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Abstract

Quantum parameter estimation is the scientific study that involves the use of quantum

measurements for estimating an unknown parameter. Quantum-enhanced adaptive phase

estimation is a well-studied example where the goal is to estimate the unknown phase such

that the phase imprecision scales better than the standard quantum limit. Geometrically

speaking, phase estimation is a U(1) estimation problem where the objective is to make a

highly precise estimate of the rotation of the initial state about the ordinate in the state

space. This measurement technique has been shown to give better precision than the same

measurement done classically.

Whereas other studies focus on phase estimation, we forge a new path that involves the

variable beam-splitter reflectivity estimation. Our work proposes using quantum resources

to solve the estimation problem. Here the phase is kept constant and the beam-splitter

reflectivities are varied. We aim to achieve quantum-enhanced precision in the case of variable

beam-splitter reflectivity estimation utilizing an evolutionary algorithm.

In this thesis, we show that variable beam-splitter reflectivity estimation is also a U(1)

rotation problem involving a different U(1) subgroup. Geometrically speaking, the goal of

the research work is to estimate the angle between the abscissa and the unknown axis in the

equatorial plane the initial state is rotated about. We devise an optimization algorithm that

designs a policy that estimates the unknown beam-splitter reflectivity whose imprecision

scales better than the standard quantum limit with respect to the photon number. We em-

ploy the differential evolutionary algorithm, inspired by genetic evolution, for policy search.

Differential evolution is an optimization algorithm that performs feasibility variant of the

non-convex optimization and finds optimal policies for quantum-enhanced precision. In our

work, we propose injecting an N -photon permutationally symmetric input state known as

the sine state, where N ∈ {4, 100}. We do not include photon loss and noise in our model.

Our work sets the stage for two-parameter and multi-parameter quantum-enhanced esti-

mation schemes.
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Ĵ Rotation operator
f Function
C Set
ς Scaling
µ Moment
M Moment generating function
K Cumulant generating function
κ Cumulant
γ Pearson’s moment coefficient of skewness
σ Standard deviation
ε Interferometer mode
djm,m′ Wigner d-function

B̂ Beam-splitter operator

P̂ Phase-shifter operator
σ̂ Pauli operator
v Number of data points
y′ Predicted data point
δy Error in y
Np Population size in DE
Cr Crossover rate in DE
F Mutation factor in DE
Y Candidate solution in DE
Y Candidate solution vector in DE
V Offspring in DE
V Offspring vector in DE
α Policy space parameter
τpol Time cost for generating the policy
τimp Time cost for implementing the policy
Ωfit Time cost for executing fitness function
Ωoff Time cost for generating an offspring

x



Chapter 1

Introduction

In this chapter, we present the necessary background, aim and motivation and our approach.

The structure of the thesis is included at the end of the chapter to guide the reader.

1.1 Background

We begin by surveying the field of quantum technology and by explaining the importance of

quantum control as a tool for enabling quantum-enhanced metrology. We cite gravitational

wave detectors and atomic clocks as two well-studied applications.

Quantum technology combines quantum physics and engineering in order to produce vi-

able and scalable practical applications [20]. The field utilizes principles, techniques and

tools in quantum physics and quantum information science to create applications such as

quantum metrology [26], quantum sensing [15] and quantum communication [70] among

others. Quantum metrology deals with measurement procedures that involve enhancement

in precision, efficiency, simplicity of implementation, etc. through the use of quantum ef-

fects [26]. Quantum sensing describes the use of a quantum system, properties or quantum

phenomena for performing measurements of a physical quantity of interest [15]. Quantum

communication takes advantage of the laws of quantum physics to protect the data [70].

This can be done, for instance, by employing quantum cryptography.
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Quantum control is what makes these applications possible. One of the main goals in

quantum control theory is to establish a firm theoretical footing and develop a series of

systematic methods for the active manipulation and control of quantum systems [18]. This

is a field in itself because the laws of quantum physics are different from the ones in classical

physics and therefore a new framework is needed for systems governed by quantum physics.

The manipulation and control of such systems are achieved using quantum resources such

as entangled particles [78]. The goal usually is to achieve the desired quantum state, and

the problem solving is centered around figuring out how to drive the dynamics such that the

desired state is achieved [12]. Quantum control theory has attained significant successes in

quantum optics among other areas [52].

Data-driven control is an approach in control theory that does not utilize the dynamic

model but instead devises the control policies directly from the data [37]. This approach

is quite useful as the dynamic model is difficult to obtain and represent faithfully. This is

especially true when dealing with hard-to-describe models in the age of complex design [49].

One of the data-driven techniques is policy search [37]. In this technique, the policy is

the procedure carried out by the processing unit. The policy is given a task-appropriate

mathematical form, then its performance is optimized by searching the space of the policy’s

parameters [16]. The goal of the exercise is to find the optimal set of parameters. A

black-box optimization algorithm [54] can be employed for a model-free policy search. The

algorithm in question is called black-box because it can be viewed in terms of its inputs and

outputs (or transfer characteristics), without any knowledge of its internal workings. The

implementation is ‘opaque’ or black. Such an algorithm determines the performance of the

policy in question by implementing it on an experimental setup [16].

One of the applications of quantum control is quantum-enhanced metrology where quan-

tum resources such as entangled states are used to make better-than-classical or quantum-

enhanced measurements [4]. This translates into reducing the uncertainty in the parameter

or variable that is being measured. Two very common ways this is achieved is by repeat-
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ing the experiment a number of times and by using more of an appropriate resource [39].

Depending on the configuration of the model and the setup used, these stated techniques

may or may not be effective in solving the problem. Quantum-enhanced metrology studies

the nuances related to the model, the technique and the implementation to realize the best

path forward [66]. Quantum-enhanced metrology has found its use in gravitational wave

detection [11] and atomic clocks [6].

Gravitational wave detectors are, at the fundamental level, interferometers [55]. A gravi-

tational wave creates perturbations in the space and time and therefore introduces a relative

change in the path length when it passes through the interferometer [69]. This in turn in-

troduces a relative phase shift in the laser beams that run across the length of the arms

of the interferometer. The precision with which the gravitational wave in question can

be detected depends on how accurately the generated phase shift can be measured [55].

Quantum-enhanced metrology makes the hyper-precise phase measurement possible [39].

Atomic clocks are the most accurate time-keeping device in existence [44]. In an atomic

clock, the atomic transitions of the atoms are used to quantify the passage of time. The device

uses a hyper-fine transition frequency in the microwave, or electron transition frequency in

the optical, or ultraviolet region of the electromagnetic spectrum of atoms [45]. These

transitions are the frequency standards, which are used to synchronize other, more practical

clocks that are easier to use or move around [44].

Adaptive quantum-enhanced metrology techniques employ a feedback mechanism to

achieve quantum-enhanced precision [48]. The setup is configured in such a way that the

detector measurements are used to adjust some parameter of the model in order to achieve

very accurate measurements. Adaptive phase estimation is an example of quantum-enhanced

metrology [31, 49]. The goal in phase estimation is to estimate the unknown phase with

quantum-enhanced precision [74]. Adaptive techniques use adaptive measurements to re-

duce the uncertainty in phase measurement more than what is achieved using non-adaptive

quantum metrological schemes.
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Model-free and data-driven adaptive phase estimation is when the physics of the model is

not taken into account [37]. This technique uses measurement data to measure the unknown

phase with quantum-enhanced precision. This scheme uses black-box optimization algo-

rithms to search for optimal policies that reduce uncertainty in the phase measurement [49].

In order to have more precise measurements, two-parameter or multi-parameter quantum-

enhanced estimation techniques must be employed [62].

1.2 Aim and Motivation

In this section, we explain the underlying motivation and the scope of this research project.

θ

Θ

𝜙0 PU

Figure 1.1: Interferometric setup is shown with an unknown beam splitter parametrized by θ, a constant
phase shift φ0 and a control beam splitter parametrized by Θ. An N -particle state being injected into the
two beam-splitter ports a and b is also shown. The processing unit (PU) drawn controls the control beam
splitter. [Reproduced after modification from Ref. [31], Fig. 2.1].

Our work is centered around adaptive quantum-enhanced metrology (AQEM) using a

Mach-Zehnder interferometer with variable beam-splitter reflectivity. The interferometer is

shown in Fig. 1.1. Previous work [4, 31, 49] utilizes 50 : 50 beam splitters with a phase

shift that can be varied. The AQEM example that we use in this thesis has non-constant

beam-splitter-reflectivity and constant phase. In other words, our work involves adaptive

quantum-enhanced variable beam-splitter reflectivity estimation.

4



The assumption that the beam splitters are 50 : 50 may not be realistic in a lab setting

where equipment-related errors are always present. Measuring the beam-splitter reflectivity

before installing the device in the experimental setup does not ensure that there will be no

alignment errors while installing the device. If the beam splitters are not 50 : 50 but the

estimation scheme assumes so, then this can lead to less than ideal measurements. This

oversight might even prevent the experimentalists from achieving the quantum-enhanced

precision in the first place. The goal in this thesis is to address precisely this problem. We

keep the phase shift constant so as to explore and fully understand the AQEM dynamics in

the case of variable beam splitters.

Our work will facilitate the transition from one-parameter to two-parameter quantum-

enhanced metrology by providing insights about the second parameter (phase being the first

one). In order to achieve quantum-enhanced metrology with two parameters, quantum fisher

information matrix H needs to be calculated, which is a two by two matrix [62]. Estimation

schemes with one parameter involve the calculation of quantum Fisher information, which is

a scalar [31]. Therefore, moving to the two-parameter realm requires a two by two matrix.

The quantum-enhanced metrology process consists of three stages: detector state prepa-

ration, interaction with the quantum system containing the parameters under scrutiny and

the detection (measurement) [48]. The elements of the quantum Fisher information matrix

are calculated using the probability of the measurement outcomes and the post-measurement

detector state [62]. It turns out that the non-diagonal elements in this case are zero. This

leaves only the diagonal elements. H11 is for the phase shift present in the Mach-Zehnder

interferometer and H22 is what our work is focused on. Here H11 and H22 correspond to the

maximum information content gained as a result of detector measurements in the case of

phase shift and beam-splitter reflectivity respectively [10]. This diagonalization works only

if there is a fixed number of particles involved [62].

Another motivation for taking the variable beam-splitter reflectivity estimation route in

the quantum metrology realm is to see if we can gain any measurement-related insights that
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we could not with phase estimation. In other words, we are also looking for insights that

are not directly related to beam-splitter reflectivity but emerge serendipitously in the form

of patterns and correlations during different stages of the problem-solving process.

After all is said and done, the knowledge gained from the individual studies of phase

estimation and variable beam-splitter reflectivity estimation can be put together to tackle

the two-parameter quantum-enhanced metrology.

1.3 Approach

In this section, we detail the approach adopted in this thesis. We summarize how the inter-

ferometer is configured, how the algorithm implements policy search and how the intended

results are obtained given the setup.

1.3.1 Interferometric setup

Adaptive quantum-enhanced metrology (AQEM) is an approach that attains quantum-

enhanced precision by approximating optimal measurement on the quantum state [73]. We

use the technical and mathematical framework of a general discrete-time AQEM scheme to

study variable beam-splitter reflectivity estimation [49]. Our goal is to develop an algorithm

that devises a policy to be implemented by the processing unit (PU). PU controls the re-

flectivity of the control beam splitter to achieve quantum-enhanced precision in the case of

variable beam-splitter estimation. We investigate and gain insight regarding how the input

state and the optimal policy contribute towards achieving quantum-enhanced precision using

adaptive measurements.

In this thesis, we consider the case of a noiseless and lossless, two-mode Mach-Zehnder

interferometer (Fig. 1.1), where the first beam splitter has unknown reflectivity θ ∈ [0, π]

while the second beam splitter has the controllable reflectivity Θ ∈ [0, π] . The input state

that we use in our work is a permutationally symmetric N -photon input state called the sine
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state [4]. We proceed by splitting up the N -particle input state into individual particles and

send in only one particle at a time. Our goal is to study the dynamics for N ∈ {4, 100} as

far as estimation goes. The order in which the photons are injected into the interferometric

ports does not matter [33]. Also, the sine state is a loss-tolerant input state meaning it

remains permutationally symmetric even when some of the photons are lost due to various

factors [31].

Two detectors, one for each arm, detect particles on the other end and the measurement

results are fed into a processing unit that controls the reflectivity of the controllable beam

splitter. The estimation scheme varies the controllable beam-splitter reflectivity such that

the imprecision achieved once all particles are through scales in a quantum-enhanced manner.

The way in which the controllable beam-splitter reflectivity is varied or adjusted is dic-

tated by the policy determined by the black-box optimization algorithm. As this method

does not use the model or the configuration in its design, it is considered data-driven and

model-free.

1.3.2 Algorithmic policy search

We employ an evolutionary algorithm for searching the solution space for optimal estimation

policies. Evolutionary algorithms are the ones inspired by how genes combine and mutate

and how biological reproduction takes place at the genetic level [65]. A given number of

candidate solutions are randomly generated in the beginning. Then the best performing

solutions are combined and ‘mutated’ to produce the next generation of solutions. This

ensures that the solutions get better at the task at hand with every generation [21]. This

process is repeated until a good enough solution is found.

Initially, we run the evolutionary algorithm to a predetermined number of generations.

When that stops giving us satisfactory solutions, in order to improve the scalability of the

algorithm, we introduce a criterion for accepting policies based on its performance instead

of constraining the number of generations [49]. This enables the optimization algorithm to
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continue running until a viable policy is found. The policy search in our case is a logarithmic

search process. We run the algorithm up to 100 photons beyond which point the computation

cost becomes too high for the simulation to be practical. As the solution space is highly

non-convex, we take extra measures to ensure early termination of the optimization runs.

Some of these measures include parallelization of the calculations involved and vectorization

for efficient processing [38].

The optimal policy directs the processing unit in adjusting the controllable beam-splitter

reflectivity Θ. The adjustment process becomes finer and finer as the new measurements are

collected and more information is gained about the unknown parameter being estimated.

Evolutionary algorithms have shown success up to 100 photons in the case of phase

estimation both with and without noise incorporated into the scheme [49]. The goal in this

thesis is to find an optimal policy to accurately estimate variable beam-splitter reflectivities,

using this algorithm.

1.3.3 Determining the imprecision scaling

In quantum-enhanced metrology, the performance of an estimation scheme is measured in

terms of the power-law scaling of the imprecision with respect to the number of parti-

cles N [31]. For an effective comparison, the scaling is measured against established bounds.

Classical techniques give us the lower bound called the standard quantum limit (SQL) and

the quantum techniques employing quantum resources arrive at Heisenberg limit (HL) [9].

SQL asymptotically scales as 1/
√
N and HL scales as 1/N [7].

In quantum-enhanced metrology, the way a certain estimation scheme’s imprecision scales

matters more than the absolute imprecision associated with a particular N value [49]. This is

because the design and implementation success of the technological products is inextricably

tied to whether they can be scaled up or not.

In our work, using the optimal policy, we generate the distribution of estimates for a

given unknown beam-splitter reflectivity value θ. This enables us to calculate sharpness or

8



the accuracy and the precision of the generated estimate. This, in turn, is used to calculate

the variance of the distribution. From there, we determine the imprecision scaling of the

estimate with respect to the number of photons N ∈ {4, 100}. This is done by plotting and

then studying the log-log graph. The comparisons with the SQL and HL can then be made.

Geometrically speaking, estimating the unknown beam-splitter reflectivity is equivalent

to estimating the unknown axis in the equatorial plane the initial state is rotated about, in

the state space. The angle of rotation of the initial state is given by the phase shift present

in the interferometer.

The results of our work can also be used to compare the efficiency of our algorithm with

that of other algorithms designed for solving similar problems. This comes in handy when

choosing a policy that requires the least resource to run, given that the target performance

can be reached [32].

1.4 Structure of the thesis

After familiarizing the reader with the important background concepts such as metrology,

quantum technology and quantum-enhanced metrology, and also clearly stating aim and

motivation in chapter 1, chapter 2 discusses the requisite background in detail.

Chapter 2 reviews foundational topics needed to understand the methods used and the

results generated. The text provides the necessary material on interferometer-related and

beam-splitter mathematics. It also introduces quantum-enhanced precision and guides the

reader when and how it can be achieved. As this is done in the context of adaptive metrology,

adaptive quantum-enhanced measurements are also introduced. Next, the chapter focuses on

evolutionary algorithms and how these can be used to search non-convex spaces for finding

optimal solutions. Lastly, we write about the basics of cumulants, which are indispensable

in analyzing the probability distributions.

Chapter 3 explains in detail our approach that involves setting up the said problem and
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then solving it in a feasible manner. We do that one step at a time. First we introduce

the input state and the quantum system the state interacts with. Second we explain how

the setup allows us to calculate the Cramér Rao Lower Bound and the scaling from the

appropriate log-log plots. The policy is found using an evolutionary algorithm known as

the differential evolution. The optimal policy assures that we achieve quantum-enhanced

precision. The search for an optimal policy and the estimation process itself are run on a

high-performance computer.

In chapter 4, we present results. First we show the plot of the distribution of estimates

that the estimation scheme produces. This is done for two different values of beam-splitter

reflectivities θ for 50 and 100 photons each. These plots show 10N2 estimate samples whereN

is the number of photons. Second we calculate the Holevo variance for select values of θ and

plot the log(VH) vs log(N) graph showing how the beam-splitter reflectivity uncertainty

scales with respect to the photon number. We use the goodness of fit test to evaluate how

good the linear relationship is in each case. Third, we plot the one-dimensional slices of the

multi-dimensional policy landscape. We also comment on the time complexity and other

performance-related quantities of the algorithm involved.

Chapter 5 contains the discussion of the results presented in the previous chapter. We

start by explaining how the skewness and kurtosis exhibited by the distribution of the

estimates are tolerable and therefore negligible. In order to establish that, we run well-

documented tests of skewness and kurtosis. We also analyze the asymptotic power-law

scaling revealed in the log-log plots in chapter 4. In our analysis, we include discussion

regarding the goodness of fit and beating the standard quantum limit. We then look into

the morphology of the solution landscape related to our problem and examine how suited

the evolutionary algorithm is in finding an optimal policy in this space. Lastly, we inspect

factors that lead to the algorithm run time that we observe in our simulations involving

the adaptive quantum-enhanced metrological scheme. We also make recommendations and

modifications that might end up decreasing the run time.
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The last chapter summarizes what we have achieved throughout the course of the research

project. It restates the aim and the claim to see if the results match up. In order to put

things into context, this chapter also restates the importance our work holds in the context of

quantum metrology in general. In the end, a short section is dedicated to the exploration of

future research work that could use our work as a springboard. Some other ways of studying

our problem are also proposed.
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Chapter 2

Background

In this chapter, we review foundational topics that set the stage for more advanced topics

later in the thesis. We begin by describing the mathematics behind Mach-Zehnder inter-

ferometer and the beam splitters, which are central to our work. We describe how the

interferometric statistics are connected to group theory and also how the actions of the in-

terferometer and the beam splitter can be written as matrices (operators). Second we detail

quantum-enhanced precision and how to achieve it. The concept is inextricably tied to the

imprecision bounds, the standard quantum limit and the Heisenberg limit. We then lay down

the specifics of adaptive quantum-enhanced metrology which employs sequential adaptive

measurements in order to achieve better-than-classical or quantum-enhanced precision [31].

Adaptive methodology is necessary as achieving optimal quantum-enhanced measurements

without it is not manageable.

Next we focus on evolutionary algorithms that are used to find optimal policies for achiev-

ing quantum-enhanced precision. Such optimization problems usually involve non-convex

solution spaces, and therefore, gradient-based algorithms don’t work very well [21]. We

also quote an instance where such algorithms have been employed in the past with success.

Lastly, we review the essentials of cumulants that are useful in establishing whether a given

distribution is Gaussian or not. This concept will come in handy when we determine the
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imprecision scaling of the unknown parameter with respect to the photon number, using the

estimate distribution.

2.1 Interferometer statistics

In this section, we show how variable beam-splitter estimation is a U(1) estimation problem

using interferometer mathematics. Using a geometrical picture, we also show what kind of

rotation this is equivalent to. Lastly, we discuss the beam-splitter mathematics.

The following 2× 2 unitary matrix with 4 parameters Ψ, φr, φs and θ provides a faithful

representation of the U(2) group [58]

exp(iΨ)




exp(iφs) cos (θ/2) exp(iφr) sin (θ/2)

− exp(−iφr) sin (θ/2) exp(−iφs) cos (θ/2)


 . (2.1)

As we deal with Mach-Zehnder interferometry in our work, these parameters take on the

following roles [58].

• Ψ: global phase

• φr: relative phase between the interferometer arms

• φs: sum phase between the interferometer arms

• θ: beam-splitter reflectivity parameter

We ignore Ψ as it is the global phase and does not affect the dynamics of the system in that

there are no associated observable effects [30]. We would not have done so if we had multiple

interferometers because then Ψ would become the ‘phase’ of the first interferometer relative

to all the other ones in the configuration. Using the isomorphism

U(2)/U(1) ∼= SU(2), (2.2)
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it can be seen that ignoring Ψ gives us an SU(2) group that has 22− 1 = 3 parameters [57].

We also ignore the sum phase φs as this is also irrelevant in our analysis. Mathematically,

this action returns a coset SU(2)/U(1) [58] with matrix elements with only 2 parameters




cos (θ/2) exp(iφr) sin (θ/2)

− exp(−iφr) sin (θ/2) cos (θ/2)


 . (2.3)

Previous work involves analyses with θ = π/2 (50 : 50 beam splitter) [49, 31]. This is

represented by a U(1) matrix with one parameter [49]. Note that SU(2)/U(1) ⊃ U(1) [57].

Our work involves the use of a constant relative phase value and a variable beam-splitter

reflectivity value. With φr = φ0, where constant φ0 ∈ [0, 2π) and θ ∈ [0, π], our version of

the U(1) matrix has the following representation




cos (θ/2) exp(iφ0) sin (θ/2)

− exp(−iφ0) sin (θ/2) cos (θ/2)


 . (2.4)

2.1.1 Bloch-sphere rotation

Previous work with phase estimation keeps θ = π/2 and a variable phase shift [49, 31]. The

interferometer transformation is represented by the unitary operator

exp(i(π/2)Ĵx) exp(−iφĴz) exp(−i(π/2)Ĵx)

= exp(−iφĴy), (2.5)

which when acts on a given vector executes Bloch-sphere rotations. More specifically, the

operator executes a rotation of −π/2 about the abscissa, followed by a rotation of −φ about

the z-axis followed by a rotation of π/2 about the abscissa. This is mathematically equivalent

to a rotation of φ about the ordinate [53]. The quantity π/2 represents the 50 : 50 beam

splitter. The goal of the phase estimation research is to estimate the angle by which the
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initial state vector rotates about the ordinate [73]. In other words, the axis of rotation is

known but the angle of rotation is not.

Our work involves interferometry with a constant phase and variable beam-splitter re-

flectivity parameters. The unitary operator here is represented by

exp(iθĴx) exp(−iφ0Ĵz) exp(−iθĴx). (2.6)

This operator executes a rotation about the abscissa by an amount −θ, followed by a rotation

of −φ0 about the z-axis followed by a rotation of θ about the abscissa. This is equivalent to

rotating the initial state vector by φ0 about an unknown axis in the equatorial plane. This

axis lies at an angle of θ/2 from the abscissa. The goal is then to estimate the angle between

the abscissa and the axis of rotation as shown in Fig. 2.1.

Initial vector

Final vector

𝜙0Axis of 
rotation 𝜃/2

z

y

x

Figure 2.1: Beam-splitter reflectivity estimation involves estimating the angle between the abscissa and the
axis of rotation. This angle is θ/2. Initial state vector shown is rotated about the axis of rotation by an
amount φ0 to achieve the final state of the vector.
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a1

a2
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b2

Figure 2.2: Beam splitter shown mixing two modes. Here ai are the input amplitudes while bi are the
outputs.

2.1.2 Beam-splitter optics

A beam splitter’s action can be described by



b1

b2


 =



B11 B12

B21 B22






a1

a2


 , (2.7)

where Bij are complex elements of the transformation matrix [53]. Here the subscripts

represent port numbers. Using the fact that the outgoing modes satisfy the commutation

relations [22]

[bi, b
†
j] = δij, (2.8)

we arrive at the following expressions for beam-splitter transmission, t, and reflection, r [53]:

|B11|2 = |B22|2 = t = cos2 (θ/2)

|B12|2 = |B21|2 = r = sin2 (θ/2). (2.9)
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Here θ ∈ [0, π]. In this case, transformation matrix can be written as [22]




cos (θ/2) i sin (θ/2)

i sin (θ/2) cos (θ/2)


 . (2.10)

As can easily be seen, r + t = 1 in this construction. Here r = t = 0.5 when θ = π/2.

The following simple example illustrates how a beam splitter works. When one photon

is incident in the first mode (up) on a 50 : 50 beam splitter, the final state represents the

simultaneous transmission and reflection of the original photon with equal probabilities [53]

1√
2




1 i

i 1







1

0


 =

1√
2




1

i


 . (2.11)

The photon is detected with a probability of 0.5 in either output arm.

2.2 Quantum-enhanced metrology

In this section, we introduce three stages of quantum-enhanced metrology. First we explore

quantum resources, more specifically, entangled particle states. Then we discuss the state’s

interaction with the quantum system and the measurement procedure.

Metrology is defined as the science of measurement, embracing both experimental and

theoretical determinations in any field of science and technology [2]. The aim of quantum-

enhanced metrology is to estimate one or more unknown parameters with high precision using

quantum resources [27]. As shown in Fig. 2.3, the quantum-enhanced metrology process

involves the preparation of the input state, the interaction between the input state and the

system and the measurement of the output state [26]. The quantum system is the Mach-

Zehnder interferometer in our work. The last step, the measurement, is used to calculate

the imprecision lower bound as explained in the next section [27].

Quantum resources in this context are particles that are prepared in a non-classical state
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Interferometer MeasurementInput state

Figure 2.3: Quantum-enhanced metrology procedure involves state preparation, interaction of the state with
the Mach-Zehnder interferometer and the measurement. The direction of the arrows indicates time flow.

such as an entangled state [49]. Quantum-enhanced metrology uses quantum resources and

quantum measurement to achieve quantum-enhanced precision. This is usually done by

carefully preparing an input state that interacts with a system with the aim of estimating

the unknown parameter φ [27]. The estimation procedure involves the analysis of the change

that the interaction produces in the quantum state.

Quantum resources have been shown to increase the measurement precision in many

applications including gravitational wave detection [35] and atomic clocks [8]. According

to Ref. [49], quantum-enhanced metrology is capable of improving measurement precision

without increasing the power of the input state that is used to interact with the system. The

technique is useful because the increase in precision is possible even when the resources are

scarce, making the entire process economical. This increase in precision is attributed to the

input state that is prepared in a non-classical state such as an entangled state [48].

In order to achieve quantum-enhanced precision, the input state has to be such that it

maximizes the interaction between the state and the system so that the maximum amount

of information can be gathered. This is done by carefully choosing the quantum system [66].

In other words, the state has to be optimized for the task at hand. This means choosing the

input state such that there is a maximum possible change in it during the interaction [49].

That maximises the amount of information gained per interaction and also the precision

with which φ can be estimated.

2.3 Quantum imprecision

In this section, we examine how the precision of the estimation scheme is determined using

the distribution of the estimates. In order to evaluate the precision, we introduce Cramér-

18



Rao lower bound and benchmark limits such as the standard quantum limit and Heisenberg

limit.

In order to determine how accurate the quantum-enhanced metrology scheme is, some

form of precision measure is used. The φ estimates in such a scheme are determined using the

distribution of measurement outcomes [31]. More specifically, quantum-enhanced metrology

generates a string of M measurement outcomes xM = x1x2 . . . , xM that are not necessarily

sampled from an independent and identical distribution [49]. The outcomes xM are used to

estimate the unknown parameter φ. We call this estimate φ̃.

P
(φ̃

)

0 2π
φ̃φ

2∆φ̃

Figure 2.4: The distribution of the estimates is shown. The actual value φ, the estimate mean
¯̃
φ and the

estimate standard deviation ∆φ̃ are also shown. [Reproduced from Ref. [50], Fig. 2].

As shown in Fig. 2.4, the probability P (φ̃|φ) can be plotted using multiple instances of

estimating φ [56]. Assuming the distribution is unimodal, ∆φ̃ is the imprecision and | ¯̃φ− φ|

is the bias.

In the case of a deterministic estimator, the estimate distribution can be written in terms

of the probabilities of the measurement outcomes [49]

P (φ̃|φ) =
∑

xM

P (xM |φ), (2.12)
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where

P (xM |φ) =
M∏

m=0

P (xm|φ). (2.13)

Here xm is an independently obtained measurement of an N -particle quantum state. By

carefully choosing the quantum state and the measurement process, the information that

can be gathered per measurement can be optimized in order to achieve quantum-enhanced

precision [74]. When M = 1, the imprecision scales as [9]

∆φ̃ ∈ O(N−ς), (2.14)

where ς ∈ R+

2.3.1 Cramér-Rao lower bound

When a given distribution is transformed, the output becomes a different shape. Fisher

information is a way of quantifying this change in shape [10]. This is tied to the measurement

process in metrology schemes [26]. Every measurement changes the distribution of estimates,

and Fisher information quantifies this change. More specifically, Fisher information is a

metric on the space of probability distributions [10]. It is the distance between the probability

distributions residing in this space. Mathematically, Fisher information is the average change

in the distribution P (xM |φ) in the locality of φ [25]. It is a measure of how distinct xM at φ

is from xM at φ + dφ. The bigger the Fisher information value, the more differentiation

there is.

The Cramér-Rao lower bound (CRLB) defines the lower limit in the imprecision that

can be calculated from a set of measurement outcomes using Fisher information [73]. The

lower bound is defined as an inequality for the variance of the estimate. When the estimate

is unbiased, the inequality is [25]

(∆φ̃)2 ≥ 1

F (φ)
, (2.15)
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where F (φ) is the Fisher information

F (φ) :=
∑

xM

(
∂

∂φ
log[P (xM |φ)]

)2

P (xM |φ). (2.16)

In the biased case, the inequality becomes

(∆φ̃)2 ≥
1 + ∂

∂φ
b(φ)

F (φ)
, (2.17)

where b = | ¯̃φ− φ| is the bias of the estimate [49].

For quantum resources, quantum Fisher information is used and this leads to quantum

Cramér-Rao lower bound [73]. Its value depends on the input state and quantum system,

and not on the measurements. In the case of phase estimation, reaching quantum Cramér-

Rao lower bound is not physically feasible and therefore adaptive measurements are per-

formed [49]. The adaptive metrological procedure approximates the optimal non-adaptive

one where collective measurements are made [73].

2.3.2 Standard quantum limit and Heisenberg limit

The standard quantum limit (SQL) is a benchmark limit that can be calculated using

CRLB [73]. SQL is the lower bound when non-quantum or classical resources are used.

In other words, this limit is relevant when the input state is classical [27]. The simplest case

is given by a tensor product of N independent particles

As this case involves an independent and identical distribution, the total Fisher informa-

tion is calculated by multiplying the Fisher information for one particle by the total number

of particles [49]

F (N)(φ) = NF (1)(φ), (2.18)

where F 1(φ) is the Fisher information for one particle. Hence the Cramér-Rao inequality in
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this case is [27]

(∆φ̃)2 ≥ 1

NF 1(φ)
. (2.19)

This leads to the standard quantum limit

∆φ̃ ∈ O
(

1√
N

)
, (2.20)

which only depends on the number of particles [31].

When quantum resources are used, SQL can be surpassed [11]. This case involves the

use of entangled states. The Heisenberg Limit (HL) is lower bound when quantum resources

are utilized [7]. Asymptotically, HL in interferometric phase estimation case is

∆φ̃ ∈ O
(

1

N

)
. (2.21)

Theoretically, this limit can only be obtained using optimal measurements. Therefore adap-

tive phase estimation techniques are used to approximate this lower bound [75].

2.4 Adaptive quantum-enhanced metrology

In this section, we detail how feedback is incorporated in quantum-enhanced metrology

to achieve more precise measurements. Such a scheme is known as adaptive quantum-

enhanced metrology. At the end, we give examples of previous studies where this method

has successfully been employed.

Adaptive quantum-enhanced metrology or AQEM is used to approximate optimal quantum-

enhanced metrology measurements [73]. This is because obtaining optimal quantum-enhanced

measurements without an adaptive procedure in place is not feasible. Our work deals with

discrete-time AQEM construction that involves single-photon detectors [4].

AQEM is a measurement procedure with a feedback loop incorporated in the scheme

design [73]. In such a scheme, the information gained in the interaction between the input
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state and the quantum system is used to estimate the unknown parameter φ [49]. The

estimate is calculated after the detectors detect the incoming photon. As the scheme is

adaptive, and φ does not change throughout the course of one run, the estimate gets more

and more accurate after each measurement because of the amount of information available

to base the estimate on increases with every detection. These sequential measurements are

used to ever so slightly adjust the estimate until the desired purpose is fulfilled [75]. Here N -

entangled particles are split into bundles, which are then measured sequentially. After each

measurement, the next measurement instance is adjusted in order to achieve a well-defined

goal.

We split the N particles into M bundles of L particles, N = ML, and represent the

Hilbert space as [49]
(
H ⊗L

d

)⊗M
(2.22)

where d is the dimension of each particle. Subsequent measurements are produced after the

system and the detector act on the input

xM = x1x2x3 . . . , xM , (2.23)

where xM is the set of M measurements [31]. Here

xm ∈ NdL := 0, 1, 2, . . . , dL − 1. (2.24)

When there is only one particle in a bundle, M = N as L = 1. The outcome then is described

by a string of single particle detections

xN = x1x2x3 . . . , xN . (2.25)
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If additionally, each particle is a two-level system, each outcome becomes

xm ∈ {0, 1}. (2.26)

The total outcome is a N -bit string in this case xN ∈ {0, 1}⊗N .

There have been numerous studies on adaptive quantum-enhanced metrology establish-

ing the efficacy of the technique [49, 31, 73]. For instance, Berry and Wiseman successfully

derived the optimal N -photon two-mode input state for adaptive quantum-enhanced mea-

surement for phase estimation [4]. They introduced a feedback algorithm based on Bayesian

inference to estimate the auxiliary phase shift. By doing so they achieved the estimate

variance that scales as (∆φ̃)2 ' π2/N2.

During the course of his PhD degree, Hentschel developed the first computationally

efficient algorithm that autonomously devises policies for adaptive phase estimation [31]. He

used particle swarm optimization inspired by bird locomotion and communication in addition

to machine learning to reach that goal. The algorithm can be trained with simulated or real-

world experimental trial runs.

Shortly after that, Lovett et al. devised powerful algorithms based on differential evo-

lution (DE) for adaptive many-particle quantum metrology [43]. Their approach delivered

adaptive quantum metrology policies for feedback control that was orders-of-magnitude more

efficient and surpassed the few-dozen-particle limitation arising in methods based on particle

swarm optimization.

More recently, Palittapongarnpim used a differential evolution variant to devise robust

policies for adaptive quantum-enhanced many-particle metrology [49]. The algorithm is ef-

fective even if the phase-changing quantum transformation is a black box with noise and loss

present, thereby making time-consuming error modelling and extensive calibration unneces-

sary. She showed that the evolutionary algorithm works for up to 100 photons with different

types of noise included in the system. She then compared the results to policies designed
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using Bayesian inference.

2.5 Evolutionary algorithms

In this section, we consider the function and structure of evolutionary algorithms. We

also look at how they perform in non-convex optimization routines and whether they are

any better in these situations than gradient-based algorithms. We cite a recent study to

illustrate our point.

Evolutionary algorithms are global optimization algorithms that use mechanisms inspired

by biological evolution [65]. These algorithms are quite versatile as the optimization involved

does not depend on the underlying model of the configuration. That is one reason why

evolutionary algorithms are applied in a wide variety of engineering disciplines.

The heuristics in evolutionary algorithms follow Darwin’s theory of evolution by natural

selection [21]. According to Darwin’s theory, organisms with favourable traits that help

them maximize their chances of survival successfully produce more offsprings than their less

well-adapted counterparts. The latter’s offsprings have traits that increase their chances

of survival. This process is repeated for many generations with the organisms with the

most favourable traits winning at every stage. After many generations, the favourable traits

become dominant in a given population. The problem to be solved here is that of adaptation

in a given environment. Biological evolution provides the solution by making favourable traits

more and more common with every generation.

The algorithm’s parameters are carefully selected for it to efficiently search the solution

space and converge on a globally optimal solution although the convergence is not guaran-

teed [21]. In many evolutionary algorithms, the optimization uses only the output of the

fitness function to proceed [24].

One disadvantage of the black-box, data-driven approach is that the relevant evolution-

ary algorithms evaluate the policy as a whole which is computationally expensive as the
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Figure 2.5: A depiction of optimization landscapes. (a) The image on the left shows a convex set while the
one on the right shows a non-convex one. The dotted line represents the shortest path between the two
points x and y. (b) For each pair (k, β), the sharpness S ( Eq. 3.14) of the policy parametrized by (k, β) is
shown. The Bayesian inference-based policy is represented by k = 1.596 and β = 1.096 (marked by •). For
comparison, the global maximum is at kmax = 1.631, βmax = 1.015 (marked by the arrowhead). [Reproduced
from Ref. [31], Fig. 5.1].

optimization needs a large number of trials to find a successful solution [61].

2.5.1 Evolutionary algorithms for non-convex optimization

Non-convex functions and non-convex sets play important roles in non-convex optimization

procedures [40].

Definition 2.1. (Convex Set) A set C ∈ Rp is convex if, for every x , y ∈ C and λ ∈ [0, 1],

we have (1− λ)x+ λy ∈ C as well [14].

Definition 2.2. (Convex Function) A continuously differentiable function f : Rp → R is

convex if for every x , y ∈ Rp we have f(y) ≥ f(x) + 〈∇f(x),y − x〉 where ∇f(x) is the

gradient of f at x [14].

Fig. 2.5 (a) shows the difference between convex and non-convex sets pictorially. If the

‘shortest path’ between any two points x and y in the set C ⊆ Rd is not fully contained in

the set, then the set in question is non-convex [40]. An optimization problem is said to be

convex if the fitness function is a convex function and the constraint set is a convex set [14].
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An optimization problem that violates either of these conditions is a non-convex optimiza-

tion problem. Problems that usually involve high-dimensional data come with structural

constraints for tractability purposes [49]. These and other features of problems with high-

dimensional data usually make the optimization problem non-convex in nature, which are

hard to solve [40].

Unlike gradient-based optimization algorithms, evolutionary algorithms are global opti-

mization algorithms and therefore perform better in non-convex spaces [47]. Gradient-based

greedy algorithms have a tendency to get stuck in one of the several local minima that are

part of the morphology of non-convex spaces. Evolutionary algorithms are better candidates

to perform optimization in non-convex spaces [40]. We employ differential evolution in our

work.

2.5.2 Differential evolution

Differential evolution is a global optimization algorithm that iteratively searches for a feasible

solution in a continuous search space [59]. The search process uses a heuristic inspired by

biological evolution. DE algorithm uses a unique set of rules for generating and selecting

solution candidates, which is summarized below.

• Initialization: The optimization process begins with randomly initializing a candidate

vector for generation G, Yi(G) where i ∈ {1, . . . , NP} [78]. These random candidates

are uniformly generated. Each candidate exists in an N -dimensional search space

Yi(G) = (Yi(G)(1), Yi(G)(2), . . . , Yi(G)(N)). (2.27)

Each of these candidates is evaluated for its fitness using a fitness function or sharp-

ness, S(Yi(G)) [34]. This quantifies how feasible the solution candidates are.

• Mutation: For each candidate, an offspring is generated by combining the parent with

a random member of the population set, Vi(G) = (Vi(G)(1), Vi(G)(2), . . . , Vi(G)(N)) [49].
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The mutation occurs according to the following rule:

Vi(G)(j) = Yi,1(G)(j) + F(Yi,2(G)(j) − Yi,3(G)(j)). (2.28)

Here F is the mutation factor controlling the weight of Yi,2(G)(j) − Yi,3(G)(j) in the

optimization process.

• Crossover:

Ci(G)(j) =





Vi(G)(j), if rand(0, 1) ≤ Cr.

Yi(G)(j), otherwise

(2.29)

where rand(0, 1) is a random number between 0 and 1 [59]. Also, Cr ∈ (0, 1) is the

crossover rate.

• Selection: The last step is the following condition [78]:

Y ′i (G) =





Ci(G), if S(Ci(G)) > S(Yi(G)).

Yi(G), otherwise.

(2.30)

Here Y ′i (G) is the offspring of the parent candidate Yi(G) [59]. The quantity S(Ci(G))

is the sharpness function (of candidate Ci(G) in this case), which we maximise so as

to minimize the imprecision of the AQEM scheme.

Various approaches to study AQEM use Bayesian methods [4], particle swarm optimiza-

tion [31] and DE [43, 49] which are all global optimisation techniques. Global optimization

methods are employed in the AQEM simulations involving non-convex discrete optimization

as shown in Fig. 2.5 (b). In this figure, the global max., represented by the arrowhead

is located at kmax = 1.631, βmax = 1.015 while the solution found by the policy based on

Bayesian methods is located at k = 1.596 and β = 1.096 (marked by •). The figure was

reproduced from Hentschel’s work [31] where the goal was to find the global maximum in

a non-convex landscape. As can be seen, the employed global-optimization algorithm was

28



quite successful in finding the solution.

2.6 Cumulants

In this section, we introduce moments via moment generating functions. We then establish

their connection with cumulants. We discuss skewness and kurtosis in good detail thereafter.

2.6.1 Moment-generating function

The k-th moment of a real-valued random variable X with density f(x) is [29]

µk = E(Xk) =

∫ ∞

−∞
xkf(x)dx (2.31)

for integer k = 0,1,. . . . Here µk has finite values.

The moment generating function of X can then be defined as [29]

MX(t) = E(exp(tX))

= E(1 + tX + tkXk/k! + · · · )

=
∞∑

k

µkt
k/k!. (2.32)

Here MX(t) is finite for all t ∈ [−ε, ε] for some ε > 0. Some of the properties of the moment

generating function are given below [13]

• Every moment of X is finite.

• MX(t) has convergent power series expansion in the neighbourhood of each t ∈ (−ε, ε)

• The k-th moment is the k-th derivative of M at the origin. In other words,

µk =
dk

dtk
MX(0). (2.33)
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2.6.2 Definition and nomenclature

The cumulant generating function of the random variable X is the log of the moment gen-

erating function [29]

KX(t) = log(MX(t))

=
∞∑

k

κkt
k/k!, (2.34)

where κk are the cumulants. These are the coefficients in the Taylor expansion of the

cumulant generating function about the origin. The relationships between the moments and

the cumulants are obtained by comparing the coefficients in the expansions of the moment

and the cumulant generating functions [13].

Some important relationships are listed [29]

κ1 = µ1 = µ

κ2 = µ2 − µ2
1 = σ2

κ3 = µ3 − 3µ2µ1 + 2µ3
1 = E[(X − µ)3]

κ4 = µ4 − 4µ3µ1 − 3µ2
2 + 12µ2µ

2
1 − 6µ4

1 = E[(X − µ)4]− 3κ2
2. (2.35)

Notice, µ0 = 1 and so κ0 = 0. Conventionally, κ1 is the mean and κ2 is the variance. κl

for l > 3 are not moments about the mean.

2.6.3 Skewness and kurtosis

Skewness is a measure of the asymmetry of the probability distribution of a random vari-

able X [41]. Skewness measures the asymmetry of the distribution from its mean. If the

distribution is not symmetric it is said to be skewed.

For univariate data X1, X2, . . . , XN , the Pearson’s moment coefficient of skewness is de-
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fined as [13]

γ1 =
κ3

σ3
=

κ3

κ
3/2
2

=
E[(X − µ)3]

(E[(X − µ)2])3/2
. (2.36)

Skewness for Gaussian distribution is zero because it is symmetrical. A distribution that

‘skews’ to the left is called positively skewed and the one that ‘skews’ to the right is negatively

skewed.

In order to test whether a given distribution is significantly skewed or not, the skewness

test is used [34]. If there is not enough evidence of skewness, the distribution in question

has negligible skewness and can be thought of as being approximately Gaussian.

Kurtosis is a measure of whether a given distribution is light-tailed or heavy-tailed relative

to the Gaussian distribution [41]. The greater the number of outliers of a given distribution

relative to the Gaussian distribution the higher is its kurtosis value. Kurtosis is defined as

Kurt(X) =
µ4

κ2
2

=
E[(X − µ)4]

(E[(X − µ)2])2
. (2.37)

It is common practice to use excess kurtosis [29]

Excess Kurtosis = Kurt(X)− 3. (2.38)

Distributions with zero excess kurtoses are called mesokurtic [79]. Gaussian distribution is an

example. Distributions with positive excess kurtosis are called leptokurtic. These have flat

tails relative to the Gaussian distribution. Platykurtic ones are distributions with negative

excess kurtosis and have flatter peaks than Gaussian distribution.

Kurtosis test is used to see if a given distribution has statistically significant kurtosis

associated with it [34]. In real-life examples, the probability distributions hardly ever have

tails like the ones in Gaussian distribution, and so they do have non-zero excess kurtosis. If

kurtosis is within tolerable limits, then the sample distribution is approximately Gaussian.

In this case, all the analytical and mathematical tools related to Gaussian distribution can
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be used with good accuracy.
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Chapter 3

Adaptive variable beam-splitter

reflectivity estimation

In this chapter, we describe our approach for solving the discrete-time adaptive variable

beam-splitter reflectivity estimation problem. We start by introducing the input state used

for AQEM. We then describe the interferometer used in the simulation and the process itself.

This allows us to calculate CRLB given we have access to an optimal policy, which is difficult

to calculate analytically. The imprecision is calculated using the distribution of the estimates

and the scaling is determined using the log-log plots of Holevo variance vs the number of

particles N .

This chapter also explains how an evolutionary algorithm, differential evolution, is used

to find optimal policies to solve the estimation problem in question while achieving quantum-

enhanced precision. The several parameters of the algorithm are carefully selected to achieve

that goal. As the simulation is run on a high-performance computer, we also illustrate how

the code is implemented on the relevant hardware devices.
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3.1 Input state and the interferometer

In this section, we introduce the permutationally symmetric state we use for the adaptive

variable beam-splitter reflectivity estimation procedure. We also list down the properties

of the input state in detail. We then explain the specifics of the interferometer this state

interacts with.

3.1.1 Input state

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

n

|C
n
|2

 

 

Wiseman−Killip state

Gaussian fit
Sine state

Figure 3.1: A plot of the sine state for N = 50. The red curve shows the fitted Gaussian curve. [Reproduced
after modification from Ref. [31], Fig. 2.2].

In our setup, the interferometric modes are represented as follows [49]:

εm ∈ {0, 1}. (3.1)

Here 0 and 1 represent the two paths in an interferometer and also the input and the output

ports. Using this convention, we can write the multi-photon basis as the tensor-product

state

|εN〉 =
N⊗
m−1

|εm〉 , (3.2)

where |εm〉 is the state of mth photon in path εm [49]. For ham ε the Hamming weight (or
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the sum of bits), the permutationally symmetric basis is

|n,Na − n〉 =

(
Na

n

)−1/2 ∑

ham εNa

|εNa〉 , (3.3)

where Na is the total number of particles in mode a and n ∈ {0, Na} [33].

In 1997, Wiseman and Killip considered a Mach-Zehnder interferometer with a canon-

ical phase measurement at the output and derived the input state that yields maximum

precision [76]. This state will henceforth be referred to as the sine state, which is an N -

photon entangled state given here in the basis of the two input modes of a Mach-Zehnder

interferometer

|ψ〉N =
1√
N
2

+ 1

N∑

n,k=0

sin

(
k + 1

N + 2
π

)
eiπ(k−n)/2d

N/2
n−N/2,k−N/2

(π
2

)
|n,N − n〉 . (3.4)

Here n is the number of the photons being injected into the first port of the interferome-

ter at any given moment while N is the total number of photons used in the simulation.

Moreover, djm,m′(β) is the Wigner-d function where β ∈ R [50].

Figure 3.1 shows what the sine state looks like. Sine state is permutationally symmetric

that gives it the following interesting properties:

• The order in which the photons are injected into the interferometric ports does not

matter [76].

• It is a loss-tolerant input state in that the state remains permutationally symmetric

even when some of the photons are lost [60].

• The canonical phase measurement with the sine state achieves a precision that scales

as ∆φ̃ ∼ 1/N for large N . Therefore the state can carry enough information about the

unknown phase to reach the Heisenberg limit [31].

We employ the sine state in a variable beam-splitter reflectivity estimation problem. This
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is because the sine state has successfully achieved quantum-enhanced precision in several

metrological problems before [49, 31, 60, 76, 74], and hence, it seems to be a reasonable

starting point for investigating the variable beam-splitter reflectivity estimation.

3.1.2 The interferometer transformation

The action of a beam splitter is described by

B = exp(−iθĴx) (3.5)

where Ĵx is the spin operator written in terms of the Pauli x matrix Ĵx = ~σ̂x/2 [31]. For

a 50 : 50 beam splitter, θ = π/2 .

The action of a phase shifter is described by

P = exp(−iφĴz), (3.6)

where Ĵz is the z spin operator written in terms of the Pauli z matrix Ĵz = ~σ̂z/2 [31].

In this thesis, we keep the phase shift constant, φ0 ∈ [0, 2π) and vary the two beam-

splitter reflectivities. The first beam splitter has the unknown reflectivity θ ∈ [0, π] while

the second beam splitter’s reflectivity is parameterized by Θ ∈ [0, π]. Therefore the unitary

operator corresponding to the variable beam-splitter reflectivity Mach-Zehnder interferome-

ter transformation, for one photon is

U1(θ; Θm) = exp(iΘmĴx) exp(−iφ0Ĵz) exp(−iθĴx). (3.7)

Here Θm is the state after mth photon is measured.

Therefore the unitary operator for N photons becomes

U(θ; Θm) = U1(θ; Θm)⊗ · · · ⊗ 1(N). (3.8)
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The operator is valid when there is no noise present in the system.

Using the identity, exp(iωσ̂κ) = 1 cos(ω) + iσ̂κ sin(ω) [31], U1(θ; Θm) can be written as a

matrix operator:

U1(θ; Θm) =




cos
(
φ0
2

)
cos
(

1
2

(θ −Θm)
)
− i sin

(
φ0
2

)
cos
(

1
2

(θ + Θm)
)

sin
(
φ0
2

)
sin
(

1
2

(θ + Θm)
)
− i cos

(
φ0
2

)
sin
(

1
2

(θ −Θm)
)

− sin
(
φ0
2

)
sin
(

1
2

(θ + Θm)
)
− i cos

(
φ0
2

)
sin
(

1
2

(θ −Θm)
)

cos
(
φ0
2

)
cos
(

1
2

(θ −Θm)
)

+ i sin
(
φ0
2

)
cos
(

1
2

(θ + Θm)
)


 .

(3.9)

If a and b are the probability amplitudes of an incoming photon, as shown in Fig. 1.1,

the action of this operator produces the output



a
(
cos
(
φ0
2

)
cos
(

1
2

(θ −Θm)
)
− i sin

(
φ0
2

)
cos
(

1
2

(θ + Θm)
))

b
(
sin
(
φ0
2

)
sin
(

1
2

(θ + Θm)
)
− i cos

(
φ0
2

)
sin
(

1
2

(θ −Θm)
))

a
(
− sin

(
φ0
2

)
sin
(

1
2

(θ + Θm)
)
− i cos

(
φ0
2

)
sin
(

1
2

(θ −Θm)
))

b
(
cos
(
φ0
2

)
cos
(

1
2

(θ −Θm)
)

+ i sin
(
φ0
2

)
cos
(

1
2

(θ + Θm)
))


 .

(3.10)

3.2 Adaptive measurement procedure

In this section, we lay out how the feedback is built into our approach towards solving the

estimation problem. We specifically detail adaptive measurements, which are central to our

scheme. We also illustrate how the adaptation procedure leads to a binary decision tree with

depth equal to the number of photons N .

3.2.1 Adaptive mechanism

Fig. 3.2 illustrates a single-shot quantum-enhanced adaptive measurement procedure. The

configuration shown in the diagram is a Mach-Zehnder interferometer with an unknown

parameter θ and the control Θ. In this particular case, N d-level particles are divided
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equally into M bundles of L particles. N particles are used so as to increase the information

that can be obtained from the measurement process [9]. Each bundle M interacts with

the interferometer and produces an outcome xi. Therefore after m bundles have passed

through, an outcome xm = 1, . . . , dL is used to adjust the value of Θm (given Θ0 is some

constant initial value) as per the feedback policy % and the history of outcomes leading up

to the mth measurement, xm = x1x2 . . . , xm [50]. Once all bundles have passed through the

interferometer, assuming no loss of photons, the estimate θ̃ is calculated from ΘM(xM).

Θ𝑚

θ, Θ𝑚-1

Θ𝑀

𝑚𝑚-1
𝑥𝑚

𝑚 = 𝑀

𝑚 ≤ 𝑀

θ

Mach-Zehnder	
Interferometer

Figure 3.2: Adaptive quantum-enhanced metrology procedure showing that the input state is divided into M
bundles of L particles, and each bundle then interacts with the interferometer in a sequential manner.
The processing unit (PU) determines the control parameter Θm taking into account the history of the
measurement outcomes up to that point, xm = x1x2 . . . , xm. [Reproduced after modification from Ref. [50],
Fig. 1].

The scheme is such that initially, an unknown beam-splitter reflectivity value θ is uni-

formly randomly generated. Then starting with the prior Θ0 ≡ π/2, Θm is calculated and

updated after every bundle measurement. This results in the estimate getting better and

closer to the unknown θ with every iteration. It is only after all the measurements have been

made that the value of the estimate θ̃ = ΘM(xM) is inferred. θ̃ is a discrete approximation

of a continuous parameter θ ∈ [0, π] [49].

In order to make the entire process more efficient and less time and computation con-

suming, we run simulations with several θ values to see if there is an underlying pattern. If

we see one, we adjust the algorithm by utilizing the pattern observed such that there is less

time consumed in converging towards the feasible solution.
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Our scheme applies in the case of a Michelson interferometer with a constant beam-

splitter reflectivity. The scheme however is not relevant in the case of a Fabry-Perot etalon

as it fundamentally has a different design.

3.2.2 Decision making

A successful policy is the one that minimizes the difference between θ and the estimate θ̃. In

other words, a policy that maximizes the amount of information that can be gained about θ

after successive measurements [75]. The function ΘM(xM) calculates the value of xM based

on all the measurement outcomes. This property makes this AQEM procedure a decision-

making process [71].

Assuming the feedback is deterministic, each outcome has the following probability of

occurring [49]:

P (xM |θ, %) =
M∏

m=1

P (xm|θ,Θm−1). (3.11)

A decision tree represents the policy and provides the rule for mapping Θm−1 7→ Θm [28].

The size of the decision tree can be calculated by noticing that there are M measurements

in a single shot procedure, each with dL possible outcomes. The number of branches is given

by
∑M

m=1(dL)m = dL d
N−1
dL−1

[49]. As can be seen, the maximum size of a non-Markovian policy

scales with N exponentially. This makes it computationally expensive to implement and

scale. Our work involves L = 1 and therefore, the sum reduces to

N∑

m=1

2m = 2N+1 − 2. (3.12)

The following Markovian updating rule is used in our work [50]

Θm = Θm−1 − (−1)xm∆m. (3.13)

As a result of implementing this updating rule, the policy % = (∆1,∆2, . . . ,∆m) scales
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Figure 3.3: An example of a binary decision tree with three particles. The red line represents one run.
The initial controllable beam-splitter reflectivity is Θ0 and is adjusted by ±∆m depending on xm ∈ {0, 1}.
[Reproduced after modification from Ref. [49], Fig. 4.3].

linearly with N , and is hence, tractable. The policy is the procedure carried out by the

processing unit. The procedure involves adjusting the controllable beam splitter’s reflectivity

as the photons are detected. With linear scaling in place, the relevant decision tree is a

binary one [71] as shown in Fig. 3.3. For any given policy %, there are 2N − 1 possible paths

corresponding to every possible sequence of xN . As the nature of quantum measurement

is probabilistic, the outcome xN may not necessarily be unique [49]. The uncertain nature

of the measurement procedure also means that even when the optimal policy is used, the

estimate θ̃ may not be a close approximation of θ.

3.3 Imprecision and scaling

In this section, we outline the process of calculating sharpness and Holevo variance from the

distribution of the beam-splitter reflectivity estimates. We also detail how this information

is used to plot the log-log graphs and extract the scaling.

The imprecision of the measurement scheme is quantified by calculating the width of the

distribution of the estimate P (θ̃|θ, %) [17]. Using the quantity ΘM(xM), the distribution of

the outcomes, P (xM |θ, %), can be determined [49]. The goal is to then minimize the impre-

cision and hence increase the accuracy of the scheme by finding the optimized probabilities
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for the branches of the binary decision tree.

P
(φ̃

)

0 2π
φ̃φ

2∆φ̃𝜃

𝜃 𝜃

𝜃

Figure 3.4: The distribution of the estimates. The actual value θ, the estimate mean
¯̃
θ and the estimate

standard deviation ∆θ̃ are also shown. [Reproduced after modification from Ref. [50], Fig. 2].

Fig. 3.4 shows the sampled data associated with P (xM |θ, %). The distribution peaks at ¯̃θ

assuming the distribution is Gaussian. For an unbiased scheme, ¯̃θ = θ but this is not true

for small number of particles because the estimates have discreet values [42]. It is important

to collect a large amount of data to have a good estimate. The bias is determined by |θ− ¯̃θ|.

The imprecision is defined as the spread of the distribution around ¯̃θ regardless of whether

the estimate is biased or unbiased [50]. The imprecision is minimized by optimizing the dis-

tribution P (xM |θ, %). As it is, computationally speaking, a hard problem to solve, generating

a feasible policy is a challenge for devising a viable adaptive quantum-enhanced metrology

scheme [31].

Pinning down a successful policy is all about obtaining one that minimizes the imprecision

or more accurately, the average imprecision over all possible values of θ [50]. Although θ

ranges continuously from 0 to π (inclusive), there is only one θ value being estimated at one

time. This allows the algorithm to take discreet samples for calculating imprecision later

on [49]. This makes the computation tractable.
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Figure 3.5: Accuracy and precision of the probability distribution are shown. The target value and the mean
of the estimate distribution play an important role in determining these quantities.

3.3.1 Sharpness and Holevo variance

The scheme is trained using a set of discreetly sampled θ from the domain [0, π]. The

simulation is run K = 10N2 times for different θ and the results are used to calculate

sharpness [31]

S =

∣∣∣∣∣
K∑

k=1

exp[i(θk − θ̃k)]
K

∣∣∣∣∣. (3.14)

We use different values of θ so that the policy does not overfit the data and the policy delivers

similar imprecision when applied to the value of θ not included in the training set [49].

Thereafter, we test the trained model using specific θ values to evaluate the performance of

the whole scheme.

Fig. 3.5 illustrates what accuracy and precision mean. If the estimate values θ̃ are grouped

close together, then the estimate is precise [3]. If, in addition, the estimates are close to the

actual reflectivity value θ, then the data are also accurate. If there is a good deal of scatter

in the estimates then the data are not precise and if the values are not close to the actual

value θ, then it is not accurate as well. These concepts come in handy when sharpness is
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written in terms of a power series

S =
1

K

∣∣∣∣∣
K∑

k=1

(
1 + i(θk − θ̃k) + (i(θk − θ̃k))2/2 + (i(θk − θ̃k))3/6 + · · ·

)∣∣∣∣∣

=

∣∣∣∣∣
K∑

k=1

1/K +
K∑

k=1

i(θk − θ̃k)/K +
K∑

k=1

(i(θk − θ̃k))2/(2K) +
K∑

k=1

(i(θk − θ̃k))3/(6K) + · · ·
∣∣∣∣∣

=

∣∣∣∣∣
K + 1

2
+ 〈i(θk − θ̃k)〉+ 〈(i(θk − θ̃k))2〉/2 + 〈(i(θk − θ̃k))3〉/6 + · · ·

∣∣∣∣∣. (3.15)

Here the first term is the accuracy while the second term is precision when θ ≈ θ̃ [3]. In

other words the second term is precision (or variance) if the accuracy of the estimate θ̃ is

high. In such a case higher order terms can be ignored and sharpness takes the form

S =

∣∣∣∣∣
K + 1

2
+ 〈i(θk − θ̃k)〉+ 〈(i(θk − θ̃k))2〉/2 +O(〈i(θk − θ̃k)3〉)

∣∣∣∣∣. (3.16)

The cubed term in sharpness is skewness when θ ≈ θ̃. This term can be ignored if the

distribution is symmetric. We intend to keep as many terms as practically possible while

evaluating a policy so as to get an accurate Holevo variance measure, which is defined by [76]

VH := S−2 − 1. (3.17)

This leads to (∆θ̃)2 = S−2 − 1 [49].

3.3.2 Asymptotic power-law scaling

In order to determine how the beam-splitter reflectivity estimate imprecision scales with

respect to the number of photons, we plot the log(VH) vs log(N) and fit a least-squares

regression line. The gradient of the line is the scaling −2ς. This can be seen by taking log

on both sides of the equation VH ∝ N−2ς . With W being the constant of proportionality, we
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get

log(VH) = −2ς log(N) + log(W ). (3.18)

For N ≤ 93, we terminate the policy-search process after a set number of generations as

it delivers the precision we look for. For N ∈ {94, 100}, we only accept a policy if the VH is

within a distance corresponding to a confidence interval of 0.98 from the inverse power-law

line [49]. This is because the policy search becomes more computationally expensive as the

dimensionality of the problem increases, and therefore, we need to include an extra measure

to make sure we get the requisite inverse power-law line.

In order to make sure we get the quantum-enhanced precision for N > 93, we use the

linear equation and predict the next data point y′ [31]. Then the acceptable error δy from y′

of the next empirical data point y = log(VH) is calculated as using the formula [77]

δy = t∗v−2

√√√√
∑v

i=1(y′i − yi)2

v − 2

(
1

v
+

(x′ − x̄)2

∑v
i=1(xi − x̄)2

)
. (3.19)

Here t∗v−2 is the quantile of the Student’s t distribution for v−2 data points, v is the number

of data points, x′ = log(N) and x̄ is the average of all x values. The policy is not accepted

until | log(VH)− y′| ≤ δy [49].

After the training phase is complete, we test the scheme for uniformly randomly gener-

ated 49 θ values and plot the power-law scaling.

3.4 Policy search and implementation

In this section, we outline how the differential evolution algorithm works by identifying

all the steps necessary for its successful execution. The algorithm’s job is to search the

solution space and find the optimal policy for variable beam-splitter reflectivity estimation.

The policy implements the estimation procedure such that quantum-enhanced precision is

achieved. In the end, we detail how the code is implemented on Compute Canada clusters
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with necessary parameters in place.

3.4.1 Policy search using differential evolution

The policy-search approach in our case is the direct policy search [16]. This approach

involves waiting until the end of the task to determine %. In direct policy search, the

policy is parametrized and an optimization algorithm is used to search for the parameters

for successful execution. One of the drawbacks of this heavy ‘customization’ is that when the

policy space is large, the algorithm takes a long time to find a feasible solution [14]. That is

why we use a Markovian approach where the size of the policy grows linearly with N [49]. θ̃

in our approach is

θ̃ = Θ0 +
N∑

m=1

(−1)xm∆m, (3.20)

where ∆m is the m-th adjustment that the processing unit makes in the case of Θm−1 in the

light of new information, i.e. the m-th measurement.

The policy search for optimal solutions is achieved by implementing the differential evolu-

tion (DE) algorithm, which is a black-box heuristic optimization algorithm [72]. Differential

evolution uses the sharpness as the fitness function, and not the model-related details to

search the policy space. In our case, the fitness is computed from multiple trials of the same

policy, which enables us to optimize independently from the AQEM dynamics [5]. The DE

algorithm is used to find the optimal % = (∆1,∆2, . . . ,∆N) vector, which is a collection of

controlled adjustments. As the DE algorithm implemented may not always find the global

maximum [72], we look for feasible solutions or solutions that are ‘good enough’ for our

purpose. In that sense, we deal with is a feasibility variant of the optimization problem.

We use DE because evolutionary algorithms perform better in non-convex spaces [59].

We prove the non-convexity of the optimization space using a multi-step process. We first

plot the one-dimensional slices of the landscape and show these are non-convex by analyzing

the structure in the plots. We then reason if the one-dimensional slices are non-convex, the
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multi-dimensional landscape has to be non-convex too [46].

3.4.2 Implementation on a high-performance computer

The estimation algorithm is designed in such a way that the task of finding the fitness values

can be parallelized. This is because due to a great number of calculations, the estima-

tion procedure is computation intensive. Parallelization makes the process more tractable.

Algorithm 1 in the algorithm window shows the pseudocode for AQEM implementation.

In order to parallelize the DE candidates over the cluster machines, we utilize the built-

in Message Passing Interface (MPI) library in C++ [51]. This library is instrumental in

parallelizing the calculation of the fitness function across several cluster CPUs. MPI library

specifies the communication between the CPUs and the memories during the compilation of

the code automatically and optimally [38], and so the same code can be implemented on any

cluster that supports MPI.

We distribute the computation tasks such that there is one candidate per CPU so that the

CPU – CPU communication takes negligible time compared with the time each CPU takes

to compute the sharpness function. It was observed that the random number generation

used in calculating the Holevo variance and the adaptive quantum-enhanced measurement

procedure takes most of the time in a simulated run [49]. Generating random numbers in

real time is not efficient and practical on modern hardware, and so these are stored prior

to the runs to be used by candidates later on. In order to achieve that, we either use Intel

Vector Statistical Library (VSL) that relies on the CPU or the one that relies on the GPU

for its performance [51]. GPU-oriented random number generation is more scalable as it

turns out.

We implement the computational work on Compute Canada clusters [36]. More specif-

ically, we use clusters named Graham and Cedar for the duration of the research project.

Graham is located at the University of Waterloo while Cedar is located at Simon Fraser Uni-

versity. Both of the clusters are heterogeneous in nature suitable for a variety of workloads.
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Algorithm 1 Adaptive variable beam-splitter reflectivity estimation

Input:

UNSIGNED INTEGER N . Number of particles

COMPLEX[ ] |ψN〉 . Input quantum state

REAL[ ] %N . Policy

REAL θ0 . unknown beam-splitter reflectivity ∈ [0, π]

REAL Θ0 . controllable beam-splitter reflectivity (initial) ∈ [0, π]

REAL φ0 . constant phase shift ∈ [0, 2π)

Output:

REAL θ̃ . beam-splitter reflectivity estimate ∈ [0, π]

1: φ0 ← 7π
11

. this can be modified when needed

2: Θ0 ← π
2

3: UNSIGNED INTEGER x

4: REAL ∆

5: for m = 0 to N − 1 do

6: θ ← RandomNumber(θ0)

7: xm+1, |ψN−m−1〉 ← Measure(|ψN−m〉 , θ,Θm) . xm ∈ {0, 1}
8: if xm+1 = 0 then

9: Θm+1 ← Θm −∆m+1 . ∆m ∈ [0, π]

10: else

11: Θm+1 ← Θm + ∆m+1

12: end if

13: end for

14: return ΘN

47



3.5 Algorithm complexity

In this section, we determine the complexity of computing and implementing the variable

beam-splitter reflectivity estimation policy using loop analysis [67].

3.5.1 Policy time cost

The policy time cost is the upper bound on the time cost associated with generating a

policy using differential evolution [49]. For the following calculations, we assume that only

a single processor is used for computing the policy. This is so that we get the upper bound

on the processing time. Parallelizing the policy-search process on multiple CPUs speeds

up the process. We also assume that there is no accept-reject criterion in place and that

the maximum number of particles is 93. This is because the accept-reject criterion kicks

in when N > 93, and the time requirements not only change drastically but also become

unpredictable past that threshold.

The DE is employed to search for the N -particle policy using the (N − 1)-particle policy

as the initial guess [49]. The following DE-related computations contribute to the time cost:

• The outermost loop in the algorithm involves the number of generations Γ before

a policy is accepted. This improves the policy candidates iteratively, and ensures

that Γ ∈ O(N) [43].

• As the size of the DE population is Np, there is a loop of this size for every genera-

tion [49]. We fix Np = Nmax/2 that ensures Np ∈ O(N) [31]. For instance for N = 100,

we have Np = 50.

• Time to execute a fitness function is Ωfit. For each instance of adaptive phase estima-

tion, N particles sequentially pass through the interferometer and are measured. The

input state of size (N −m) is updated after every m-th measurement. The updating

slows the estimation procedure by a constant factor of η1 [49]. As the training phase
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has K = 10N2 instances of the estimation procedure, Ωfit can be written as [43]

Ωfit =
10N2∑

l=1

N∑

m=1

η1(N −m)

=
10N2∑

l=1

η1

2
(N2 −N)

= (10N2)
η1

2
(N2 −N)

= 5η1(N4 −N3). (3.21)

• Time to generate an offspring is Ωoff. Creation of an offspring involves randomization of

candidates, with a constant time cost of η2, and generation with a time cost of η3N [49].

Moreover, η3 is a constant while N indicates the presence of a loop over N elements

Ωoff = η2 + η3N +
η1

2
(N4 −N3). (3.22)

• Time to select a member for the next generation is Ωs [43]. This has a constant time

cost of η4.

The total time cost for generating the policy is then derived to be

τpol =
Γ∑

j=1

Np∑

k=1

(Ωfit + Ωoff + Ωs)

=
Γ∑

j=1

Np

(
5η1(N4 −N3) + [η2 + η3N +

η1

2
(N4 −N3)] + η4

)

=ΓNp

(
5η1(N4 −N3) + [η2 + η3N +

η1

2
(N4 −N3)] + η4

)
. (3.23)

As Γ and Np scale linearly, τpol ∈ O(N6) [72]. Also, in order to compute the policy for N -

particles, (N − 1)-particle policy is required. This means there is another loop with time

complexity O(N6). Using the Gauss summation formula and assuming the initial N value

is 1, the final time complexity for policy generation is O(N7) [49].
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3.5.2 Implementation cost

Implementation complexity is the resource complexity required to implement an AQEM

policy, quantified by the scaling of space and time costs with the number of particles N [68].

The differential evolution algorithm receives the input from the detectors and transmits a

signal to the actuator that adjusts the controllable beam-splitter reflectivity Θ according to

the policy % [49]. The storage of % requires computer memory and its execution requires

time.

In the case of the DE algorithm, we need to determine the maximum size of memory re-

quired to effectively execute the policy and complete the feedback loop. The size of the policy

is the number of parameters involved, which is N [43]. This is because of the generalized-

logarithmic-search heuristic responsible for the controllable beam-splitter reflectivity vector

of size N . This leads to space complexity, as far as the AQEM policy implementation is

concerned, that scales as O(N).

Time complexity is determined from the upper bound of the time cost that is used to

implement a single AQEM shot, i.e., the cost for using all N particles once [49]. While

calculating the time cost, we assume that the time a given particle takes to pass through an

interferometer is constant. We then perform loop analysis, where we count the number of

loops needed to complete the procedure, which we assume all take constant time [67]. The

quantity Θm is computed N times during one run involving N particles. This process is

dictated by the policy %. If the time needed for m-th particle to pass through the interfer-

ometer is Ωp and the time required to calculate Θm+1 is Ωc, then the total time cost for the

execution of variable beam-splitter reflectivity estimation is

τimp =
N∑

m=1

(Ωp + Ωc)

= N(Ωp + Ωc). (3.24)

This shows that the implementation time complexity is also O(N).
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Chapter 4

Results

In this chapter, we report and discuss in detail different aspects of the variable beam-splitter

reflectivity estimation results.

We first look at the variable beam-splitter reflectivity estimates and plot the probability

distributions in the case of two θ values for two photon values each. We then study the

distributions using skewness and kurtosis. Throughout the chapter, kurtosis refers to excess

kurtosis.

Then we calculate the Holevo variance and present the logarithmic plots VH vs the log

of the number of particles, in this case, photons. This is done to see how well the log-

log plots exhibit a linear relationship and also to determine the imprecision scaling. To

provide a wider context, we also produce a plot that displays the scaling for various beam-

splitter reflectivity θ values. The scaling is then compared with the SQL. We then report the

empirical time complexity for the AQEM algorithm and compare the value to the theoretical

time cost. Here we also study the policy generation stage of the estimation process. In the

end, we provide the reader with plots of one-dimensional slices of the multi-dimensional

policy landscape to highlight its characteristics.

Results shown below correspond to that of an ideal interferometer, meaning a Mach-

Zehnder interferometer with no external or internal noise present. We also assume there is
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no photon loss present in the system.

4.1 Distribution of the beam-splitter reflectivity esti-

mates
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Figure 4.1: The distribution of the estimates for different θ values in the case of 50 and 100 photons. (a)

When θ and the target value are π/2, the mean estimate recorded is
¯̃
θ = 0.400π. This run involves 50 photons.

(b) In the case of 100 photons, the mean estimate recorded is
¯̃
θ = 0.571π. (for θ = target value = π/2). (c)

The mean of the estimate distribution is 0.330π when θ = 3π/4 and the target is π/4. (50 photons). (d)

When θ = 3π/4 and the target is π/4 for 100 photons,
¯̃
θ = 0.280π.

In this section, we plot the obtained beam-splitter reflectivity estimate distributions for

two θ values with 50 and 100 photons each. We also list down some important characteristics

of these distributions for further analysis in the next chapter.

During preliminary runs, it was seen that the controllable beam splitter reflectivity con-

verged towards π−θ for any given θ. This was established using 42 photons for 49 different θ

values uniformly randomly chosen in the range 0 to π inclusive. As a result, the algorithm was
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modified by incorporating the knowledge gained. Consequently, the sharpness was altered

such that it ended up being

S =

∣∣∣∣∣
K∑

k=1

exp[i((π − θk)− θ̃k)]
K

∣∣∣∣∣. (4.1)

This updated sharpness formula was used to train the algorithm on K = 10N2 samples of θ

uniformly randomly chosen in the range 0 to π inclusive.

After the training phase, the estimation algorithm was tested using 49 different θ values

uniformly randomly chosen in the range 0 to π inclusive. This was done for 50 and 100

photons in each case.

Fig. 4.1 shows the probability distributions of the beam-splitter estimates θ̃ in four such

cases. The plots were produced with 10N2 θ̃ samples each. The histograms show the estimate

probabilities while the red curve is the best-fit Gaussian. The black dotted line in the figure

is the mean estimate θ̃ in each case. The marks along the abscissa are omitted so that the

estimates mean can be seen easily. Ideally,

θ̃ = π − θ, (4.2)

meaning the closer θ̃ is to π − θ, the better it is. The bias is defined as |(π − θ)− θ̃|.

The plots in Fig. 4.1 (a), (c) correspond to the case when 50 photons were used in the

input state while those in Fig. 4.1 (b), (d) correspond to the 100-photon case. We used

the ones involving 100 photons for further analysis. The plots corresponding to the 50-

photon case provide an insightful contrast and help in understanding the evolution of the

performance of the estimation algorithm.

Table 4.1 contains data regarding the plots shown in Fig. 4.1 that we used to produce

more results in the following sections and to analyze the results in the next chapter.
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N θ π− θ θ̃ Sharpness Skewness SEskew zskew Kurtosis SEkurt zkurt

50 π/2 π/2 0.400π 0.679 −0.004 0.077 −0.023 −0.146 0.155 −0.941

100 π/2 π/2 0.571π 0.992 −0.033 0.024 −1.375 −0.059 0.049 −1.204

50 3π/4 π/4 0.330π 0.631 0.161 0.077 2.091 0.053 0.155 0.342

100 3π/4 π/4 0.280π 0.996 0.038 0.024 1.583 0.028 0.049 0.571

Table 4.1: The sharpness, skewness, kurtosis and related quantities of the probability distributions shown in
Fig. 4.1 are listed. The results are listed for N = 50 photons and N = 100 photons.

The sharpness given in the table was calculated using the updated sharpness formula

given in equation 4.1. We used skewness and kurtosis of a given estimate probability distri-

bution to decide whether it is approximately Gaussian and whether the standard analytical

techniques associated with Gaussian distributions could be used. For this reason, Table 4.1

contains the skewness and kurtosis values for the plots given in Fig. 4.1 (a), (b), (c) and (d).

Here SE is the standard error, which is the standard deviation of the sampling distribu-

tion [63], and z is the z-statistic [23]. SEskew is the standard deviation in the skewness of

the sampling distribution while SEkurt is the standard deviation in kurtosis of the sampling

distribution under consideration. In the case of skewness, z-statistic is

zskew = Skewness/SEskew. (4.3)

Given the results involving skewness and kurtosis and analysis regarding how negligible these

values are, we decided to truncate the expansion series at kurtosis (or at the fourth power).

See Section 5.1 in the next chapter for the relevant discussion.
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4.2 Asymptotic power-law scaling

In this section, we present the log-log plot of Holevo variance vs the number of photons and

determine the imprecision scaling ∆θ̃ ∝ N−ς for select values of beam-splitter reflectivity.

We also calculate the coefficient of determination to ascertain goodness of fit. The data

presented here will be used to discuss various aspects of our work, in the next chapter.
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Figure 4.2: Logarithm of Holevo variance vs log(N) generated using the sine state for N = 4 to 100. The
ideal (no photon loss) experiment was repeated with beam-splitter reflectivities equal to 0.25, 0.5, 0.75 and
0.91. SQL and HL are shown for comparison.

The log(VH) vs log(N) graphs for four of the 49 tested θ values are shown in the Fig. 4.2.

The chosen values are θ = 0.25, 0.5, 0.75 and 0.91. This is done to present a good spread

of θ values for valuable insight. The established bounds, SQL and HL, are also included for

comparison.

In order to produce the plots in Fig. 4.2, Holevo variance was first calculated from

sharpness which itself was calculated from the estimate distributions. This was done for

photon number N = 4 to 100. It was determined during the preliminary runs that the

adaptive procedure does not work properly for N < 4. It would either produce nonsensical

results or the optimization algorithm would not converge at all.

As explained in section 3.3, the VH values for N ∈ {4, 93} were calculated after terminat-

ing the policy search after 100 generations and using the optimized result. For N ∈ {94, 100},
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we accepted a policy only if the VH was within a distance corresponding to a confidence in-

terval of 0.98 from the inverse power-law line. This two-step method gave us the linear plots

that can be seen in Fig. 4.2.

The graphs in Fig. 4.2 have gradients equal to −2ς as VH = WN−2ς . The ordinate

intercepts of the four plots shown are in the range −1.0 to −0.5. These intercepts in the

figure were manually adjusted to give a better comparison. The scaling, W (original ordinate

intercept) and the goodness of fit values are listed in Table 4.2.

As per Table 4.2, the logarithmic plots for the four quoted reflectivities have gradients less

than SQL (gradient = −1.0). This means that, in all four cases, the beam-splitter reflectivity

estimation imprecision (with respect to the photon number) scaled better than SQL. These

scalings were calculated using regression analysis. The goodness of fit or the coefficients of

determination for the cases shown in Fig. 4.2 are greater than or equal to 0.9993.

Reflectivity θ 2ς W R2

0.25 2π/3 1.3351 0.811 0.9994

0.5 π/2 1.3995 0.920 0.9996

0.75 π/3 1.2943 0.387 0.9993

0.91 0.194π 1.1910 1.277 0.9996

Table 4.2: The imprecision scaling, reflectivity, original ordinate intercept (W) and the goodness of fit values
are shown for various beam-splitter reflectivity values.

Fig. 4.3 shows the imprecision scaling of all 49 θ values used in the test phase, performed

using N ∈ {4, 100}. Here is the scaling range:

1.191 ≤ 2ς ≤ 1.4328. (4.4)

Note that in all cases we achieved better than SQL scaling with only 42 photons but the

56



0.0 0.2 0.4 0.6 0.8 1.0
Beam-splitter reflectivity

1.4

1.3

1.2

1.1

1.0

2

SQL

Y = (0.1379 ± 0.0200)X (1.3860 ± 0.0110)

Figure 4.3: The scalings are shown for several beam-splitter reflectivities with no photon loss. The least
squares regression line is included to study the trend exhibited. SQL level is drawn for reference.

simulations were run with 100 photons to prove the efficacy of the technique for this photon

number. Beyond 100 photons, the computational time required to find optimal policies was

impractically high and hence our AQEM scheme is not feasible for N > 100.

In all 49 test cases, the ordinate intercept was found to be in the range −0.997 to 0.131.

Moreover, the coefficient of determination in these cases was calculated to be at least 0.9991.

In order to quantify the trend seen in the scatter plot in Fig. 4.3, a least-squares re-

gression line was included. As can be seen, it shows a positive linear relationship between

the scaling −2ς and the beam-splitter reflectivity estimate θ̃. The equation for the trend

line is Y = (0.1379 ± 0.0200)X − (1.3860 ± 0.0110) where Y is the scaling and X is the

beam-splitter reflectivity estimate. The adjusted coefficient of determination R2 = 0.497.

4.3 Policy space and optimization algorithm

In this section, we plot the one-dimensional slices of the multi-dimensional policy space that

the policy-search algorithm searches for optimal policies. We also publish data regarding the

performance of the optimization algorithm.
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Figure 4.4: The policy-search space is parametrized as ∆m = k/mα where k is a constant. (a) A plot of
sharpness vs α is shown when k = π. (b) A plot of sharpness vs α is shown when k = 3π/4.

The policy landscape is shown in Fig. 4.4(a), (b). These one-dimensional slices of the

multi-parameter landscape is parametrized as ∆ = k/mα where k is a constant. As α varies

from −0.5 to 5.1, the landscape changes drastically. This is because the sharpness changes

quite drastically over the plotted range. The goal of the policy-search algorithm is to find

the global maximum (or find the max sharpness value), which leads to the minimum Holevo

variance.
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Figure 4.5: The adjustments ∆m executed by the processing unit to control the beam-splitter reflectivity Θ
in a 100-photon AQEM scheme.

Figure 4.5 shows a plot of successive adjustments ∆ that the processing unit is implement-

ing in order to achieve quantum-enhanced precision. The plot was generated with θ = π/3

(reflectivity = 0.75) in the case of 100 photons. The collection of all the adjustments forms

58



the policy % for this particular case. This policy lives somewhere on the policy landscape

small sections of which are shown in Fig. 4.4.

Theoretical value Empirical value

Policy generation time cost O(N7) O(N7.338)

AQEM implementation time cost

(given the policy)
O(N) O(N1.261)

Table 4.3: Theoretical and empirical values shown for generating the policy and for implementing the AQEM
algorithm

The optimization algorithm’s performance can be evaluated by analyzing the resource

cost incurred during empirical runs. The empirical time cost along with the theoretical time

cost for the AQEM algorithm is listed in Table 4.3. As can be seen, the empirical value

scales slightly worse than the theoretical one both for finding the optimal policies and for

implementing the AQEM scheme once the policy has been found. The empirical values

quoted were calculated using the time spent during the training phase using 93 photons.

The average over all the different θ cases was taken to get the final value.

All of the simulations were implemented on Compute Canada clusters with 12 identical

cores. Assuming the time taken to communicate between cores was negligible, the total time

taken by a given task was 12 x time taken on one cluster. This is a reasonable approach

because the task was distributed equally across 12 cores. Table 4.3 shows this led to scalings

that are close to the theoretical upper bounds for optimization and implementation within

the algorithm.
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Chapter 5

Discussion

In this chapter, we analyze the results reported in the previous chapter. First we study the

beam-splitter estimate distributions using cumulants (throughout the chapter, kurtosis refers

to excess kurtosis). We see if the plots are approximately Gaussian or not using commonly

used tests of normality. We also entertain the idea that the control beam splitter’s role can be

described as that of a ‘compensator’. Moreover, we investigate the logarithmic plots and the ς

values for different reflectivities and interpret the results including any subtleties involved.

Furthermore, we look at the factors that lead to the discrepancy between the empirical and

theoretical time cost of implementing the algorithm and finding the optimal policy. We

also explain why the one-dimensional policy landscape parametrized by α establishes the

non-convexity of the entire policy space.

5.1 Distribution of the beam-splitter reflectivity esti-

mates

In this section, we analyze the distribution of beam-splitter reflectivity estimates θ̃. More

specifically we decide whether the distribution plots are approximately Gaussian or not using

normality tests.
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Figure 5.1: The graphs for r = cos2(θ/2) and for r = cos2((π − θ)/2) when θ ∈ [0, 4π − 1] are shown.

One of the crucial building blocks of the estimate probability generation is the controllable

beam splitter. This beam splitter, parametrized by Θ, can be thought of as ‘compensating’

the non−50 : 50 dynamics of the first beam splitter. When both beam splitters are 50 : 50

ones, then the input state is balanced in that an equal number of particles are injected into

both ports. This is no longer the case with non−50 : 50 beam splitters. The non−50 : 50

nature of the first beam splitter makes the ratio of the injected particles different from 1 : 1.

For example, in a 60 : 40 beam splitter, the ratio of the particles that are injected into

the two ports is 3 : 2. In this case, the algorithm devises a policy such that the control

beam splitter converges towards a 2 : 3 or a 40 : 60 configuration. This is equivalent to

having Θ = π − θ.

In the preliminary simulation runs, we observed this convergence in action. We used 42

photons in order to establish this as it was time and resource saving. We observed a 20% de-

crease in the run time after we modified the algorithm to include the knowledge gained. More

specifically, we modified the policy-search algorithm such that it preferentially converged to-

wards the Θ ≈ π − θ region. We also modified the sharpness as shown in equation 4.1.

Fig. 5.1 shows the graphs for the unknown and the control beam-splitter reflectivities.

These graphs are not empirical results, instead, these are analytical reflectivities for visual-

izing the behaviours of the two beam splitters.

Fig. 4.1 shows the estimate distributions with their relevant characterizing values popu-
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lating Table 4.1. Fig. 4.1 (a) in particular shows the distribution for θ = π/2 in the case of 50

photons. In order to decide whether the estimate distribution is approximately Gaussian and

whether the skewness and kurtosis are within tolerable limits, we used the standard errors

for skewness and kurtosis. These in turn were used to calculate the corresponding z scores

listed in Table 4.1.

For the plot shown in Fig. 4.1 (a), the skewness was calculated to be −0.004. Its zskew

score shows that the sample skewness is 0.023 standard errors below the mean of zero [64].

A plot with the zskew-score that is twice the size of the standard error of skewness is usually

taken to be non-normal in nature [34]. In other words, a given distribution’s skewness is

within tolerable limits if

− 2 ≤ zskew ≤ 2. (5.1)

This corresponds to the 95% confidence interval which means if this holds true then there is

only 5% probability that this level of skewness comes from a non-normal distribution [64].

There is a similar test involving kurtosis.

As |zskew| = | − 0.023| < 2 we suspect that the probability distribution given in

Fig. 4.1 (a) is Gaussian. Moreover, as |zkurt| = | − 0.941| < 2 , we conclude that the es-

timate distribution given in Fig. 4.1 (a) is Gaussian indeed. This demonstrates that the

skewness and kurtosis for this distribution are within tolerable limits.

The negative value for skewness in Fig. 4.1 (a) indicates that the distribution is skewed

in the negative direction. The negative kurtosis value indicates that the distribution tails

are heavier compared to Gaussian tails [34]. This usually results in a smaller-than-Gaussian

peak. This is not true in this case. In fact, the opposite is true. The plot has ‘lighter’-

than-Gaussian tails because the θ domain is compact. θ only varies in the range 0 to π

inclusive. This should, in principle, make the peak of the normalized distribution larger

than a standard Gaussian peak leading to a positive kurtosis value. The table shows negative

kurtosis probably because of the lack of enough samples. As the kurtosis is tolerable, the

negative value is not problematic.
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Based on the data provided in Table 4.1, we conclude that the plot shown in Fig 4.1 (b) is

approximately Gaussian. This is because both the |zskew| = | − 1.375| and |zkurt| = | − 1.204|

are less than 2 and therefore, the skewness and kurtosis are within tolerable limits. Negative

skewness in this case illustrates that the distribution is skewed in the negative direction. In

other words, there are more data points on the ‘negative’ side of the distribution leading to

asymmetry [64].

Applying the stated tests of normality, it can be seen that the plot shown in Fig 4.1 (c)

is not approximately Gaussian while the one shown in Fig 4.1 (d) is. Notice both of these

plots have the positive kurtosis as expected.

The estimate distributions in all 49 test cases were analyzed for 50 and 100 photons and it

was concluded that the skewness and kurtosis are within a tolerable range for only 100 pho-

tons. In other words, all tested 100-photon estimate distributions passed the normality tests

involving skewness and kurtosis. Most of the 50-photon cases failed normality tests prob-

ably because there are not enough data to populate the estimate probability distributions

such that they exhibit approximately Gaussian behaviour. Apart from the data presented in

Table 4.1, this can be verified by observing that the 50 photon plots in Fig. 4.1 (a), (c) look

less Gaussian than their 100 photon counterparts given in Fig. 4.1 (b), (d). This is because

the histograms in Fig. 4.1 (a), (c) don’t closely follow the shape of the fitted red Gaussian

curves. Furthermore, these distributions are choppier and also have more outliers.

Once we established that the 100 photon regime was our area of interest, we truncated

the expanded series and our analysis at kurtosis or the fourth power in the series. This is

because in all cases involving 100 photons, the skewness and kurtosis are negligible and so

all higher powers must be too.
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5.2 Asymptotic power-law scaling

In this section, we discuss the asymptotic power-law scaling displayed in the plots shown in

section 4.2. We also comment on the goodness of fit and write in detail about the implications

of the results presented.

In the testing phase, we kept the θ value constant for generating the θ̃ distribution for a

particular beam-splitter reflectivity value and ultimately the sharpness using the distribution.

That meant modifying the sharpness ( Eq. 3.14) such that θ ended up without a subscript:

S =

∣∣∣∣∣
K∑

k=1

exp[i((π − θ)− θ̃k)]
K

∣∣∣∣∣. (5.2)

This modified formula was used to produce the graphs shown in Fig. 4.2. As mentioned in

section 4.2, these graphs were produced for N ∈ {4, 100}. For N = 1, 2 and 3, there are only

a handful K values available for training the algorithm as shown in Table 5.1. This led to

inadequate training. Increasing the size of the training set did not work either. The adaptive

quantum-enhanced measurement procedure did not work very well even with N = 4 but it

did not return nonsensical results. That is why we chose that as our starting photon number.

N 1 2 3

K = 10N2 10 40 90

Table 5.1: K values are shown for N ∈ {1, 2, 3}

The optimization process becomes increasingly time-consuming after N = 93 predomi-

nantly because there is an accept-reject criterion in place in this regime. Without this extra

measure in place, we failed to get a linear log-log relationship and in turn the quantum-

enhanced precision for N ∈ {94, 100}. Although with the stated criterion in place we did

get a linear relationship with high accuracy and managed to beat SQL, we failed to scale

beyond N = 100 even with parallelization built in the optimization algorithm. The employed
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scheme was able to achieve the goal of the project, i.e. better-than-SQL reflectivity scaling

with respect to the photon number. If we had used coherent state instead of the sine state

as the input we could not have beaten the SQL. This is because the coherent state achieves

SQL but does not surpass it [19].

Apart from scaling, ordinate intercept plays an important role especially when it comes

to implementing our scheme in a lab setting. After taking log on both sides, VH = WN−2ς

becomes

log(VH) = (−2ς) log(N) + log(W ), (5.3)

where W is the constant of proportionality. As −0.997 ≤ log(W ) ≤ 0.131, this leads

to 0.1 ≤ W ≤ 1.352. Therefore with 100 photons, the largest error or ∆θ̃ is only 0.116

or 11.6% when the estimation scheme is just hitting the SQL precision level. Our results are

better than SQL and hence the largest error in our case is smaller than 11.6%.

Table 4.2 shows the goodness of fit values for select θ values. We used the adjusted

coefficient of determination in our work because there is a non-zero bias b present in the

output (estimate distributions). As can be seen, the R2 values are very close to 1 indicating

that there exists a strong linear relationship between the log(VH) and log(N). This means

that the variance in log(VH) can be predicted by log(N) with more than 99.9% confidence [1].

In other words, there is less than 0.1% chance that there does not exist any linear relationship

between the two quantities along the axes in Fig. 4.1. All 49 values tested manifested a

similarly high level of goodness of fit.

As can be clearly seen, a small number of data points in the plots shown in Fig. 4.2

deviate from the trend shown. This gives rise to bumps and depressions in the trend line.

These are sampling errors.

The scatter plot shown in Fig. 4.3 also exhibits a linear relationship, but not a very good

one. According to the trend line equation, the scaling gets closer to SQL as θ is increased

from 0 to π. That is, the scaling is getting worse in general in that direction. Due to wide

variability and the fact that most of the data points are located at considerable distances
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from the trend line, the adjusted coefficient of determination is only 0.497. This means that

the trend line can only explain less than half of the variation possessed by the plot [1]. Due

to the lack of any strong patterns and data, we cannot comment on why the trend is the

way it is. This makes it difficult to explain the scatter in physical terms and in terms of the

equipment and approach-related dynamics. Fully interpreting this scatter plot can very well

be the subject of future research work.

Although the policy-search algorithm successfully navigated the solution space and re-

turned a policy that achieved better scaling than SQL with respect to the number of photons,

it did not find the global maximum. This is evident from the fact that we did not get sym-

metric scaling on either side of the reflectivity 0.5 in the plot (Fig. 4.3). As the reflectivity

varies symmetrically on either side of r = 0.5, we believe that the policy residing on the

global sharpness maximum would have given symmetrical scaling on either side of r = 0.5.

This is not true in our case leading us to conclude that there is room for improvement as far

as policy-search goes.

5.3 Policy space and optimization algorithm

In this section, we analyze the policy landscape plotted in section 4.3. We discuss why it

looks the way it does and also how does the optimization process work in this case. We also

remark on the performance of the optimization performance.

Fig. 4.4 (a), (b) show one-dimensional slices of the multi-dimensional policy landscape.

In Fig. 4.4 (a) for instance, the landscape is highly uneven and has several sharpness crests

and troughs, some of which correspond with α = 0.4, 1.2, 4.5. The peak at α = 0.4 is the

global maximum while all the other peaks are local maxima. Notice that we parametrized

the landscape as ∆m = k/mα. This is because of the plot shown in Fig. 4.5, which shows

the policy in action, in the case of one of the 100 photon test runs. Initially, the processing

unit implements course adjustments so as to get close to the analytical solution. Later, the
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adjustments become more and more refined as more knowledge from the measurements is

gathered and utilized. The plot in Fig. 4.5 roughly follows the power law k/mα justifying

how the landscape in Fig. 4.4 is parametrized.

α = 1 α = 2 α = 3

∆1 π π π

∆2
π
2

π
4

π
8

∆3
π
3

π
9

π
27

∆4
π
4

π
16

π
64

Table 5.2: ∆m = k/mα values are shown for k = π and α ∈ {1, 2, 3}

In Fig. 4.4, the landscape slices shown are not smooth. For instance in Fig. 4.4(a), there is

a sharp sharpness peak corresponding to α = 0.5. Similar non-smooth areas can be identified

in both of the slices. We could not achieve smoothness even with more samples.

The policy-search algorithm’s job in our work is to search the landscape small sections

of which are shown in Fig. 4.4 (a), (b). The goal is to search the policy % or the collection of

adjustments ∆ for changing the control beam splitter’s reflectivity in an optimal manner after

every photon measurement. The adjustments ∆ for various locations in the landscape slice

in Fig. 4.4 (a) are shown in Table 5.2. Notice, depending on the value of α the algorithm has

the potential to end up at radically different sharpness values in Fig. 4.4 (a). This indicates

the presence of several minima and maxima in the landscape. Given the data in Table 5.2

along with the shape of the plot shown in Fig. 4.4 (a), it is easy to see that the plot is non-

convex. This demonstrates that the entire multi-dimensional policy landscape is non-convex.

This is because if a given landscape is non-convex at dimension d, it must be non-convex at

every dimension greater than d [46]. The landscape slice with a different parameter value is
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shown in Fig. 4.4 (b) to further demonstrate the non-convexity of the space in question.

An algorithm that converges at any of the local maxima in such a landscape essentially

fails to find the global maximum. This shows the need for non-convex optimization. Al-

though our algorithm managed to find the required policy for achieving quantum-enhanced

precision, it failed to find the global maximum as demonstrated in the previous section.

The algorithm’s ability to find a feasible solution is not the only thing that makes it

usable and practical. The time an algorithm takes to find that solution is also highly relevant.

Table 4.3 lists the theoretical and the empirical values for the time the algorithm takes to

generate an optimal policy and to implement AQEM when the policy has been found. In

both cases, as is evident, the empirical scaling is slightly worse than the theoretical upper

bound. The worse scaling in both cases might be attributed to the fact that the inter-core

communication time is not negligible. It might also be due to inefficiencies in the way the

cluster hardware is set up. Moreover, the code itself probably contains unoptimized sections

among other difficult to pin-down reasons.
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Chapter 6

Conclusion

In this chapter, we summarize the main findings and approach that we took to solve the adap-

tive quantum-enhanced variable beam-splitter reflectivity estimation problem. We discuss

how the setup and the policy-search algorithm gave the intended results. We also explore

any future research projects that our work could potentially be a stepping stone for.

6.1 Summary

In this work, we considered a two-mode Mach-Zehnder interferometer with a constant phase

shift in one of the arms. Additionally, we introduced beam-splitters with variable reflectiv-

ities. The first beam splitter had the unknown reflectivity θ while the second one had the

controllable reflectivity Θ and was connected to a processing unit.

This is a U(1) rotation problem involving a U(1) subgroup that is different from the one

involved in phase estimation. Geometrically speaking, the goal of the research work was to

estimate the unknown axis in the equatorial plane the initial state was rotated about.

The input state used for the project was the permutationally symmetric and loss-tolerant

sine state. A total of 100 photons were sent through the interferometer such that every pho-

ton interacted with the quantum system (the interferometer) in a sequential manner. Two

detectors, one for each arm, detected the photons on the other end and the measurement
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results were communicated to a processing unit that controlled the reflectivity of the control-

lable beam splitter. The job of the processing unit was to ‘guess’ the unknown beam-splitter

reflectivity θ and adjust the Θ value after every photon measurement. The estimate got

better as more and more sequential measurement data was accumulated. The processing

unit varied the Θ value such that the imprecision of the θ estimate (or θ̃) scaled better than

SQL. Here the better-than-SQL scaling is the precision with which the employed scheme was

able to achieve the unknown reflectivity estimation.

The processing unit controlled the Θ value as dictated by the policy determined by the

DE algorithm. The policy determined the value of any given Θ by taking the value of the

preceding Θ and either adding or subtracting the adjustment, ∆, from it. This method of

determining the optimal policy was the basis of the adaptive measurements. The policy

decision space turned out to be a binary decision tree with 2N − 1 paths where N being the

number of particles used, photons in this case.

Differential evolution algorithm was employed for searching the solution space for optimal

policies. DE is inspired by how genes combine and mutate and how biological reproduction

takes place at the genetic level. A given number of candidate solutions are randomly gener-

ated in the beginning. Then the best performing solutions are combined and ‘mutated’ to

produce the next generation of solutions. This ensures that the solutions get better at the

task at hand with every generation. This process is repeated until a good enough or best

solution is found.

We implemented the adaptive quantum-enhanced variable beam-splitter estimation pro-

cedure for 10N2 different θ values. These values were chosen randomly from a uniform distri-

bution in the range 0 and π. This way we trained the algorithm while minimizing overfitting.

During preliminary runs, it was found out that the Θ value was converging towards π − θ.

For that reason, the controllable beam splitter can be thought of as a compensator as it

compensated for the non−50 : 50 nature of the first beam splitter.

The probability distributions of reflectivity estimates showed non-zero skewness and kur-

70



tosis associated with non-normal plots. It turned out that the skewness and kurtosis were

well within the tolerable limits and therefore, the usual techniques associated with Gaussian

distributions could be used for further analysis.

The sharpness was calculated from the estimate-distribution plots, which was then used

to calculate Holevo variance. Thereafter, the variance was used to plot the log-log plot of

Holevo variance vs the number of particles N for N ∈ {4, 100}. It was found that the

estimate imprecision (∆θ̃) scaled better than SQL (or O(N−0.5)) in all 49 test cases. The

unknown beam-splitter reflectivities θ used in those cases were uniformly randomly selected

in the range 0 and π inclusive. The adjusted coefficient of determination R2 was calculated

to be at least 0.9991 in these cases.

This proves that DE showed good performance when it came to finding quantum-enhanced

estimation policies, which is a non-convex optimization task given our problem. We proved

that by plotting the one-dimensional slices of the policy landscape. The non-convex nature

of these plots indicated that the entire multi-dimensional policy landscape is non-convex.

We started the DE-based optimization process with 50 randomly generated solutions and

ended the process after 100 generations for N ∈ {4, 93}. This is because it returned good

enough estimates for our problem. For N > 93, we accepted a policy only if VH was within a

distance corresponding to a confidence interval of 0.98 from the inverse power-law line. We

ran the algorithm for up to 100 photons beyond which point the computation cost became

too high for the simulation to be practical. As the solution space was highly non-convex,

we took extra measures to make the optimization process tractable. Some of these measures

included parallelization of the calculations involved and vectorization for efficient processing.

Although the policy-search algorithm successfully navigated the non-convex solution

space and returned policies that achieved better than SQL scaling with respect to the num-

ber of photons, it did not find the global sharpness maximum. This is evident from the

fact that we did not get symmetric scaling on either side of the reflectivity 0.5. We did

however get a linear trend with a positive gradient with respect to the scaling and the un-
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known beam-splitter reflectivity θ. This trend is not strong enough to tie it to the dynamics

involved.

The time cost of the algorithm scaled as O(N7.338) for the policy generation and O(N1.261)

for implementing the AQEM policy. This is when only one CPU was used for implementing

the optimization and the estimation scheme. The simulation was run on a cluster with 12

identical cores to decrease run time.

As the algorithm did not use any knowledge of the model, the scheme is model-free and

data-driven. This ensures that the existing code library can be used in the presence of noise,

something that is difficult to accomplish with model-dependent methods.

The algorithm is a collection of modules so that it can be modified and extended for a

given quantum metrology problem. It is written in C++ with download and installation

instructions and the link provided in Appendix A.

Our work set the stage for two-parameter and multi-parameter quantum-enhanced esti-

mation schemes, which could potentially achieve higher parameter-estimation precision.

6.2 Future research

Our work can be used and extended in several ways.

1. As shown in Fig. 4.3, there is a weak linear relationship between the imprecision scaling

and the unknown beam-splitter reflectivity θ. We failed to rationalize the given trend

given our approach, the technique and the results collected. A future study could

potentially collect more data, study the trend in more detail and shed some light on

the results.

2. Adaptive variable beam-splitter reflectivity estimation with photon loss is the next

logical step. The input state used in our work has been shown to be robust against

photon loss [49]. The inclusion of photon loss in the scheme will help replicate lab

conditions better.
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3. AQEM schemes with variable beam-splitters in a noisy environment will replicate an-

other factor very common in lab-like conditions. In order to study noise, several noise

models can be included in the simulation. Telegraph, skew-normal and log-normal

noise models are good places to start. The data can be collected and analyzed in each

case for different values of noise model parameters.

4. Another research path includes multi-parameter estimation problems. A two-parameter

system where both phase and beam-splitter reflectivities are variables is an interesting

line of inquiry. Note that this problem is computationally and analytically harder to

tackle.

One way to devise a two-parameter estimation scheme is to deform or modulate the

input state, starting with the sine state, until quantum-enhanced precision is achieved.

Sine state distributes the photons equally across the two ports of the beam splitter.

By lifting this constraint and varying the ratio of photons across the ports, quantum-

enhanced precision may be achieved for variable phase φ and variable reflectivities θ

and −θ for the two beam splitters respectively.

Another way to approach the problem is by introducing a controllable phase Φ in

the second arm of the interferometer and a controllable reflectivity Θ in the second

beam splitter. It would then be interesting to see if the quantum-enhanced precision is

achieved in the presence of a variable phase φ and a variable reflectivity θ in the first

beam splitter. The algorithm’s task in this case would be to find an optimal policy

that does the job described.

The successful two-parameter estimation scheme might involve some combination of

the approaches listed.

5. More-than-two-parameter estimation problems are farther down the road. Insights

gained from one-parameter and two-parameter schemes can be employed to deal with

such problems.
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Appendix A

Evolutionary algorithm for variable

beam-splitter reflectivity estimation

The appendix contains excerpts from the software documentation available on GitHub. The

repository link is given below.

A.1 About the software

The software is created by modifying the library initially developed by Pantita Palittapon-

garnpim and Peter Wittek for phase estimation [49]. The modified library is designed to

assist researchers in the construction of policy-search algorithms for estimating unknown

beam-splitter reflectivity in a Mach-Zehnder interferometer. The software’s modules can

be altered for solving other quantum control problems. Given below are some of the main

features of the software [49].

• Library in C++

• MPI support

• VSL and GPU support for random number generation
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• Includes a module for differential evolution (DE)

• Includes uniform and clustered method of initializing solution candidates

• Includes access to user-specified accept-reject criteria

A.2 Copyright and license

This is free software made available under the GNU GENERAL PUBLIC LICENSE, which

means you can share, modify, and redistribute this software. While we endeavour to make

this software as useful and as error-free as possible, we cannot make any such guarantee, and

the software is hence released without any warranty [49].

A.3 Download link

The download and installation instructions can be found here: https://github.com/thehamzaq/

Variable-reflectivity_beam-splitter_estimation.
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