈ n− 1) the transition to the ground state occurs through many intermediate

decays to neighboring Rydberg levels with lower l to fulfill dipole selection rules. In this

case the transition frequency scales with ωif ∝ n−3 and the radial matrix element scales

with µif ∝ n2 which results to the overall scaling of τ ∝ n5. Therefore, high orbital angular

momentum Rydberg states have longer lifetimes. However these states are experimentally

hard to reach.

In the presence of black body radiation the natural line width of the state depends on

the coupling to the thermal fields in addition to the vacuum, which results to [146, 147, 148]

τ−1 =
∑
f

(1 +
1

e
~ωif
kBT − 1

)Aif +
∑
f ′

Aif ′

e
~ωif ′
kBT − 1

(5.12)

where f and f ′ are the states with lower and higher energies respectively comparing to the

initial states, (e
~ωif
kBT − 1)−1 is the average number of thermal photons with energy of ωif at

the environment temperature of T , and kB is the Boltzmann constant.

5.8 Rydberg-Rydberg Interaction

Considering two Rydberg atoms with nuclei positions of ~R1, ~R2 and separation of ~R =

~R2− ~R1, and a corresponding Rydberg electron-nucleus separation of ~ri, the Hamiltonian of

the system is

H = H1
0 +H2

0 + Vint(~r1, ~r2, ~R). (5.13)

The individual atoms’ Hamiltonians are given by

H i
0 = −1

2
∇2
i + Vc(~ri), (5.14)

where Vc is defined in equation 5.3. The interaction between the two atoms is given by

Vint(~r1, ~r2, ~R) = e2[
1

|~R|
− 1

|~R− ~r1|
− 1

|~R + ~r2|
+

1

|~R− (~r1 − ~r2)
]. (5.15)
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When the inter-atomic distance between the two Rydberg atoms R is much larger than their

individual Bohr radius (R� n2a0), one can Taylor expand each term of Eq. 5.15

f(x) =
1

|~R− ~x|
(5.16)

to the second order to find

f(x) = f(0) +
3∑
i=1

xi∂if(0) +
1

2

3∑
i,j=1

xixj∂ijf(0) +O(3) (5.17)

≈ 1

R
+
~x. ~R

R3
+

3

2R5
(~x. ~R)2 − x2

2R3
.

Substituting these terms into Eq. 5.15 results in the dipole-dipole approximation of the

interaction

Vint(~r1, ~r2, ~R) = e2[f(0)− f(~r1)− f(−~r2) + f(~r1 − ~r2)] (5.18)

≈ e2 1

R3
[~r1.~r2 − 3(~r1.R̂) (~r2.R̂)] = Vdd

Considering a pair of Rydberg atoms |n1l1j1, n2l2j2〉, the dipole-dipole interaction couples

the neighboring Rydberg pair states |n′1l′1j′1, n′2l′2j′2〉 that fulfill the dipole selection rules

(explained in Sec. 5.6) with the coupling strength of

〈n1l1j1, n2l2j2|V̂dd|n′1l′1j′1, n′2l′2j′2〉 (5.19)

=
rn1l1,n′1l

′
1
rn2l2,n′2l

′
2

R3
[~C1,1′ . ~C2,2′ − 3(~C1,1′ .R̂)(~C2,2′ .R̂)]

where rnl,n′l′ is the radial matrix element (see Eq. 5.10), and

~C1,1′ = ~Cl1j1m1,l′1j
′
1m
′
1

=

∫
dφ d(cos θ)Y ∗l1j1m1

(θ, φ)


sin θ cosφ

sin θ sinφ

cos θ

Yl′1j′1m′1(θ, φ) (5.20)

is the Clebsch-Gordan coefficient [142] containing the angular contribution to the matrix

element. Splitting the radial and angular terms, the dipole-dipole coupling can be written

as

Vdd =
C3Dφ

R3
(5.21)
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were C3 = rn1,n′1
rn2,n′2

contains the radial terms and therefore scales with C3 ∝ n4 and Dφ

contains the angular parts. There are infinite number of final pairs, however only those with

small energy defects δ = E(n′1, l
′
1, j
′
1)+E(n′2, l

′
2, j
′
2)−E(n1, l1, j1)−E(n2, l2, j2) predominantly

determine the interaction strength due to their large dipoles and small energy gaps.

Considering the closest pair and representing the initial and final pair with |ψi〉 and |ψf〉,

the time independent Schrödinger equation describing the dipole coupling is δ V̂dd

V̂ †dd 0


 |ψf〉
|ψi〉

 = E

 |ψf〉
|ψi〉

 (5.22)

Isolating ψf in the first row

|ψf〉 =
Vdd
δ − E

|ψi〉 (5.23)

and substituting it in the second row

VddV
†
dd

E − δ
|ψi〉 = E|ψi〉 (5.24)

the Förster energy eigenvalues can be found as [44]

E = δ(
1

2
−
√

1

4
+

C2
3

R6δ2
D2
φ) (5.25)

This interaction has different spatial dependence at short and large distances with a crossing

point of Rc = ( δ
C3Dφ

)1/3.

Van-der Waals interaction (R >> Rc): At large distances the dipole coupling is only

perturbative and the energy of pair states is given by

E =
C2

3D
2
φ

δR6
=
C6D

2
φ

R6
. (5.26)

In this range the interaction is van-der Waals type and C6 scales like n11. Considering

the spatial dependence (R−6), the interaction is predominantly determined by the closest

Rydberg atoms and sharp drop of the interaction (see Fig. 5.1) allows one to consider a cut

off for the radius.
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Resonant dipole-dipole interaction (R << Rc): At short distances or when the en-

ergy defect δ is tuned to zero (Förster resonance) using external fields, the dipole interaction

term dominates and the energy of the coupled pair is

E = −sgn(δ)
C3Dφ

R3
. (5.27)

This gives the largest energy between two non-overlapping Rydberg atoms and C3 scales

with n4. The R−3 spatial dependence results in a longer range of interaction compared to

van-der Waals interaction.

In both cases the attractive or repulsive nature of the interaction is determined by the

sign of the energy defect δ.

5.9 Rydberg Blockade

An important consequence of Rydberg interaction is a position dependent level shift, which

prevents multiple Rydberg excitations within a sphere of radius Rb [149] by making the

atoms out of resonance with the exciting field. The blockade radius Rb is defined as an inter

atomic distance where power broadening
√

Ω2 + ∆2 equals the Rydberg interaction, where

Ω is the Rabi frequency and ∆ is detuning [150]. The blockade radius is usually on the order

of microns, for example in an ensemble of Rubidium atoms that are excited in resonance to

60S1/2 state with Ω/2π = 1 MHz, in the regime of van-der Waals interaction, the blockade

radius is Rb = (C6

Ω
)1/6 = 7µm.

Due to the Rydberg blockade all Nb = N(4/3)πR3
b atoms within blockade radius share

one Rydberg excitation forming a collective state

1√
N

N∑
i=1

|g1, g2, ..., ri, ..., gN〉. (5.28)

This system, which is sometimes called a super-atom [151], is coupled by the laser field to

the ground state with a collectively enhanced Rabi frequency
√
NbΩ [152].
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5.10 Rydberg Dressing

This section studies the interaction between Rydberg dressed atom. Most of the content is

a modified version of a discussion in the monograph of [144]. In this scheme, an off resonant

laser weakly couples Rydberg levels to the ground state atoms. This dressing would results

to a Plateau type interaction.

Considering N atoms in an optical lattice, for each pair of atoms excited to a Rydberg

level |e〉 and separated by rij = ri − rj, where ri is the position of ith atom, the binary

interaction is Wij = E(rij) where E is defined in Eq. 5.25. The electronic Hamiltonian of

the many-body dressed system is

Ĥel =
∑
i<j

Wijσ̂
i
eeσ̂

j
ee +

N∑
i=1

[
Ω

2
(σ̂ige + σ̂ieg) + ∆σ̂ige], (5.29)

where the individual atom dressing Hamiltonian is derived in Sec. 2.2. Note that in spite

of the large size of Rydberg atoms which could be in the order of laser wavelength, Dipole

approximation is still valid. This is due to the fact that dipole transition is between a

ground state to the Rydberg level and external field is constant over the range that two

wave-functions has a significant overlap.

We are interested in the potential U(r1..rN) of the ground dressed state of the many-body

system |G(r1..rN)〉, which is obtained under adiabatic dressing of the ground state

Ĥel|G(r1..rN)〉 = U(r1..rN)|G(r1..rN)〉. (5.30)

In the weak dressing regime ( Ω
2∆

)2 � 1 and for the atoms within the blockade radiusWij > ∆,

the dressing energy can be found by applying the perturbation theory [144]

U

∆
|G〉 = [

N∑
i=1

σ̂iee +
1

∆

∑
i<j

Wijσ̂ieeσ̂
j
ee︸ ︷︷ ︸

ĥ0

+
Ω

2∆︸︷︷︸
λ

N∑
i=1

(σ̂ige + σ̂ieg)︸ ︷︷ ︸
v̂

] |G〉, (5.31)

where

ĥ0 =
N∑
i=1

σ̂iee +
1

∆

∑
i<j

Wijσ̂ieeσ̂
j
ee (5.32)

54



is the unperturbed Hamiltonian,

v̂ =
N∑
i=1

(σ̂ige + σ̂ieg) (5.33)

is the perturbing term and λ = Ω
2∆

. There are 2N eigenstates of ĥ0 that can be labeled as

|a〉 and numbered as follows

|0〉 = |g, g, ..., g〉 (5.34)

|1〉 = |e, g, ..., g〉
...

|N + 1〉 = |e, e, ..., g〉
...

|2N〉 = |e, e, ..., e〉,

with eigenenergies of εa = 〈a|ĥ0|a〉 and the energy separation of εab = εa − εb. Important

examples in this discussion are the energy of ground state ε0 = 〈0|ĥ0|0〉 = 0, energy of N

single excited states εa = 〈a|ĥ0|a〉 = 1 for aε[1...N ] and double excited states with the energy

of 2 +Wij/∆. The coupling between these eigenstates is given by vab = 〈a|v̂|b〉 which could

be 0 or 1.

The effective energy of the ground dressed state |G〉 is given by perturbation theory

U = ∆
∞∑
l=1

λlu(l), (5.35)

where the energy contribution of lth order (u(l)) contains l excitation or de-excitation op-

erators (v̂) that start from and return back to |0〉. This condition is fulfilled only by even

orders of perturbation while the odd orders return zero e.g. u(1) = 〈0|v̂|0〉 = 0. The first

even order is

u(2) =
∑
a

|v0a|2

ε0a
= N, (5.36)

55



where only the states with one atom excitation get coupled. The total contribution from the

second order perturbation is

∆λ2u(2) =
Ω2

4∆
N, (5.37)

which equals to the first order light shift of N non-interacting atoms.

The next non-vanishing perturbation is of interest since it contains the interaction of two

excited Rydberg atoms. The fourth order can be calculated as

u(4) =
∑
abc

v0avabvbcvc0
ε0aε0bε0c

−N
∑
a

|v0a|2

ε20a
(5.38)

=
∑
i<j

4

(1)(2 +Wij/∆)(1)
−N2

with the energy contribution of

∆λ4u(4) =
Ω4

4∆2

∑
i<j

1

(2∆ +Wij)
− (

Ω

2∆
)4∆N2 (5.39)

≈ Ω4

8∆3

∑
i<j

[
1

(1 +
Wij

2∆
)
− 1]

Considering van-der Waals interaction between atoms Wij = C6

r6
ij

and including the contri-

bution from the second order of the perturbation from Eq. 5.37 one can find the effective

potential of the ground dressed state as

U(r1..rN) =
Ω2

4∆
N +

N∑
i<j

χ0R
6
b

R6
b + r6

ij

(5.40)

where χ0 = Ω4

8∆3 and blockade radius in the weak dressing regime equals to Rb = (C6

2∆
)1/6.

This energy corresponds to the effective many-body dressing Hamiltonian of

Ĥ(r1..rN) =
Ω2

4∆
N̂ +

N∑
i<j

χ0R
6
b

R6
b + r6

ij

σ̂ieeσ̂
j
ee (5.41)

Equation 5.41 shows that the many-body dressing interaction is the sum of binary dressing

interactions in the weak dressing regime. This binary dressing interaction is of a diluted

van-der-Waals form at distances larger than the blockade radius with reduced coefficient

C ′6 = χ0R
6
b = (

Ω

2∆
)4C6 (5.42)
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where ( Ω
2∆

)4 is the probability of exciting two atoms. within the blockade radius, dressing

interaction approaches a constant value

χ(rij) = χ0. (5.43)

5.11 Conclusion

This section reviewed the important concepts about Rydberg atoms and their interaction.

Exaggerated properties of Rydberg atoms are discussed and the corresponding scaling laws

are derived. The interaction between Rydberg atoms is analyzed and the steps in calculating

them are advised. The consequent important phenomena namely Rydberg blockade and

Rydberg dressing are explained. These results will be used widely in the following chapters.
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Chapter 6

Photon-Photon Gate Via the Interaction Between Two

Collective Rydberg Excitations

This chapter explains a scheme for a deterministic controlled-phase gate between two photons

that is based on the strong interaction between two stationary collective Rydberg excita-

tions in an atomic ensemble outside the regime of Rydberg blockade. The distance-dependent

character of the interaction causes both a momentum displacement of the collective excita-

tions and unwanted entanglement between them. I show that these effects can be overcome

by swapping the collective excitations in space and by optimizing the geometry, resulting in

a photon-photon gate with high fidelity and efficiency.

The content of this chapter is entirely the result of my research and has been published

in [57]. I also wrote the manuscript with guidance from Prof. Simon.

6.1 Introduction

Two-qubit photonic gates is the challenging part of universal photonic gates, because pho-

tons interact extremely weakly with each other in free space. These gates could specifically

improve the performance of quantum repeater [153]. Two-qubit photonic gates are cat-

egorized into deterministic and non-deterministic gates. In non-deterministic group, KLM

protocol [154] introduced an effective interaction between photons based on linear optics and

post-selection. Later on, one-way quantum computation was introduced [155, 156], which is

non-deterministic in the initialization of photonic cluster states [157]. In deterministic gates

mutual interaction of photons is obtained from their interaction with atomic media. Source

of interaction between two photons could be local AC-stark shift between two photons inter-
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acting with the same atom [158, 159, 160], a non-local Rydberg interaction between highly

excited atoms[119], the collision of atoms in BEC [161] or using cavity-QED to make two

successive photons interacting with a single atom in cavity [162, 163].

Here we are interested in an attractive approach that involves converting the photons

into atomic excitations in highly excited Rydberg states, which exhibit strong interactions.

Rydberg state based quantum gates between individual atoms and between atomic ensembles

have been proposed [164, 165, 166, 167, 168] and implemented [169, 170, 171]. There are two

categories of gates, those relying on the interaction between two excited atoms [164, 165], and

those based on Rydberg blockade [165, 166, 167, 168, 169, 170, 171], where only one atom is

excited at any given time. There is a significant body of work studying the effects of mapping

photons onto collective atomic Rydberg excitations [172, 173, 174, 175, 176, 177, 178]. Most

proposals for photon-photon gates involve propagating Rydberg excitations (polaritons),

either using blockade [179, 180] or two excitations [181, 182, 183, 184].

Separating the interaction process and propagation makes it easier to achieve high fi-

delities for these photonic gates [185]. Such separation can be achieved by photon storage,

i.e. by converting the photons into stationary rather than moving atomic excitations. The

only storage-based photonic gate that has been proposed so far is based on the blockade

effect [185]. Achieving blockade conditions can be challenging since both photons have to be

localized within the blockade volume.

Following [164, 165, 181, 182, 183, 184], we here propose a storage-based scheme that

instead relies on the interaction between two stationary Rydberg excitations. The interaction

is strongly distance-dependent and thus not uniform over the profiles of the two stored

photons. We show that this leads to a displacement of the collective excitations in momentum

space and to entanglement between their quantum states. These effects a priori reduce the

photon-photon gate fidelity. However, it is possible to completely compensate the first effect

by swapping the collective excitations in the middle of the interaction time, and to greatly
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alleviate the second effect by optimizing the shape and separation of the excitations, resulting

in a photon-photon gate that achieves both high fidelity and high efficiency.

6.2 Scheme

Now we describe our scheme in detail. As shown in Fig. 6.1a, information is encoded in

dual-rail qubits [186], where the computational basis (|0〉 , |1〉) is defined by two spatially

separated paths. To implement a conditional phase gate between control (C) and target (T)

qubits, we store all four rails in a cold alkaline atomic gas. All four rails are stored and

retrieved through non-Rydberg EIT in a lambda configuration (see Fig. 6.1b - Circle 1),

which completely decouples the Rydberg interaction from the propagation. In comparison,

the scheme of Ref. [185] relies on Rydberg EIT (i.e. a ladder system involving a Rydberg

state), such that the propagating polaritons are still interacting, albeit less strongly than the

stored excitations.

The truth table for a controlled phase gate (with a controlled phase of π) is

|aC〉 |aT 〉 → eiπaCaT |aC〉 |aT 〉 , (6.1)

where a ε {0, 1} and the phase is created under the condition that both photons are in the

interacting rails (|1〉C , |1〉T ). Therefore, we only excite the interacting rails to Rydberg

levels through optical π pulses (see Fig. 6.1a, 1b-Circle 2), where the Rydberg interaction

changes the energy of the interacting pair’s state (|1C1T 〉) and lets it accumulate a phase over

time compared to the non-interacting pairs (|1C0T 〉 , |0C1T 〉 , |0C0T 〉). After the mentioned

preparation steps, the wave function of the interacting pair (|1C1T 〉) is given by

|Ψt0〉 =
∑
i1,i2

fi1e
−ik10.xi1σ̂i1r1gfi2e

−ik20.xi2σ̂i2r2g|G〉, (6.2)

where |G〉 = ⊗Ni=1 |g〉
i is the collective ground state and k10 and k20 are the central wave

vectors of the collective excitations. The summation in Eq. 6.2 is over all atoms inside the
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Figure 6.1: (Color online) Proposed photon-photon gate scheme. (a) Setup. The scheme
is based on dual rail qubits [186]. All four rails are stored as collective spin excitations
in an atomic ensemble in a magneto-optical trap (MOT). Only the interacting rails (|1〉C
and |1〉T ) are excited to Rydberg levels. The separation between the interacting rails is set
to be larger than the blockade radius Rb to ensure that both collective excitations can be
promoted to the Rydberg level. (b) Level scheme. The photons are stored and retrieved
through non-Rydberg EIT (dashed circle #1), which completely separates the Rydberg in-
teraction from the storage and retrieval process. Subsequently optical π pulses promote
the collective excitations in the interacting rails to Rydberg states (dashed circle #2),
where the van der Waals interaction creates a cumulative conditional phase. After the in-
teraction time, the photons are retrieved by another pair of π pulses followed by non-Ryd-
berg EIT readout.
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medium. The raising operator σ̂irjg = |rj〉i〈g| excites the i-th atom to the Rydberg state |rj〉

(j = 1, 2). The spatial profile of the collective excitations is considered in fi. Their shape

is determined through the storage process and the shape of the input pulses. We assume a

Gaussian profile for the rest of this chapter.

The interaction energy between two Rydberg atoms has the form 4(x) = cn
|x|n , where

x is the separation between the atoms. It changes from dipole-dipole (n = 3) in the short

range to van der Waals (n = 6) in the long range, see Sec. 5.8. The spatial separation of the

collective excitations in our protocol is in the range of the van der Waals interaction. The

many-body interaction Hamiltonian is

Ĥint =
∑
l1,l2

σ̂(l1)
r1r1
4(xl1 − xl2)σ̂(l2)

r2r2
, (6.3)

where σ̂rr is the projection operator. Different combinations of excited atoms in Eq. 6.2

gain different phases, because their interaction strength is distance-dependent. This leads to

a non-uniform distribution of conditional phase over each collective excitation, which affects

the gate fidelity.

6.3 Effects of Non-Uniform Interaction

In order to gain some insight into the dynamics of our system, we begin by deriving approxi-

mate analytic expressions for the effects of the non-uniform interaction. The modulus squared

of the two-excitation wave function (of interacting rails) in momentum space, |Ψk1,k2(t)|2, is

given by ∣∣∣∣∣∑
i1,i2

fi1e
−iK1.xi1fi2e

−iK2.xi2e
−ic6t

|xi1−xi2|6

∣∣∣∣∣
2

, (6.4)

where Kj = kj − kj0 for j = 1 (j = 2) is the wave vector of the first (second) collective

excitation relative to its central mode. When the collective excitations are far separated

compared to their width, the interaction can be expanded to the second order in the relative
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Figure 6.2: (Color online) Two-excitation wave function in momentum space. Numerical
evaluation of |ψk1q,k2q |

2, for the momentum components k1q and k2q which are parallel to
the separation between the collective excitations. (a) Before the interaction the two-exci-
tation wave function is a product of two individual Gaussian distributions. (b) After the
interaction the center of the distribution is displaced and its cross section becomes ellip-
tic. The momentum displacement is created by the linear term of the interaction when
expanded in terms of relative distance, see Eq. (6.5). The elliptic shape is caused by the
quadratic term in Eq. (6.5) and represents unwanted entanglement between the two ex-
citations. (c) The displacement in momentum space can be compensated by a swapping
protocol, see Fig. 6.3 and below.

distance,

1

|xi1 − xi2|6
=

1

|∆x0|6
− 6(X i1 −X i2).∆x0

|∆x0|8
(6.5)

−3 |X i1 −X i2|2

|∆x0|8
+

24(∆x0.(X i1 −X i2))2

|∆x0|10
+O(3),

where ∆x0 = x10 − x20 is the distance between the center of the two Gaussian collective

excitations andX i1 = xi1−x10 indicates the relative position of an excited atom with respect

to the center of its distribution. The first (zeroth-order) term in the expansion is uniform, i.e.

it only depends on the distance between the centers of the two collective excitations, whereas

the higher-order terms will give non-uniform contributions to the phase, i.e. contributions

that depend on the distance between individual points.

The interaction can be separated into terms that are parallel and perpendicular with

respect to the separation between the collective excitations ∆x0, corresponding to the coor-

dinates (x̂q, x̂⊥) etc. One can correspondingly rewrite Eq. (6.4) in parallel and perpendicular
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dimensions, resulting in

|ψk1q,k2q |
2 ∝ e

−w2
q

2(1+4S2
q )

[(K1q−kD)2+(K2q+kD)2+2S2
q (K1q+K2q)

2]

|ψk1⊥,k2⊥|
2 ∝ e

−w2
⊥

2(1+4S2
⊥)

[K2
1⊥+K2

2⊥+2S2
⊥(K1⊥+K2⊥)2]

, (6.6)

where 2wq (2w⊥) is the spatial width of the collective excitation in the parallel (perpendicular)

dimension. The momentum displacement kD = 6c6t
|∆x0|8 ∆x0 is derived from the first order

of the interaction expansion. The second order terms in the parallel and perpendicular

dimensions give the coefficients Sq =
21w2

q c6t

|∆x0|8 and S⊥ =
3w2
⊥c6t

|∆x0|8 respectively.

We numerically evaluate Eq. (6.4) and show the results in Fig. 6.2(a,b) for the parallel

dimension (see Fig. 6.5 for the perpendicular dimension). These calculations are for the

case where two co-propagating photons in the interacting rails are stored with a separation

of 21µm in an ensemble of 87Rb atoms in a MOT with a density of ρ = 4 × 1012 cm−3.

Both collective excitations have the same spatial width 2wq(2w⊥) = 3 µm (8 µm), but they

are excited to different Rydberg levels |103S1/2〉 and |102S1/2〉 using local control fields

[187]. Different principal numbers are considered for the two excitations in order to create a

stronger interaction [188, 189]. The interaction time is 0.2 µs.

6.3.1 Momentum Displacement

The numerical results correspond well to the expectations based on the approximate analytic

treatment above. Fig. 6.2(b) clearly shows the expected displacement in momentum space,

where the momentum shift kD gained by the two collective excitations (in opposite direction

and parallel to the separation) can be understood as being due to the action of the Rydberg

force FRyd = −∇Uint over the interaction time. In practice, this will result in retrieval of

the photons in directions that deviate from the naively expected phase matching direction,

see also Sec. 6.8. This “frozen collision” is a remarkable effect in the sense that the change

of momentum due to the interaction only becomes apparent once the photons are read out.

Based on the geometry of the valence orbital of excited atoms (which determines the sign of
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c6), the collision can be either attractive or repulsive [190, 191].

6.3.2 Unwanted Entanglement

Fig. 6.2(b) also shows the effect of the second-order term. which creates unwanted en-

tanglement between |1〉C and |1〉T (as well as spreading in momentum space). The cross

terms in the exponents in Eq. (4) create correlations between the two collective excitations.

Correspondingly the circular cross section of the profile of the probability distribution in

momentum space becomes a 45o rotated ellipse, see also Fig. 6.5(b). These cross terms are

proportional to

e2
q =

4S2
q

1 + 4S2
q

(6.7)

e2
⊥ =

4S2
⊥

1 + 4S2
⊥
,

where eq and e⊥ are the eccentricities of the elliptic cross sections in the parallel and per-

pendicular dimension respectively.

6.4 Gate Performance

We analyze the expected gate performance using the concepts of (conditional) fidelity and

efficiency. Analogous concepts are commonly used in the context of quantum storage [192].

The conditional fidelity quantifies the performance of the gate, conditioned on successful

retrieval of both photons. The effects of photon loss are discussed in terms of efficiency

below. Following the treatment in [185], the conditional fidelity of a gate operating on the

initial state

|φ〉 =
1

2
(|0C〉+ |1C〉) (|0T 〉+ |1T 〉) (6.8)

can be quantified as

F =
√
〈φ′| ρ |φ′〉. (6.9)
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This definition characterizes the gate’s outcome ρ, relative to the ideal output

|φ′〉 = (|00〉+ |01〉+ |10〉 − |11〉)/2. (6.10)

Since the many-body interaction only affects the interacting pair, the fidelity can be rewritten

as

F =

√
(9− 3(ζ + ζ∗) + |ζ|2)/16 (6.11)

where

ζ = 〈Ψt0| e−iĤintt |Ψt0〉 (6.12)

with |Ψt0〉 as given in Eq. (6.2) and Ĥint as defined above. It is clear from Fig. 6.2(b) that

the momentum displacement and the entanglement-related profile deformation will affect

the value of ζ and hence of F . Controlling these effects is essential for achieving high gate

fidelity.

6.4.1 Swapping Protocol (Compensating the Momentum Displacement)

We propose a swapping protocol to compensate the destructive effects of the momentum

displacement, see Fig. 6.3. The distance-dependent nature of the interaction, and in partic-

ular the first-order term in Eq. (6.5), creates a spatial phase gradient along the dimension

parallel to ∆x0. Swapping the relative position of the collective excitations after half the in-

teraction time corresponds to switching the sign of ∆x0, which leads to a cancellation of this

unwanted gradient after the total interaction time. More details about the swapping protocol

can be found in Figure 6.3 and 6.8. The compensation of the momentum displacement after

swapping can be seen in Fig. 6.2(c), which is based on an exact numerical calculation, and

its beneficial effect on the gate fidelity in Fig. 6.3(d). The swapping protocol is relatively

robust to positioning errors. In an example where the collective excitations are separated

by 21 µm, an averaged Gaussian error of 1 µm in the parallel dimension reduces the average

fidelity by 1%, as illustrated in figure 6.6. Errors in the perpendicular dimension are much

less critical (see figure 6.6).
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Figure 6.3: (Color online) Swapping protocol to compensate the momentum displacement
shown in Fig. SiKy(b) and resulting gate performance. (a) Photons in the interacting rails
(1C , 1T ) are stored as collective excitations and excited to the Rydberg levels |r〉 as de-
scribed in Fig. 6.1. They are brought back to the spin state |s〉 after half of the interaction
time ( t

2
). (b) Tilted control fields swap the relative positions of the two collective excita-

tions using non-Rydberg EIT (See circle #1-Fig. 6.1). Note that during the swapping the
collective excitations propagate along the direction of the tilted control fields, see Sec. 6.9.
(c) The collective excitations are re-excited to the Rydberg levels, interact for t

2
, and are

de-excited again. The photons are retrieved using non Rydberg EIT. A more detailed de-
scription of the swapping protocol including a timing diagram is illustrated in figure 6.8.
(d) Gate fidelity as a function of the separation between the collective excitations. Solid
and hollow circles are with and without the swapping protocol respectively. The spatial
shape of the collective excitations is the same as in Fig. 6.2. (e) Gate efficiency (circles)
and interaction time required for creating a π phase shift (squares) as a function of the
separation. The efficiency does not include photon storage and retrieval, see text. One
sees that increasing the separation yields higher fidelity, but lower efficiency, because the
weaker interaction for greater separations requires longer interaction times and hence more
loss due to thermal motion and the finite lifetime of the Rydberg states. Using the swap-
ping protocol, both high fidelity and high efficiency can be achieved.
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6.4.2 Sources of Decoherence

It is important to also consider photon loss. Photon loss that is uniform over the four rails

has no effect on the conditional fidelity as defined above. It can therefore be discussed

independently in terms of the efficiency η, which is the probability of retrieving each photon

after the gate operation. Non-uniform loss terms in our scheme can be made uniform by

adding external sources of loss to certain rails, see section 6.10.3. Three important sources

of loss are atomic thermal motion (see Sec. 6.10.1), the finite lifetime of the Rydberg levels

(200 µs [194]), and the loss due to decay from the intermediate state during the two-photon

excitation to the Rydberg states, see Sec. 6.10.2. Their effects on the efficiency are shown in

Fig. 6.3(e) for different interaction times in an ensemble cooled to T=150 µK. The efficiency

can be improved by additional cooling using optical molasses. Considering the separation

of interacting rails, there is a trade-off between fidelity and efficiency. A small separation

improves the efficiency by reducing the interaction time (see Fig. 6.3(e)), but the resulting

stronger interaction causes more entanglement and momentum displacement, which reduces

the fidelity (see Fig. 6.3(d)). The swapping protocol makes it possible to achieve high

fidelity and high efficiency simultaneously. Taking both efficiency and fidelity into account,

the optimum separation for our example can be seen to be around 21 µm.

6.4.3 Storage inefficiency

Another significant source of inefficiency comes from the process of storage and retrieval of

single photons. A conservative estimate of the associated efficiency for the whole protocol

(including the swapping) can be obtained by applying the photon’s storage and retrieval

efficiency twice [195]. This corresponds to the use of two separate MOTs for storing photons

before and after swapping. Based on this estimate the overall efficiency for a density of

ρ = 4 × 1012 cm−3 (corresponding to an optical depth d ≈ 100) is about 70%. In practice

using a single MOT is likely to both be more practical and lead to higher efficiency than
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these estimates because in this case the stationary excitations only have to be converted into

moving excitations (but not all the way into photons) at the intermediate stage. Increasing

the density to ρ = 3.8 × 1013 cm−3 (d ≈ 750) (which is achievable in a BEC) improves the

efficiency of repeated storage and retrieval to 95%.

6.4.4 Controling the Unwanted Entanglement

We have shown how to compensate the effect of momentum displacement on the fidelity.

The other destructive effect of the interaction that reduces the fidelity is the creation of

unwanted entanglement between the collective excitations. Entanglement reduces the fidelity

by deforming the two-excitation wave function in momentum space, see Fig. 6.2(b) (see also

figure 6.5(b)). Comparing the eccentricities of the ellipses in parallel and perpendicular

direction obtained from Eq. (6.6),

e2
q

e2
⊥
v

49w4
q

w4
⊥
, (6.13)

one sees that the deformation is much stronger for the parallel dimension. Therefore, com-

pression of the collective excitations parallel to their separation can reduce the unwanted

entanglement while leaving room for extra atoms in the perpendicular dimensions in order

to preserve the directionality of the collective emission [196, 197]. The highly non-isotropic

effects of profile compression on the fidelity are shown in Fig. 6.4(a). The achievable width

compression is mainly limited by diffraction. In order to show the relation between fidelity

and entanglement even more clearly we calculate the Von Neumann entropy of the output

state. Fig. 6.4(b) shows that after compensating the momentum displacement, entanglement

remains as the only significant source of infidelity [198].

6.5 Conclusion and Outlook

In conclusion, we have proposed a photon-photon gate protocol that uses stationary collective

Rydberg excitations, but does not rely on photon blockade. We have shown that unwanted
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Figure 6.4: (Color online) Effects of unwanted entanglement on gate fidelity. (a) The fi-
delity has a non-isotropic dependence on the width of the collective excitations. Here the
collective excitations are separated by 21 µm and their spatial profile has the same initial
width of 8 µm in all directions. Compressing the width parallel to the separation (wq) has
a significant impact on the fidelity (circles). In contrast, compressing the width perpen-
dicular to the separation (w⊥) has a negligible effect (triangles). (b) The fidelity reduction
1 − F is proportional to the entanglement, quantified by the Von Neumann entropy. Here
the momentum displacement is compensated by the swapping protocol of Fig. 6.3, leaving
the unwanted entanglement as the main source of infidelity.

effects due to the distance-dependence of the interaction are important but can be overcome,

making it realistic to achieve a gate operation with high fidelity and efficiency. These effects

may also be useful for the implementation of photonic transistors using Rydberg states [199].

6.6 Appendix A1: Effects of Interaction on the wave function in the per-

pendicular dimensions

Fig. 6.5 shows the numerical evaluation of |ψk1⊥,k2⊥|
2, the modulus squared of the two-

excitation wave function in the dimensions perpendicular to the separation. While the

second order of the interaction changes the Gaussian cross section from circular to elliptical

by entangling the two excitations, the first order does not have any effect in this dimension.
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Figure 6.5: Numerical results for |ψk1⊥,k2⊥ |
2. There is no momentum displacement in this

dimension. The parameters are the same as in the main text.

6.7 Appendix A2: Sensitivity of Fidelity to positioning errors in Swapping

Fig. 6.6 shows that the swapping protocol is more sensitive to positioning errors for the

collective excitations in the parallel dimension than in the perpendicular dimension.

6.8 Appendix A3:“Frozen Collision”

Fig. 6.7 shows the redistribution of the momentum vectors of the collective excitations due

to the interaction. One sees that collective excitations that are created by the storage of

co-propagating photons will yield diverging photons upon retrieval.

6.9 Appendix A4: Swapping protocol

The detailed steps of the swapping protocol are shown in Fig. 6.8. The spatial propagation

of the collective excitations is done using non-Rydberg EIT, for which the level structure is

explained in Fig. 6.1b-Circle 1. The interaction is turned on and off using π pulses (Fig. 6.1b-

Circle 2). The timing diagram in Fig. 6.8f represents the order of pulses required for the

gate operation. During the swapping, phase matching ensures that the collective excitations

propagate along the direction of the tilted control fields. (The wave vector of the stored

collective excitations, which is given by the difference between the wave vector of the single
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Figure 6.6: Average fidelity reduction as a function of positioning error for the swapping
protocol in (a) parallel and (b) perpendicular dimension. The parameters are the same as
for Fig. 6.2.

photon and that of the control field used for storage, is much smaller than that of the tilted

control field.)

6.10 Appendix A5: Gate Efficiency

6.10.1 Thermal motion

The efficiency factor due to the thermal motion of the atoms (in the absence of all trapping

fields) is given by [200]

η
th

=
1

(1 + ( t
ξ
)2)2

exp[
−t2/τ 2

(1 + (t/ξ)2)
], (6.14)

where τ = Λ
2πv

is the dephasing time scale, which is determined by the wave length Λ of the

collective excitations and the thermal speed v, and ξ = w
v

is the time scale on which an atom

traverses the width w of a collective excitation.

For a two-photon excitation by counter-propagating laser beams at 780 and 480 nm, the

recoil speed is 0.35cm/s. This velocity is comparable to the atomic thermal velocity at BEC

temperature, but has negligible effect in a MOT. For completeness we have included this

effect in our calculation of the gate efficiency.
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Figure 6.7: Angular distribution of the momenta of two photons in the interacting rails
before (black for both) and after (red and blue) the gate operation. The parameters are
the same as for Fig. 6.2.

6.10.2 Loss Via the Intermediate State

The coherent excitation of the collective spin excitations to Rydberg states requires a two-

photon excitation using red (Ω1 : 5S → 5P ) and blue (Ω2 : 5P → 102S) control fields.

To avoid populating the short-lived intermediate 5P state (which has a lifetime τ=26 ns),

the control fields have to be detuned from that state by ∆. Using equal Rabi frequencies for

both transitions (Ω1 = Ω2) one can minimize both the excitation time and the loss from the

intermediate state [201]. The transition dipole moment in Ω2 is 1500 times weaker than in

Ω1, requiring a relatively strong blue laser. For a detuning ∆=5.5 GHz, and Ω1 = Ω2 = 1

GHz, an excitation time of texc=3 ns can be achieved, which results in a loss of only 0.29%.

For a control field waist of 11 µm, this value of Ω2 corresponds to a pulse energy of 1.2 µJ.

In Ref. [202] the authors used a dye amplifier laser with significantly higher energy per pulse

(55 µJ at 480 nm).
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Figure 6.8: Detailed steps of the swapping protocol and timing diagram. Photons in the
interacting rails (1C, 1T ) are stored in (a) and retrieved from (e) collective spin excita-
tions through non-Rydberg EIT. c) Tilted control fields swap the collective excitations
after half the interaction time across the direction of their separation using non-Rydberg
EIT. (b,d) Two consecutive π pulses excite and de-excite collective spin excitations to and
from the Rydberg level and let them interact for half of the interaction time before (b)
and after (d) swapping. (f) Timing diagram of all the pulses and operation steps for each
of the interacting rails.

6.10.3 Uniform Loss

Photon loss that is uniform over the four rails has no effect on the conditional fidelity and

can be quantified independently in terms of the efficiency. Since only the interacting rails

(|1C〉 , |1T 〉) are excited to Rydberg levels, they experience an extra loss due to the life time

of the Rydberg level. Furthermore, the shorter wavelength of the Rydberg excitations in

the interacting rails creates a stronger loss due to the atomic thermal motion compared

to the non-interacting rails. Finally, the extra process of storage and retrieval during the
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swapping of the interacting rails causes an extra loss of efficiency in these rails. The loss can

be made uniform by adding a controlled external source of loss on the non-interacting rails

(|0C〉 , |0T 〉), e.g. using crossed polarizers with an adjustable relative angle.
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Chapter 7

Large Energy Superpositions via Rydberg Dressing

7.1 Preface

This Chapter proposes a scheme to create superposition states of over 100 Strontium atoms

being in a ground state or metastable optical clock state, using the Kerr-type interaction due

to Rydberg state dressing in an optical lattice. The two components of the superposition can

differ by of order 300 eV in energy, allowing tests of energy decoherence models with greatly

improved sensitivity. We take into account the effects of higher-order nonlinearities, spatial

inhomogeneity of the interaction, decay from the Rydberg state, and diminishing Rydberg

level separation for increasing principal number.

This work has been published in collaboration with other co-authors. Other than the

effects of higher order non-linearities calculated by H. W. Lau the entire paper is the outcome

of my research. I also wrote the manuscript with guidance from Prof. Simon. In addition I

co-supervised an undergraduate student A. Humeniuk, who was helping at the early stage

of the project in understanding of Rydberg dressing.

7.2 Introduction

There are currently many efforts towards demonstrating fundamental quantum effects such

as superposition and entanglement in macroscopic systems [203, 204, 205, 206, 207, 208, 209,

210, 211, 212, 213, 214, 215, 216, 217, 218]. One relevant class of quantum states are so-

called cat states, i.e. superposition states involving two components that are very different

in some physical observable, such as position, phase or spin. Here we propose a method

for creating such large superpositions in energy. This is relevant in the context of testing
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proposed quantum-gravity related energy decoherence [219, 220, 221].

Our method relies on the uniform Kerr-type interaction that can be generated between

atoms by weak dressing with a Rydberg state [222, 144, 223]. This can be used to generate

cat states similarly to the optical proposal of Ref. [224]. Using an optical clock state

in Strontium as one of the two atomic basis states makes it possible to create large and

long-lived energy superposition states. The superposition can be verified by observing a

characteristic revival. We analyze the effects of relevant imperfections including higher-

order nonlinearities, spatial inhomogeneity of the interaction, decay from the Rydberg state,

atomic motion in the optical lattice, collective many-body decoherence triggered by black-

body induced transitions, molecular formation, and diminishing Rydberg level separation

for increasing principal number. Our scheme significantly improves the precision of energy

decoherence detection.

Previous related, but distinct, work includes Ref. [225] who briefly discussed the creation

of energy superposition states in Strontium Bose-Einstein condensates based on collisional

interactions. Ref. [226] proposed the creation of energy superposition states of light, and

ref. [227] reported the realization of 14-ion GHZ state, with 24 eV energy separation, but

without mentioning the energy superposition aspect. The present proposal promises much

greater sensitivity to energy decoherence thanks to a much longer lifetime (compared to Ref.

[226]) and to both increased size and longer lifetime (compared to Ref. [227]). Related work

involving Rydberg states includes Refs. [228, 229], who performed detailed studies of the

creation of moderate-size cat states using Rydberg blockade. The number of atoms is limited

to of order ten in these schemes due to competing requirements for the presence and absence

of blockade between different Rydberg transitions in the same ensemble. They also don’t use

metastable optical clock states, resulting in only small differences in energy between the two

components. Ref. [230] briefly discussed the creation of moderate-size (15 atoms) GHZ type

states in Strontium atom chains, without mentioning the energy superposition aspect. Ref.
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Figure 7.1: (Color online) Proposed scheme for creation of large energy superposition. (a)
Level scheme in Strontium. The pseudo-spin states are the singlet ground state |g〉 and
a long lived excited triplet state |e〉. An off-resonant laser field (Ωr) dresses the excited
state with the Rydberg level |r〉. This creates a Kerr-type interaction between the atoms
in the excited state. The resonant laser field (Ωe) is applied for population rotation. (b-d)
The evolution of the Husimi distribution of the collective spin state on the Bloch sphere.
Application of the Kerr-type interaction splits the initial coherent spin state (CSS) (b)
into a superposition of two CSS at opposite poles of the Bloch sphere (c). Applying a π/2
rotation along the x axis following the cat creation process results in a superposition of all
atoms being in the ground or excited state.
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[230] uses attractive Rydberg interactions, but not the uniform Kerr-type interaction used

in the present work. The number of atoms in Ref. [230] is limited by unwanted transitions

to other nearby many-body states [231].

The paper is organized as follows. We begin with a description of our scheme in Sec. 7.3.

In Sec. 7.4 and 7.5 we quantify the effects of the main imperfections and decoherence sources

on the fidelity of final cat state. In Sec. 7.6 we find an estimate for size of cat states that can

be realized with high fidelity. We then show that our scheme is experimentally realizable

in Sec. 7.7, followed by a detailed discussion in Sec. 7.8, demonstrating that the effects of

atomic motion, molecular formation, collective many-body decoherence, level mixing and

BBR radiation induced decoherence can be suppressed. We conclude the paper in Sec. 7.9

with a discussion of the application of energy superposition states for the detection of energy

decoherence.

7.3 Scheme

We now describe our proposal in more detail. In an ensemble of N ultra-cold Strontium

atoms trapped in a 3D optical lattice [232], one can consider a two-level system consisting

of the singlet ground state |g〉 and a long-lived excited triplet state |e〉, which are separated

in energy by 1.8 eV. An interaction between the atoms can be induced by dressing the clock

state with a strongly interacting Rydberg level [222, 144, 223] as shown in the level scheme

of Fig. 7.1. This induces a light shift (LS) on the atoms which depends on the Rydberg

blockade.

7.3.1 Kerr-type Rydberg Dressed Interaction

When the entire ensemble is inside the blockade radius, the dressing laser couples the state

with no Rydberg excitation |ψ1〉 = ⊗i |φi〉 (where φ ∈ {e, g}) to a state where only one of

the atoms in the |e〉 level gets excited to the Rydberg level |ψ2〉 =
∑

i |φ1...ri...φN〉 with an
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enhanced Rabi frequency
√
NeΩr [233](see Sec. 5.9), where Ne is the number of atoms in

the excited state. Over the Rydberg dressing process, the Hamiltonian can be diagonalized

instantaneously

D ≡ UHU † =

 E− 0

0 E+

 , (7.1)

where E± = ∆
2

(1±
√

1 + NeΩ2
r

∆2 ) and

U =

 cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

 (7.2)

with θ = tan−1(
√
NeΩr
∆

). The Schrödinger equation expressed in the dressed state basis

|ϕ >= U |ψ > is

i
∂

∂t

 |ϕ−〉
|ϕ+〉

 =

 E− −iθ̇/2

iθ̇/2 E+


 |ϕ−〉
|ϕ+〉

 . (7.3)

To avoid the scattering of population from the ground dressed state to the excited dressed

state, the coupling term θ̇ =
√
NeΩr∆̇−

√
Ne∆Ω̇r

NeΩ2
r+∆2 should be smaller than E+ (see realization

section 7.7 for examples).

Focusing on the ground dressed state, the effective light shift of the system is

E− =
∆

2
(1−

√
1 +

NeΩ2
r

∆2
). (7.4)

Within the weak dressing regime (
√
NeΩr
∆
� 1) one can Taylor expand the light shift to

E− =
∆

2
[1− (1 +

1

2

NeΩ
2
r

∆2
− 1

8

N2
eΩ4

r

∆4
+O(

NeΩ
2
r

∆2
)3)], (7.5)

which can be simplified to E− ≈ (N2
e − Ne

w2 )χ0

2
, with w = Ωr

2∆
and χ0 = 2w4∆. There-

fore adiabatic weak dressing of atoms to the Rydberg level imposes an effective Kerr-type

Hamiltonian

H = (N̂e
2
− N̂e

w2
)
χ0

2
(7.6)

on the atoms within the blockade radius. The effects of higher order terms in the Taylor

expansion are discussed in Sec. 7.4.1 and Fig. 7.2.
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7.3.2 Generation of Cat State on the Equator of the Bloch Sphere

The two levels |gi〉 and |ei〉 for each atom are equivalent to a spin 1/2 system with Pauli

matrices σ
(i)
x = (|gi〉〈ei| + |ei〉〈gi|)/2, σ

(i)
y = i(|gi〉〈ei| − |ei〉〈gi|)/2 and σ

(i)
z = (|ei〉〈ei| −

|gi〉〈gi|)/2 acting on the atom at site i. We define collective spin operators Sl =
∑N

i=1 σ
(i)
l .

A coherent spin state (CSS) is defined as a direct product of single spin states [234]

|θ, φ〉 = ⊗Ni=1[cos θ|g〉i + sin θeiφ|e〉i], (7.7)

where all the spins are pointing in the same direction, and φ and θ are the angles on the

(collective) Bloch sphere. The CSS can also be represented as [234]

|η〉 = |θ, φ〉 = (1 + |η|2)−N/2
N∑

Ne=0

ηNe
√
C(N,Ne)|N ;Ne〉, (7.8)

where η = tan(θ/2)e−iφ, C(N,Ne) ≡

 N

Ne

 and |N ;Ne〉 = 1√
C(N,Ne)

∑N
i1<i2<...<iNe

|g1...ei1...eiNe ...gN〉

is the Dicke state of Ne excited atoms, where |N ;Ne〉 is an alternative representation of the

|J M〉 basis with N = 2J and Ne = J +M .

Let us now discuss the time evolution of an initial CSS |η〉 under the Kerr-type interaction

of Eq. (7.6). The state evolves as

|ψ(t)〉 = (1 + |η|2)−N/2
N∑

Ne=0

ηNee−iHt
√
C(N,Ne)|N ;Ne〉. (7.9)

At the “cat creation” time τc = π
χ0

the linear term of Eq. 7.6 creates a phase rotation, which

changes the state to |η′〉 = |e−i
Neχ0
2w2 τcη〉. The quadratic term produces coefficients of (1) and

(−i) for even and odd Ne’s respectively. The state can then be rewritten as a superposition

of two CSS, namely

|ψ(τc)〉 =
1√
2

(ei
π
4 |η′〉+ e−i

π
4 | − η′〉) (7.10)

in analogy with Ref. [224]. Continuing the interaction for another τc, one can observe the

revival of the initial CSS. This revival can be used as proof for the successful creation of

a quantum superposition at τc, since a statistical mixture of CSS at τc would evolve into

another mixture of separate peaks [218, 235].
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7.3.3 Creating the Energy Cat

To create an energy superposition state we thus have to apply the following steps. Starting

from the collective ground state |g〉⊗N , we apply a π/2 pulse on the |e〉 − |g〉 transition

that results in the maximum eigenstate of the Sx operator |η = 1〉 = ( |e〉+|g〉√
2

)⊗N , as shown

in Fig. 7.1(b). Since the atoms are confined to the ground states of optical lattice traps,

the position-dependent phase factors associated with laser excitation of the clock state are

constant over the course of the experiment and can be absorbed into the definition of the

atomic basis states (detailed discussion can be found in Sec. 7.8.1). We now apply the Kerr-

type interaction. The large coefficient of the linear term in the Hamiltonian leads to a rotation

of the created cat state on the equator of Bloch sphere. Applying accurate interaction timing,

the state can be chosen to be a superposition of two CSS pointing to opposite directions along

the y axis on the Bloch sphere |ψ(τc)〉 = 1√
2
(ei

π
4 |η = i〉 + e−i

π
4 |η = −i〉), see Fig. 7.1(c) and

inset (a) of Fig. 7.2. For example, a timing precision of δτc = 2w2

5π
√
N
τc results in an adequate

phase uncertainty of δφ = 1
5
√
N

(examples can be found in the realization Sec. 7.7). Applying

another π
2

pulse on the created cat state results in |e〉
⊗N+|g〉⊗N√

2
, which is a superposition of all

the atoms being in the ground and excited states, as shown in Fig. 7.1(d). The created state

is a superposition of two components with very different energies. To verify the creation of

the energy cat state one needs to rotate the state back to the equator and detect the revival

of the initial CSS under the Kerr-type interaction, see also the inset of Fig. 7.2(b).

7.4 Imperfections

In this section we quantify the effects of the most important imperfections with direct impact

on the achievable cat size. Other sources of imperfections, which can be made to have

relatively benign effects on our scheme, are discussed in Sec. 7.8.
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7.4.1 Higher Order Non-linearities

First, we only considered the linear and quadratic terms in Ne in our Hamiltonian, which is

accurate for very weak dressing. Applying stronger dressing fields yields a stronger interac-

tion, but also increases the importance of higher order terms in Eq. (7.5). To quantify the

effects of these higher orders, we calculate the fidelity of the cat state (|ψ′(τc)〉) generated

based on Eq. (7.4) with respect to the closest ideal cat state,

Fnl = maxθ,φ,α,τc |〈ψ′(τc)|
1√
2

(|θ, φ〉+ eiα|π − θ, φ+ π〉)|2. (7.11)

Fig. 7.2 shows that the weak dressing parameter w = Ωr
2∆

has to be reduced for larger atom

numbers in order to achieve a desired fidelity.
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Figure 7.2: (Color online) Effect of higher than second order nonlinearities (from the
higher orders of Eq. 7.5) on the fidelity of the cat state. The weak dressing parameter
(w = Ωr

2∆
) has to be reduced for larger atom numbers N in order to keep a fixed fidelity

Fnl (Fnl = 0.7 (green), 0.8 (red), 0.9 (blue) from top to bottom). The inset shows the
Husimi Q function for an N = 100 cat state (a) with Fnl = 0.9 (corresponding to the black
cross in the main figure), as well as the corresponding revival (b). The approximate revival
of the initial CSS at the time t = 2τc proves the existence of a quantum superposition at
t = τc.
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7.4.2 Effects of Interaction Inhomogeneities

We also considered a uniform blockade over the entire medium, leading to a homogeneous

interaction. In practice the interaction is not perfectly homogeneous. As explained in sec-

tion 5.10, the interaction of the entire weakly dressed system can be found by applying the

fourth order perturbation theory as [236, 237]

Ĥ =
∑
i<j

χ(rij)σ̂
i
eeσ̂

j
ee −

Ω2

4∆
N̂e. (7.12)

The many-body interaction is the sum of binary interactions

χ(rij) = χ0
R6
b

r6
ij +R6

b

, (7.13)

whereRb = |C6

2∆
|1/6 is the blockade radius in the weak dressing regime. This binary interaction

has a plateau type nature, see Fig. 7.3(a). The inhomogeneity of the interaction introduces a

coupling to non-symmetric states, since the Hamiltonian no longer commutes with the total

spin operator ([S2, H] 6= 0). We evaluate the fidelity of a cat state created by the realistic non-

uniform interaction with respect to the ideal cat state. Writing the pair interactions χ(rij)

in terms of small fluctuations εij around a mean value χm, we decompose the Hamiltonian

into a sum of two commuting terms,

V̂H =
∑
i<j

χmσ̂
i
eeσ̂

j
ee −

Ω2

4∆
N̂e = χm(

N̂2
e − N̂e

2
)− χ0

2w2
N̂e ≈

χm
2
N̂2
e −

χ0

2w2
N̂e (7.14)

and

V̂IH =
∑
i<j

εijσ̂
i
eeσ̂

j
ee, (7.15)

corresponding to the homogeneous and inhomogeneous parts respectively. While the homo-

geneous part leads to an ideal cat state, the inhomogeneous part reduces the fidelity by a

factor

FIH = |〈η = 1|e−iV̂IHτc |η = 1〉|2, (7.16)

where |η = 1〉 = ( |e〉+|g〉√
2

)N is the initial CSS. Taylor expanding the inhomogeneous part of

the evolution operator one obtains an estimate for the fidelity as explained in Appendix
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Figure 7.3: (Color online) Effect of interaction inhomogeneity. (a) Plateau-type interac-
tion between each pair of atoms dressed to the Rydberg state. The interaction is uniform
for separations up to of order the blockade radius. (b) Infidelity caused by interaction in-
homogeneity as a function of cat size (N), for a constant blockade radius. Non-linear fi-
delity is set to Fnl = 0.9, the blockade radius Rb = 3.6µm is created by Rydberg dressing
to n = 80, and the atoms are considered to be in a cubic trap with space diagonal D and
lattice spacing of 200nm.

7.11. Fig. 7.3(b) shows the resulting infidelity as a function of cat size for constant blockade

radius.

7.5 Decoherence

The main source of decoherence in our system is depopulation of the Rydberg level which

also determines the lifetime of the dressed state (τẽ ≈ τrw
−2). In this section we identify

different Rydberg decay channels and discuss their effects on the fidelity of the cat state.

Loss due to collisions is reduced by the use of an optical lattice trap with a single atom

per site. Ref. [238] implemented a Strontium optical clock using a blue-detuned lattice

(trap laser wavelength 390 nm) with a collision-limited lifetime of 100s, demonstrating that

loss due to the trap laser can be made negligible. Other sources of decoherence including

blackbody radiation induced transitions, collective many-body decoherence and molecular

formation will be discussed in Sec. 7.8.
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7.5.1 Rydberg Decay Channels

The main source of decoherence in our system is depopulation of the Rydberg level which also

determines the lifetime of the dressed state (τẽ ≈ τrw
−2). The Rydberg state depopulation

rate can be calculated as the sum of spontaneous transition probabilities to the lower states

(given by Einstein A-coefficients) [146, 147, 148]

τ−1
r =

∑
f

Aif =
2e2

3ε0c3h

∑
Ef<Ei

ω3
if |〈i|~r|f〉|2, (7.17)

where ωif =
Ef−Ei

~ is the transition frequency and 〈i|~r|f〉 is the dipole matrix element

between initial and final states (see Appendix 7.12). The summation is only over the states

|f〉 with lower energies compared to the initial state. Using a cryogenic environment [239],

black-body radiation induced transitions are negligible, see Sec. 7.8.3 for detailed discussion.

Considering the dressing to 5sns 3S1 in our proposal, the possible destinations of dipole

transitions are limited to 3P0,1,2, due to the selection rules. Around 55% of the transferred

population will be trapped within the long-lived 3P2 states, which we refer to as qubit loss.

Around 35% of the population is transferred to 3P1 states, which mainly decay to the ground

state |g〉 = 5s2 1S0 within a short time (e.g. τ5s5p 3P1
= 23µs [240]), which we refer to as

de-excitation. The remaining 10% of the population is transferred to 3P0 states. Half of

this population (5% of the total) contributes to qubit loss, bringing the total loss to 60 %,

while the other half (also 5% of the total) is transferred to the excited state, which effectively

causes dephasing of |ẽ〉 because the photon that is emitted in the process contains which-path

information about the qubit state.

7.5.2 Effects of Rydberg Decoherence on the Cat State

The three decoherence types discussed in the previous sub-section have different effects on

the cat state. Loss and de-excitation completely destroy the cat state if they occur, while

dephasing is both unlikely and relatively benign. We now explain these statements in more

detail.
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The majority (60%) of the dressed state’s decay goes to non-qubit states

|ẽ〉 ⇒ δ|ẽ〉|0〉p +
√

1− δ2|l〉|1〉p, (7.18)

where δ2 = e−0.6γẽτc and |1〉p represents the emitted photon. In addition to loss, 35% of the

dressed state’s decay is de-excitation

|ẽ〉 ⇒ δ|ẽ〉|0〉p +
√

1− δ2|g〉|1〉p, (7.19)

where δ2 = e−0.35γẽτc .

Decay of a single dressed state atom transforms an atomic symmetric Dicke state |N ;Ne〉

into a combination of the original state |N ;Ne〉, a symmetric Dicke state |N ;Ne − 1〉 with

one fewer excitation, and N different other Dicke states (|N − 1;Ne − 1〉ĩ|l〉i) in which the

i-th atom is transferred to a non-qubit state (the qubit is lost), but which are still symmetric

Dicke states for the remaining atoms. The resulting state is

√
P0|N ;Ne〉|0〉P +

√
PdeNe|N ;Ne − 1〉|1〉P +

√
PlNe

N

N∑
i=1

|N − 1;Ne − 1〉ĩ|l〉i|1〉P (7.20)

where Pk = λke
−λk is the probability of losing/de-exciting (k = l/de) an atom over the cat

creation time, with λk = γ(k)
N
2
τc (note that Ne ∼ N

2
since the cat creation happens on the

equator of Bloch sphere) and P0 = 1 − Pl − Pde. Here we focus on the regime where the

probability of a single atom decaying is sufficiently small that the probability of two atoms

decaying can be ignored.

Tracing over the lost qubit and the photonic state one obtains the density matrix of

ρc = P0ρ0 +
Pl
N

N∑
i=1

ρil + Pdeρde, (7.21)

where ρ0 and ρde are in the symmetric subspace with total spin (J = N
2

), while the ρil are in

N different symmetric subspaces with total spin (J = N−1
2

). The ρ0 component corresponds

to the ideal cat state. All the other components have very small fidelity with ideal cat states,

primarily because the decay happens at a random point in time, which leads to dephasing.
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For example, de-excitation of an atom at (tde ∈ [0, τc]), leads to

|ψdec (tde)〉 = 2−N/2
N∑

Ne=1

√
C(N,Ne)e

−iE(Ne−1)(τc−tde)
√
Nee

−iE(Ne)tde |N ;Ne − 1〉, (7.22)

where E(Ne−1) represents the dressed state energy of (Ne − 1) excited atoms, see Eq. (7.6).

Inserting the expressions for ENe and ENe−1, one sees that de-excitation adds a linear term

(iNeχ0tde) to the phase. This creates a rotation around the z axis on the Bloch sphere.

The uncertainty in the time of decay tde therefore dephases the cat state, resulting in the

formation of a ring on the equator of the Bloch sphere, which has a small overlap with the

ideal cat state. The fidelity of the resulting density matrix compared to an ideal cat state in

the same subspace (which corresponds to the case where de-excitation happens at tde = 0)

can be written as

Fde =
1

τc

τc∫
0

|〈ψdec (tde)|ψdec (tde = 0)〉|2dtde. (7.23)

When the size of the cat state is increased from N = 10 to N = 160, the fidelity of the

generated cat in the de-excited subspace is reduced from Fde = 0.2 to Fde = 0.045, see

Fig. 7.4. The fidelity in each of the N subspaces where one atom was lost can be calculated

in a similar way, yielding equivalent results. The total fidelity in the presence of Rydberg

decoherence is then

Fdc = P0 + PlFl + PdeFde ≈ P0. (7.24)

About 5% of Rydberg decoherence will transfer back to the excited state, which acts as

dephasing (modeled by a Lindblad operator |ẽ〉〈ẽ|). The dephasing operator commutes with

the Hamiltonian for cat state creation. Its effect can therefore be studied by having it act

on the final cat state. For example, it can cause a sign flip of |e〉 for the first atom, resulting

in a state

(
|e〉+ i|g〉√

2
)(
|e〉 − i|g〉√

2
)⊗(N−1) + (

|e〉 − i|g〉√
2

)(
|e〉+ i|g〉√

2
)⊗(N−1). (7.25)

Applying the π/2 rotation results in a new energy cat

|g〉|e〉N−1 + |e〉|g〉N−1

√
2

, (7.26)
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Figure 7.4: Fidelity of the generated cat state in the de-excited subspace of density matrix
as a function of cat size, see Eq. 7.23. Uncertainty in the time of decoherence dephases the
cat state and results in the formation of a ring with small overlap with an ideal cat in the
same subspace.

which is clearly still a large superposition in energy. So the effect of dephasing errors is

relatively benign. Moreover, given the small relative rate of dephasing compared to loss and

de-excitation, the probability of having a sign flip over the cat creation time for the case

with decoherence fidelity of Fdc = 0.8 (considered in Fig. 7.5) will only be 1%.

In conclusion, the fidelity of the cat state is, to a good approximation, equal to the

probability of not losing or de-exciting any qubits over the cat creation time, Fdc = P0 =

e−0.95N
2
γẽτc .

7.6 Estimate of Realizable Cat Size

Taking into account the mentioned imperfections, Fig. 7.5 shows the achievable cat size as a

function of the principal number n. Up to n ∼ 80, the size increases with n. Higher n leads

to a stronger interaction, hence allowing weaker dressing, and to smaller loss, favoring the

creation of larger cats. However, for n ∼ 80 the diminishing spacing between neighboring

Rydberg levels (which scales like n−3) limits the detuning and hence the interaction strength,

since χ0 = 2w4∆ and w has to be kept small, see Fig. 7.2. As a consequence, larger cat
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states cannot be achieved at higher principal numbers.

Here we justify the behavior of Fig. 7.5 in a more detailed scaling argument. For a

constant fidelity the maximum achievable cat size N at each principal number n is limited

by Rydberg decay, Fdc = e−λ where λ = 0.95N
2
τcγẽ. Let us analyze how λ scales with N and

n. The Rydberg decay rate scales as γ|ẽ〉 ∝ w2n−3. In order to have a constant non-linearity

fidelity of Fnl = 0.8, the dressing strength w has to scale like N−0.84, see Fig. 7.2. The

cat creation time τc = π
χ0

∝ w−4∆−1 scales differently before and after the transition point

n ∼ 80. Before the transition point the scaling of ∆ can be obtained by noting that the trap

size is a fraction of the blockade radius, ∆ = C6

2R6
b
∝ n11

N2 , where the exact value of the fraction

coefficient is determined by FIH , see Fig. 7.3. Therefore we conclude that λ ∝ N4.7

n14 , which

states that before the transition point larger cat states are realizable by dressing to higher

principal numbers, N ∝ n3 for constant fidelity. However, after the transition point the

small level spacing imposes a limit on the detuning, ∆ ∝ n−3. Therefore after the transition

point λ ∝ N2.7, which is independent of n. This prevents the realization of larger cat states

at higher principal numbers.

One sees that superposition states of over 100 atoms are achievable with good fidelity.

In Fig. 4 the interaction inhomogeneity is tuned to create less than 1% infidelity. Dressing

to an S orbital is desired due to its isotropic interaction in the presence of trap fields. In

Fig. 7.5, after the transition point in n the detuning is chosen such that 90% of the Rydberg

component of the dressed state is 5sns 3S1. Note that without a cryogenic environment

the maximum achievable cat size in Fig. 7.5 would be reduced from 165 to 120 atoms, see

Sec. 7.8.3.

7.7 Experimental Realization

Experimental implementation of our scheme seems feasible. Rydberg excitations in Stron-

tium have been realized over a wide range up to n = 500 [241, 242, 243, 244]. Rydberg
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Figure 7.5: (Color online) Maximum achievable cat size as a function of the principal
number n of the Rydberg state. Rydberg state decay is adjusted to cause 20% infidelity.
The interaction inhomogeneity is set to create less than 1% infidelity, see Fig. 3, and the
higher-order nonlinearities are set to create 10% (red circle), 20% (purple plus) and 30%
(blue square) infidelity, see Fig. 2. The inset shows the required cat creation time as a
function of n for the case where the higher-order nonlinearities cause 10% infidelity.

dressing of two atoms has been used to create Bell-state entangled atoms [245]. Recently

Rydberg dressing of up to 200 atoms in an optical-lattice has been reported [246], where the

collective interaction was probed using interferometric techniques. Ref. [246] also identified

a collective many-body decay process, which is however not a limiting factor for our scheme,

as discussed in Sec. 7.8.4.

The Rydberg state 5sns 3S1 is accessible from the 5s5p 3P0 level with a 317nm laser field.

The required Rydberg transition Rabi frequency Ωr/2π (up to 15 MHz) can be obtained

with a tunable single-frequency solid state laser of Ref. [247]. The relatively large detuning

values (4MHz< ∆/2π < 340MHz in Fig. 4) make the interaction stable against Doppler

shifts.

Fulfilling the adiabaticity condition discussed in Sec. 7.3.1 is not difficult. In a highly

adiabatic example, θ̇
E+

= 0.01, the dressing laser can be switched from zero to Ωr
2π

= 15 MHz

over 18 ns (for ∆
2π

= 270 MHz and 165 atoms). For this example, 99.991% of the population
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returns to the ground state at the end of dressing, so adiabaticity is almost perfect. This

adiabatic switching time of 18 ns is many orders of magnitude shorter than the related cat

creation time of 1.4 ms. Adequate interaction timing precision is also required to align the

created cat on the equator of Bloch sphere as explained in Sec. 7.3.3. For the 165-atom cat

state mentioned above, a timing precision of order δτc = 2w2 δφ
χ0

= 4∆
5
√
NΩ2

r
≈ 7.5 ns is required

for a phase precision of order δφ = 1
5
√
N

= π/150.

The Husimi Q function can be reconstructed based on tomography, i.e. counting atomic

populations after appropriate rotations on the Bloch sphere. Modern fluorescence methods

can count atom numbers in the required range with single-atom accuracy [246, 248].

7.8 Other Sources of Imperfection

7.8.1 Effects of Atomic Motion in the Optical Lattice

Laser manipulation of the atomic state leads to phases that depend on the atomic position.

Atomic motion could therefore lead to decoherence. To suppress this effect, in the present

proposal the atoms are confined to the ground states of the optical lattice traps. As a conse-

quence, all position-dependent phase factors are constant over the course of the experiment

and can be absorbed into the definition of the excited states. We now explain these points in

more detail. Let us consider the jth atom, and let us assume that it is initially in the ground

state (zero-phonon state) of its optical lattice site. We will denote the corresponding state

|g〉j|0〉j. Applying the part of the Hamiltonian that is due to the laser to this state gives

(Ωe(t) e
ikx̂j |e〉j〈g|) |g〉j|0〉 = Ωe(t)|e〉jeikx̂j |0〉j. (7.27)

We can rewrite the position operator x̂j as the sum of the constant position of the jth site of

the trap (x0j) plus a relative position operator ξ̂j = s(â†j+âj), where s =
√

~
2mωtr

is the spread

of the ground state wave function, ωtr is the trap frequency and (âj, â
†
j) are the phononic

annihilation-creation operators of the jth atom. In the Lamb-Dicke regime (η = ks√
2
� 1)
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one can expand the exponential to get

eikx̂j = eikx0jeikξ̂j = eikx0j(l + iη(âj + â†j) +O(η2)). (7.28)

The phase factor eikx0j is constant over the course of the experiment and can be absorbed

into the definition of the atomic basis states by defining |e′〉j ≡ eikx0j |e〉j. The Hamiltonian

describing the laser excitation can now be written in the new basis |g, 0〉j, |e′, 0〉j, |e′, 1〉j as:


0 Ωe ηΩe

Ωe 0 0

ηΩe 0 ωtr



|g, 0〉j

|e′, 0〉j

|e′, 1〉j

 (7.29)

Starting from the spin and motional ground state |g, 0〉j, the probability of populating the

state |e′, 1〉j, corresponding to the creation of a phonon, will be negligible if Ωeη � ωtr. With

the parameters that we considered in our proposal (Ωe ∼ 1 kHz, η = 0.1, ωtr
2π
∼ 400 kHz)

[232] the population of |e′, 1〉j will be eight orders of magnitude smaller than the population

in the motional ground state.

7.8.2 Effects of High Density

The relatively small lattice spacing of order 200nm might raise concerns about molecule

formation and level mixing. At high atomic densities there is another potential loss channel,

Rydberg molecule formation [249]. Molecule formation only occurs when the attractive

potential due to Rydberg electron-neutral atom scattering moves the two binding atoms to

a very small separation (of order 2nm), where the binding energy of the molecules can ionize

the Rydberg electron and form a Sr2
+ molecule [250]. Without the mass transport, stepwise

decay or ionization of the Rydberg atom is ruled out by the quantization of Rydberg state,

as has been discussed and experimentally tested in [249], because even at high densities the

small molecular binding energy of nearby atoms is orders of magnitude smaller than the

closest Rydberg levels for all the principal numbers. The occurrence of ion pair formation is
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also highly unlikely in this system [250]. We propose that confining the atoms by an optical

lattice can prevent the described mass transport and completely close the molecule formation

loss channel. High atomic density can also lead to strong level mixing at short distances

[251, 252]. However, the experiment of Ref. [253] shows that the plateau-type interaction

can persist in the presence of strong level mixing because most molecular resonances are

only weakly coupled to the Rydberg excitation laser.

7.8.3 Effects of Blackbody Radiation

Blackbody radiation (BBR) could reduce the lifetime by transferring the Rydberg state

population to neighboring Rydberg levels (with both higher and lower principal numbers n)

as illustrated in Fig. 7.6a. The BBR-induced transition probability is given by the Einstein

B-coefficient [146, 147, 148]

ΓBBR =
∑
f

Bif =
∑
f

Aif

e
~ωif
kBT − 1

, (7.30)

where T is the environment temperature, kB is the Boltzmann constant and both ωif and

Aif are defined in Sec. 7.5.1.

At the environment temperatures of 300K, 95K [254] and 3K [255], including the BBR-

induced transitions increases the total decoherence rate Γẽ by 120%, 40% and 1% (see

Fig. 7.6b) for n ≈ 80, which results in maximum achievable cat sizes of 120, 150 and 165

atoms respectively (considering Fnl = 0.7, Fdc = 0.8). Note that cryogenic environments

with 95K and 1K were used in a Strontium lattice clock experiment [254] and in a cavity

QED experiment with Rydberg atoms [255] respectively.

BBR could also disturb the Ramsey-type interferometry used for detecting energy deco-

herence by producing an AC stark shift; this effect is quantified in section 7.9. Furthermore,

BBR-induced decoherence could be inhomogeneous due to temperature inhomogeneities in

the environment. This would introduce unwanted coupling to non-symmetric Dicke states in

the cat creation process. The use of a cryogenic environment significantly suppresses these
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effects as well.
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Figure 7.6: (Color online) Depopulation of Strontium Rydberg levels due to blackbody
radiation (BBR) induced transitions. a) BBR-induced transition rates (Einstein-B co-
efficients) from 5s80s 3S1 to the neighboring 5snp 3P2 (dark blue), 5snp 3P1 (light blue),
5snp 3P0 (blue) levels. The sum of these transition rates gives the total BBR-induced de-
population rate ΓBBR. The inset is a 20 times enlarged view. b) Rydberg depopulation
rates due to spontaneous decay (Γs shown in blue diamond) and BBR-induced transitions
(ΓBBR) at environment temperatures of 300K (red circle), 95K [254] (purple circle), and
3K [255] (green circle) as a function of the principal number. The use of a cryogenic envi-
ronment significantly suppresses the unwanted effects of BBR.

7.8.4 Effects of Collective Many-body Decoherence

BBR-induced transitions to neighboring Rydberg levels (see Fig. 7.6a) can also lead to col-

lective many-body decoherence [256, 246]. The interaction between the target nS Rydberg

level and some of the populated neighboring n′P levels is of a strong long-range dipole-

dipole type due to the formation of Förster resonances. This strong interaction causes an

anomalous broadening [256]. The mentioned decoherence process only starts after the first

BBR-induced transition occurs. However, the weak dressing strength and small ensemble

size (N < 200) in our scheme make the probability of populating the target Rydberg state

and consequently neighboring Rydberg levels very small. For example at the environment
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temperatures of 300K, 95K and 3K and for dressing to n ≈ 80, the probabilities of not popu-

lating the strongly interacting neighboring Rydberg levels over the cat creation time for cat

sizes of 120, 150 and 165 atoms respectively are PBBR(0) = exp(−N
2
w2ΓBBRτc) =98.63%,

99.26% and 99.96% respectively. It has been observed in the realization of many particle

Rydberg dressing [246] that when the transition probability is low enough (of the order of

PBBR(0) ≥ 82%, as can be calculated from the information provided in Ref. [246]) the many-

body decoherence effects are negligible and decoherence rate is dominated by the Rydberg

depopulation rate (see Sec. 7.5).

7.9 Testing Energy Decoherence

In the context of modifications of quantum physics, decoherence in the energy basis is quite

a natural possibility to consider [219, 220, 221]. It is usually introduced as an additional

term in the time evolution for the density matrix that is quadratic in the Hamiltonian

dρ

dt
=
i

~
[H, ρ]− σ

~2
[H, [H, ρ]], (7.31)

which leads to a decay of the off-diagonal terms of the density matrix in the energy basis

according to [220]

ρnm(t) = ρnm(0)e−iωnmte−γEt, (7.32)

where γE = σω2
nm. Here ωnm is related to the energy difference of the two componants and

σ can be interpreted as a timescale on which time is effectively discretized, e.g. related to

quantum gravity effects. It is of interest to establish experimental bounds on the size of σ,

which could in principle be as small as the Planck time (10−43 s).

The corresponding decoherence rate for the energy cat in this proposal would be

γE = σ(
N∆E

~
)2, (7.33)

where ∆E is the energy difference between the ground and excited state of each qubit, and N

is the cat size. To detect the energy decoherence one prepares the energy cat state, followed
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by a waiting period. To observe the decoherence effect, one detects the Ramsey fringes for

the revival. The visibility of the Ramsey interference is also sensitive to other decoherence

sources, where in the absence of dressing laser the dominant ones are the trap loss rate Γ,

which reduces the visibility by a factor exp(−NΓt), and phase diffusion that is explained

below.

The large energy difference of the cat state increases the sensitivity of the Ramsey interfer-

ometry that we are using for the detection of energy decoherence. Therefore, it is important

to consider the effect of fluctuations in the detuning between the laser and the atomic tran-

sition. Let us first note that the cat state is more sensitive to multi-particle (correlated)

than to single-particle (uncorrelated) noise, which results in a phase diffusion affecting the

visibility of Ramsey fringes by e−N
2δ2
c t

2
and e−Nδ

2
uct

2
respectively [257]. Comparing the two

cases, correlated fluctuations should be
√
N times more stabilized than uncorrelated fluc-

tuations. The most important source of noise in our system is the fluctuation of the laser

frequency. A probe laser linewidth as narrow as 26 mHz [258] has been achieved in optical

atomic clock experiments, and there are proposals for much smaller linewidths [259, 260]

with recent experimental progress [261], justifying our example of a 10mHz linewidth, see

below.

Other sources of multi-particle and single-particle noise have been well studied in the

context of Strontium atomic clocks [262, 263] and are comparatively negligible. Here we

address a few of them in our scheme. One of the noise sources is the trap fields intensity

fluctuation; however, using the magic wavelength makes the atomic transition frequency

independent of the trap laser intensity. Considering the variation of the Stark shifts due to

the trap laser as a function of frequency at the magic wavelength [264], the relative scalar

light shifts could be kept within 0.1mHz uncertainty by applying a trap laser with a 1MHz

linewidth. In addition to the scalar light shift, the inhomogeneous polarization of trap fields

in 3D optical lattices can result in an inhomogeneous tensor light shift [265]; however, the
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use of the bosonic isotope 88Sr with zero magnetic moment cancels the tensor light shift [266]

in our scheme. Environmental temperature fluctuations (δT ) also lead to atomic frequency

fluctuations that are proportional to T 3δT due to the BBR-induced light shift [262]. This is

another reason why a cryogenic environment is advantageous. For example controlling the

environment temperature of 95K [254] to within a range of δT = 1K keeps the BBR-induced

noise shift below 1 mHz.

A conservative estimate of the experimentally measurable energy decoherence rate can

be obtained by considering the case where the energy decoherence dominates all other de-

coherence sources during the waiting period. Increasing the cat size N is helpful because it

allows one to enhance the relative size of the energy decoherence contribution. For example,

choosing t ∝ N−1 keeps the loss and phase diffusion contributions fixed, while the energy

decoherence still increases proportionally to N . Using a cat state with N = 165 atoms (see

Fig. 4), which corresponds to N∆E = 300 eV, assuming a laser linewidth of 10 mHz (see

above), and considering a trap loss rate of Γ = 10 mHz [249], the minimum detectable dis-

cretization time scale σ is of order 10−34 s. This would improve the measurement precision

by 4 and 11 orders of magnitude compared to what is possible based on Ref. [227] and Ref.

[226] respectively.

7.10 Conclusion

This chapter was a step towards the generation of macroscopic quantum states. The pre-

sented scheme results in the superposition states of over 100 Strontium atoms in the optical

lattice being in a ground state or metastable optical clock state. This large GHZ state is

created under the Kerr type interaction that can be realized via the adiabatic weak Ryd-

berg dressing of atoms. The process under which the Kerr-type interaction splits the initial

coherent spin state to form a cat state is analyzed and the effects of imperfections are stud-

ied. These imperfections include the inhomogeneity of the Kerr type interaction, higher

98



order nonlinearities and the level of atomic confinement to the trap. In addition different

decoherence sources include de-excitation, dephasing and loss of spins, blackbody radiation

induced Rydberg depopulation, molecular formation and also collective many-body deco-

herences were studied. Considering all the imperfections we showed that cat states of the

order of 100 atoms are realizable with current technologies. The two components of the

superposition can differ by of order 300 eV in energy, allowing tests of energy decoherence

models. The large energy difference of the two components makes the interferometry sensi-

tive to the correlated as well as uncorrelated noises. The corresponding phase diffusion terms

were taken into account to find the precision of the energy decoherence measurement. The

presented scheme improves the precision by several orders comparing to previous proposals.

7.11 Appendix 1. Effects of Interaction Inhomogeneity

Here we explain the steps in calculating the effects of inhomogeneous interaction on the cat

state’s fidelity

FIH = |〈η = 1|e−iV̂IHτc |η = 1〉|2 (7.34)

(see Sec. 7.4.2). Taylor expanding e−iV̂IHτc and considering the expectation values

〈η = 1|σ̂iee|η = 1〉 = 1/2 (7.35)

〈η = 1|σ̂ieeσ̂jee|η = 1〉 =
1

4
+
δij
4
,

one obtains an estimate for the fidelity. The first order of the expansion is zero because we

defined εij as fluctuations around a mean value. The second order can be calculated using

〈η = 1|V̂ 2
IH |η = 1〉 =

1

2

∑
i 6=j

1

2

∑
l 6=m

Cijlmεijεlm, (7.36)

where Cijlm = 1/16 if all the indices are unequal, Cijlm = 1/8 if there is a pair of equal indices,

and Cijlm = 1/4 when there are two pairs of equal indices. The convergence of the expansion

for the fidelity can be tested numerically. In Fig. 3b of the paper the ratio of the third order
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to the second order of the expansion for FIH is O(3)
O(2)

= 10−6, 5× 10−5, 8× 10−4, 8× 10−3 for

D
Rb

= 0.1, 0.2, 0.3, 0.4 respectively, suggesting good convergence in this regime.

7.12 Appendix 2. Dipole Matrix Elements

In Strontium one needs to consider both valence electrons (|i〉 = |n1in2il1il2iLiSiJiMi〉) in

the calculation of the dipole matrix elements [148]

|〈i|~r|f〉|2 = max(l2i, l2f ) (2Lf + 1)(2Jf + 1)(2Li + 1) Jf 1 Ji

Li S Lf


2 Lf 1 Li

l2i l1i l2f


2

|〈n2il2i|r|n2f l2f〉|2,
(7.37)

where L and S are the total orbital angular momentum and spin, l and s refer to individual

electrons, and J and M refer to total angular momentum. The active electron in the transi-

tion is labeled by 2, and 〈n2il2i|r|n2f l2f〉 is the radial dipole matrix element between initial

and final state, and the curly bracket is a Wigner-6j symbol.
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Chapter 8

Conclusion and Outlook

8.1 Conclusion

Advances in the field of atomic physics have paved the way towards the implementation of

quantum information and also provided an ideal platform for fundamental tests of quantum

physics. The present thesis contributes to the field of photonic quantum information by

proposing schemes for the realization of two essential elements, namely quantum memory and

photon-photon gates. In addition a proposal for the production of large energy superpositions

with application to the test of energy decoherence models is presented.

In summary, chapter 4 proposed and analyzed a quantum memory protocol based on

sweeping the resonance frequency of two-level atoms. The provided polaritonic model ex-

plained the propagation dynamics and coherent storage of the pulse in the medium. Also

the requirements for efficient storage of light with high fidelity were discussed. We explained

the criteria for resonant excitation of only one of the polaritons, closing the scattering chan-

nels between polaritons, and the requirement to preserve the shape of the polariton. While

the two level polariton model presented here has similarities with the polaritons in elec-

tromagnetically induced transparency (EIT), the atomic frequency sweep (AFS) memory

replicates the results of gradient echo memories (GEM) for short pulses in the excitation’s

moving frame. Therefore AFS could be seen as a bridge between coherent control and echo

memories.

In the followed two projects the required interaction for making gates and creating many-

body entangled states was obtained from exciting atoms to high principal numbers, i. e.

Rydberg states. Rydberg atoms have remarkable properties such as strong long range inter-

action and long radiative lifetime as discussed in chapter 5.
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Chapter 6 was a proposal for two-qubit photonic gate based on Rydberg interaction

(instead of Rydberg Blockade) in an atomic ensemble. Several decoherence sources was

recognized as summarized below. The first destructive effect is the fact that Rydberg in-

teraction during EIT propagation causes loss and profile distortion. The proposed solution

is based on separating interaction from propagation by storing single photons into excited

atoms through non-Rydberg EIT and subsequently exciting non-Rydberg atoms to the Ry-

dberg level using pi pulses. The second destructive effect comes from the inhomogeneity

of interaction over the profiles of the two stored photons. This leads to a displacement of

the collective excitations in momentum space and to entanglement between their quantum

states. These effects a priori reduce the photon-photon gate fidelity. However, it is possible

to completely compensate the first effect by swapping the collective excitations in the middle

of the interaction time, and to greatly alleviate the second effect by optimizing the shape

and separation of the excitations. Finally different sources of decoherence namely storage

efficiency, atomic thermal motion and spontaneous emission from the Rydberg level and also

the intermediate level during two photon excitations were discussed. Chapter 6 concluded

that the mentioned imperfection sources are destructive but can be overcome with the pro-

vided solutions, making it realistic to achieve a gate operation with both high fidelity and

efficiency.

Finally, chapter 7 was a step towards the generation of macroscopic quantum states.

The presented scheme results in the superposition states of over 100 Strontium atoms in the

optical lattice being in a ground state or metastable optical clock state. This large GHZ

state is created under the Kerr type interaction that can be realized via the adiabatic weak

Rydberg dressing of atoms. The process under which the Kerr-type interaction splits the

initial coherent spin state to form a cat state is analyzed and the effects of imperfections are

studied. These imperfections include the inhomogeneity of the Kerr type interaction, higher

order nonlinearities and the level of atomic confinement to the trap. Due to the fragility
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of the cat states a detailed study of different decoherence sources are provided. These de-

coherence sources include de-excitation, dephasing and loss of spins due to the Rydberg

spontaneous emission, blackbody radiation induced Rydberg depopulation, molecular for-

mation and also collective many-body decoherences. Considering all the imperfections we

showed that cat states of the order of 100 atoms are realizable with current technologies. The

two components of the superposition can differ by of order 300 eV in energy, allowing tests

of energy decoherence models. The large energy difference of the two components makes the

interferometry sensitive to the correlated as well as uncorrelated noises. The corresponding

phase diffusion terms were taken into account to find the precision of the energy decoherence

measurement. The presented scheme improves the precision by several orders comparing to

previous proposals.

8.2 Future Perspectives

The discussed results have generated new questions and ideas that call for further investi-

gation. Below, a few specific ideas are outlined, which might lead to promising avenues of

research.

Spatial polariton model for GEM: Following the presented polariton model in chapter 4,

it is interesting to explain the storage process of the gradient echo memory (GEM) through

the presented spatial polariton model, where previous work has introduced gradient echo

memory polaritons in momentum space [113].

Rydberg physics in high-density ensembles: High atomic density is desired for the Ryd-

berg physics projects since this improves the atom photon coupling and also the interaction

strength. However there are certain concerns that should be studied in more detail, namely

level mixing, molecular formation and collective many-body decoherence. While we have

taken some initial steps in chapter 7, a detailed comprehensive study and proven solutions

to overcome these problems are required.
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Hot vapor Rydberg quantum non-demolition measurement: Detecting the presence of

single photons without disturbing their encoded information is very desirable for quantum

information processing applications. Strong Rydberg interaction seems like a promising

candidate for a fast non-demolition detection in hot atomic vapors, either through Rydberg

interaction or blockade. The use of hot vapors rather than laser-cooled atoms would be

advantageous from the perspective of practical implementation.

Photonic switch: Single photon switches have been realized based on Rydberg Blockade

[267]. However the dissipative nature of those schemes makes them inappropriate for quan-

tum applications. The studies of chapter 6 suggest non-dissipative interaction based schemes

for a single photon switch with applications in entanglement generation.

Mechanical cat states: Following the results of chapter 7 it is interesting to map the

created cat state to the mechanical oscillator. This transfer can be envisioned through

dipole-dipole coupling between Rydberg atoms and a charged mechanical resonator.

Generating quantum phases: The Rydberg dressing potential has been applied for en-

tangling qubits [245] and has been suggested for the realization of three dimensional solitons

[268] and of squeezing[126], as well as for making quantum phases like spin ice [269], super

solid [124, 270], super glass [271] and Luttinger liquid [272]. It is interesting to look for other

quantum phases that can be generated under this interaction.

In general considering the previous successes of ultracold Rydberg physics in the field of

quantum information, the next step is to learn from ultracold experiments and apply them in

simpler and more compact Rydberg systems that are experimentally less demanding. These

systems could be hot vapor atoms or semiconductors. The recent successes and the great

interest in research on Rydberg states suggest a promising future for this field.
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Phys. Rev. Lett. 107, 243001 (2011).
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