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Abstract

Quantum theory predicts an inherent joint unpredictability for some pairs of mea-

surements. For example, Heisenberg showed that the more precisely the position of

a quantum particle is known, the less precisely its momentum can be known and

vice versa. Uncertainty relations (URs) are mathematical expressions quantifying the

constraints between the output probability distributions of the given sets of mea-

surements. Typically, URs are expressed in terms of uncertainty quantifiers such as

entropies. Based on an information-theoretic approach, we discovered a characteriza-

tion that unifies all uncertainty quantifiers and thus, generalizes a large class of URs

into a single framework. We also prove new URs that are fundamentally different

from typical URs in that they are fine-grained; i.e. they set restrictions directly on

the output probability distributions without using any particular uncertainty quan-

tifiers. We used Majorization theory and other techniques such as matrix analysis to

prove our fine-grained uncertainty relations.
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Chapter 1

Introduction

Quantum theory portrays a spooky picture of the universe. One of the distinctive

properties of quantum theory is the inherent unpredictability of quantum measure-

ments. Heisenberg showed that measurements of position and momentum for a single

quantum particle are incompatible: the more precisely the position of a particle is

known, the less precisely its momentum can be known and vice versa [1].

An uncertainty relation is a quantitative statement expressing unpredictability

constraints associated with a set of quantum measurements. There exist various

uncertainty relations, and each of them use diverse mathematical functions to quantify

the uncertainty associated with a quantum measurement. For example, in his famous

uncertainty relation, Heisenberg uses standard deviation of position and momentum

as the uncertainty quantifier, while information theorists, mostly use entropies as the

preferred uncertainty quantifiers [2].

Different uncertainty relations use not only different uncertainty quantifiers, but

also different approaches to express the connection between the uncertainties asso-

ciated with the measurements. Typically, the collective uncertainty associated with

the set of two (or more) measurements is quantified by a mathematical function con-

structed from a combination of uncertainty quantifiers. For instance, Heisenberg uses

the multiplication of the two standard deviations to describe his uncertainty relation,

whereas in other types of uncertainty relations, the addition of two entropies are be-

ing used. We call the mathematical functions that quantify the collective uncertainty

associated with two or more measurements joint uncertainty quantifiers or quanti-
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fiers of joint uncertainty. Most uncertainty relations are formulated in terms of joint

uncertainty quantifiers.

In this thesis, our primary goal is to use information-theoretic principles to iden-

tify the “common essence” of all uncertainty quantifiers, thereby defining notions of

uncertainty and joint uncertainty independent of any quantifiers. Our formalism uni-

fies all existing quantifiers of uncertainty and joint uncertainty. But, the important

result of this work is that it unifies a large class of quantum uncertainty relations

into a single framework. Also, to illustrate the utility of our formalism, we derive a

new quantum uncertainty relation based on an unexplored joint uncertainty quanti-

fier (see [3]). Ultimately, we use our formalism to prove a new class of fine-grained

uncertainty relations (see section 4.3).

In this work we only focus on the ‘quantum uncertainty of preparation’. The

following example clarifies the concept.

1.1 Example: Quantum Uncertainty of Preparation

How can two quantum measurements be uncertain at the same time? Consider the

following simple example: “Measuring a qubit with respect to two different bases”.

A qubit (quantum bit) is a two-level quantum system, e.g. the spin of an electron,

or the polarization of a single photon. The state of a qubit is described by a norm-one

2-dimensional complex vector |ψ〉 in C2. Assume that the description of an arbitrary

qubit |ψ〉 in the canonical basis {|0〉, |1〉} is:

|ψ〉 = α|0〉+ β|1〉, (1.1)

where α, β ∈ C with |α|2 + |β|2 = 1. For simplicity, assume that α and β are real. So,

we can visualize our qubits with unit vectors in a 2D plane.

2



We model quantum measurement with respect to {|0〉, |1〉} by a device that inputs

a quantum state |ψ〉 and outputs an scalar value: either 0 or 1. Imagine that we can

prepare the input qubit as

|ψ〉 = cos(θ)|0〉+ sin(θ)|1〉. (1.2)

Then, the measurement outputs 0 and 1 with probabilities p0 and p1, respectively:

p0 = cos2(θ), (1.3)

p1 = sin2(θ). (1.4)

Consequently, for some arbitrary preparation of |ψ〉 (for an arbitrary θ), we will

not necessarily be able to predict the outcome the measurement with full certainty.

We can only calculate the output probability distribution of the measurement, (p0, p1).

This kind of randomness in the output of a quantum measurement can be removed.

For instance, we can prepare the state in |ψ〉 = |0〉 (which corresponds to θ = 0)

and thus obtain (p0 = 1, p1 = 0), i.e. a fully certain (predictable) outcome. We can

also prepare the state in |ψ〉 = (|0〉+ |1〉)/
√

2 (which corresponds to θ = π
4
) and thus

obtain (p0 = 0.5, p1 = 0.5), that is the fully uncertain (unpredictable) outcome.

The canonical basis is not though the only available choice we have for our mea-

surement basis. In fact, we can perform measurements with respect to any other

bases. For example, consider the measurement with respect to the basis {|+〉, |−〉},

where |+〉 ≡ (|0〉+ |1〉)/
√

2 and |−〉 ≡ (|0〉− |1〉)/
√

2. As the description of the same

qubit (see (1.2)), in {|+〉, |−〉} is

|ψ〉 = sin
(
θ +

π

4

)
|+〉+ cos

(
θ +

π

4

)
|−〉, (1.5)

the resulting output probabilities of measuring this qubit with respect to the new

3



Figure 1.1: Visualization of quantum states in a 2D plane.

basis is:

q+ = sin2
(
θ +

π

4

)
, (1.6)

q− = cos2
(
θ +

π

4

)
; (1.7)

where q+ and q− are the probabilities of obtaining |+〉 and |−〉, respectively. See

Fig 1.1 for a visualization of |ψ〉 and the two measurements bases.

Now consider the relationship between the output probability distributions asso-

ciated with the set of two quantum measurements, (p0, p1), and (q+, q−). There exists

a constraint on the values that (p0, p1) and (q+, q−) can take: we can never prepare

our qubit in such a way that makes (p0, p1) and (q+, q−) fully certain together (see

Fig. 1.2). For example, if the qubit is prepared in the state |ψ〉 = |0〉, the first out-

put distribution is completely certain (or totally predictable), i.e. (p0 = 1, p1 = 0),

whereas the second measurement is completely uncertain (or totally unpredictable);

i.e. (q+ = 1/2, q− = 1/2).

We can quantify these quantum uncertainty constraints with many different ways.

For instance, we can prove that for a given p0 the value of q+ resulted from the very
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Figure 1.2: Constraints on the output probability distributions: p0 and q+ cannot be
0 or 1 for a same θ. For preparations (θ’s) for which p0 is more certain (closer to 0 or
1), q+ becomes more uncertain (closer to 1/2) and vice versa.

same preparation is always either of the following: q+ = 1
2
±
√
p0(1− p0). The

important fact is that if the two given probability distributions are simulated by two

classical random processes they will never be correlated in the exact same way that

(p0, p1) and (q+, q−) are correlated here. This was one simple example of the quantum

uncertainty of preparation.

In summary, quantum mechanics predicts some specific uncertainty constraints for

a given set of quantum measurements. If these measurements are incompatible (non-

commuting), then according to the laws of quantum mechanics any state preparation

that makes either of the measurements more certain makes the other more uncertain.

In this thesis we only study the uncertainty relations and uncertainty constraints

of the output probability distributions resulted from a given set of quantum measure-

ments in the preparational setting. Our results, theorems and uncertainty relations

are not necessarily hold for other probability distributions simulated by any classical

stochastic processes.
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1.2 Background and Motivation

Historically, the first and thus far the most famous statement about the inherent un-

certainty about the outputs of a pair of quantum measurements is the Heisenberg’s

uncertainty principle. He showed that position and momentum measurements of a

single quantum particle are jointly uncertain (meaning that at least for some prepa-

rations, one of the measurements is uncertain). This quantum uncertainty can be

quantitatively stated via the following uncertainty relation (UR)

∆x∆p ≥ ~
2
, (1.8)

where ∆x and ∆p are respectively the standard deviations of position and momentum

measurements, and ~ is the reduced Planck constant [1].

There exist many quantum uncertainty relations, each capturing one aspect of the

quantum uncertainty principle. Some of these URs use standard deviation as their

uncertainty quantifier, whereas others are formulated in terms of entropies. One well-

known example of an entropic uncertainty relation (EUR) is the relation proved by

Maassen and Uffink [4]. Let H1(A) = −
∑

x px log px denote the Shannon entropy

associated with measurement A with respect to {|ax〉}, where px is the probability of

obtaining |ax〉 at the output of the measurement. Maassen and Uffink showed that for

two quantum measurements A and B with respect to two orthonormal bases {|ax〉}

and {|by〉}

H1(A) +H1(B) ≥ −2 log η(A,B), (1.9)

where H1(A) and H1(B) are respectively the Shannon entropies associated with out-

put probability distributions of A and B, and η(A,B) is a positive constant depending

only on the two quantum measurements A and B.
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In this thesis, we introduce a general framework that unifies a large class of un-

certainty relations. The importance of gaining a better insight about a fundamental

feature of the quantum theory is a strong motivation for our efforts. In addition,

uncertainty relations, especially EURs, have a lot of applications in many research

areas including quantum information theory (see for example [5–7]). For a compre-

hensive list of works and applications of different URs we point to these excellent

recent surveys [8, 9].

Despite the growing trend for optimizing the lower bounds of different EURs

(e.g. [10–13]), the aim of this thesis is to study the concepts of uncertainty, joint

uncertainty, and quantum uncertainty relations from an information-theoretic per-

spective. Majorization theory and quantum mechanics form the foundation of this

thesis. A quick review of the notions that are vital for understanding the main results

of this work is presented in chapter 2. We explain our formalism and our axiomatic

definitions of valid uncertainty and joint uncertainty quantifiers in chapter 3. Employ-

ing the techniques developed in chapter 3, we prove results about quantum mechanical

uncertainty relations in chapter 4. We conclude this thesis with our conclusions and

a discussion about possible future work in chapter 5.

1.3 Clarifications and Summary of Results

In the literature, the uncertainty of a variable has almost always been discussed in

terms of functions that quantify “the amount of uncertainty”. The famous examples

of such quantifiers are the Shannon entropy and its extended family of Rényi entropies,

geometric norm-based quantifiers such as the quadratic variance, etc. In most cases,

there is a clear operational meaning for such quantifiers, rendering them well-suited

to their various applications. Similarly, when two or more experiments with random
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outputs are under study, quantifiers of joint uncertainty have been constructed by

two usual approaches: either by combining single-variable uncertainty quantifiers

mathematically, or by considering operational combined tasks that involve all the

experiments of interest.

In the present work, we extract the common thread beneath the operational de-

scriptions of all such (single or joint) uncertainty quantifiers. Our argument is based

on some simple operational axioms that are independent of the quantifier used to

quantify uncertainty. Therefore, our approach gives a more intrinsic look at the con-

cept of uncertainty.

The axioms we will introduce are motivated by information-theoretic principles

and are intended to be as objective as possible. Considering the inherent challenges

in such a requirement, we restrict the generality of our treatment in the following

ways. First, we only study the notions of uncertainty applicable to classical ran-

dom variables. In particular, this class of variables includes the classical outcomes

of quantum-mechanical measurements. Second, we restrict our work to discrete ran-

dom variables; in fact, we consider only random variables with finite outcome space.

We make some tentative suggestions about the treatment of discrete and continuous

infinite-dimensional cases, but leave the actual extension for future work. Finally, to

compare the uncertainties of different variables, we will require the compared vari-

ables to represent the same type of physical quantity. For example, comparing the

uncertainties of two different length variables will be possible within our formalism,

but comparison between a length uncertainty and a mass uncertainty is not allowed.

The crux of this thesis are the following axioms:

1. Our knowledge of a variable cannot increase under any processing with-

out addition of new information about the variable.

8



2. The uncertainty in a variable representing a physical observable is in-

variant under the symmetry transformations of the observable.

3. The joint uncertainty of several variables is a valid concept even without

an underlying operational description that combines those variables.

The first two axioms are inspired by earlier approaches [14–16] to quantifier-

independent notions of uncertainty, wherein the connection between uncertainty and

a mathematical concept called majorization was utilized. Majorization is a hierarchy

among probability distributions which is induced by the action of a class of transfor-

mations called doubly stochastic maps (see [17]).

In chapter 3, we find a mathematical characterization of mechanisms that can in-

crease a variable’s uncertainty. In fact, we gain an understanding of why, and to what

extent, majorization plays a role in characterizing uncertainty. For variables with un-

restricted symmetries we find that uncertainty-increasing mechanisms are associated

with the set of all doubly stochastic maps. This leads us to the emergence of ma-

jorization as the relation determining uncertainty. Thus in this case, a function that

quantifies uncertainty must never decrease under the action of any doubly stochastic

map on the probability distribution. On the other hand, for variables with restricted

symmetries, only certain sub-classes of doubly stochastic maps feature. The resulting

hierarchy is different from majorization, and therefore a quantifier of uncertainty is

only required to be non-decreasing under the action of the restricted classes of dou-

bly stochastic maps. This opens up a bigger variety of functions that can serve as

uncertainty quantifiers for variables with restricted symmetries.

Another element of novelty in our work lies in our third axiom, which concerns

joint uncertainty. Operationally, we can rephrase this axiom in terms of experiments

with random outputs. For example, suppose that we are interested in quantifying

9



the joint uncertainty about the set of random outcomes of several quantum mea-

surements. One approach would be to construct new experiments that combine the

original experiments in some way. For example, consider the following two combined

experiments each of which constructed from a given set of experiments:

(a) All the original experiments are performed independently.

(b) All the experiments’ apparatuses are set up, but only one of the experiments

is chosen at random and performed.

The uncertainty in the outcome of such a combined experiment would quantify the

joint uncertainty of the constituent experiments. However, we note that there are

different ways to combine experiments, each of which capturing different aspects of

the joint uncertainty.

In chapter 4, we argue that the richness of joint uncertainty is not captured even

by considering all such combined experiments. The most general notion of joint un-

certainty is devoid of the particulars of such combinations, and allows all the compo-

nent experiments to be, in principle, counterfactual. To illustrate this, we consider an

extensively-studied type of quantum uncertainty relations: the so-called preparational

uncertainty relations. For ease of explanation, let us consider a two-measurement1

preparational uncertainty relation, which has the generic form

J (p(ρ), q(ρ)) ≥ c, (1.10)

where J is a quantifier of the joint uncertainty of two variables, and p(ρ) and q(ρ) are

the expected outcome probability distributions of a pair of measurements performed

on a quantum state represented by the density operator ρ. We show that most existing

1Our arguments can be extended to more than two measurements.
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preparational uncertainty relations can be subjected to one of the specific operational

interpretations (a) and (b) mentioned above. With some efforts, these restrictions

can be removed. In fact, we construct joint uncertainty quantifiers that cannot be

interpreted either way. In addition, we derive a quantum uncertainty relation based

on one such quantifier, which is different from all the ones discovered in the past. The

main purpose of deriving this new relation is to demonstrate that our axioms open

up the possibility of finding infinitely new joint uncertainty quantifiers, and thus new

quantum uncertainty relations.

All existing two-measurement quantum uncertainty relations have the generic form

of (1.10); however, the essence of all these relations is hidden behind the constraints

they predict for the output probability distributions of the set of relevant measure-

ments. On this account, no single inequality (which sets a positive lower bound on

some function J (p(ρ), q(ρ))) can capture all aspects of the unpredictability about the

outcomes of a pair of quantum measurements2.

Fine-grained uncertainty relations are mathematical assertions that explain the

unpredictability constraints directly in terms of the output probability distributions

of the given set of quantum measurements. We call them also “quantifier-free URs” as

they can imply a large class of URs and they are formulated independent of any single

uncertainty (or joint uncertainty) quantifier. Motivated by the earlier efforts [14,15],

we therefore tried to find the universal quantifier-free formulation of all uncertainty

relations. More precisely, we aimed to find a fixed pair of vectors (s, t) (independent

of ρ) such that J (s, t) provides a nontrivial bound [like the c of Eq. (1.10)] for a

whole class of quantifiers, J ∈ J. We find that no such universal relation exists if J

includes all possible quantifiers.

2All of our results explained to this point are also covered in [3].
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We also argue that a so-called universal majorization relation found in [15] is

indeed not universal, because it only covers a restricted class of joint uncertainty

quantifiers: the class of all uncertainty quantifiers adhere to type (a) of combined

experiments where all the quantum measurements are performed independently on

the same quantum state. Similarly, we find a new class of fine-grained majorization

uncertainty relations for another restricted set of joint uncertainty quantifiers: the

class of all uncertainty quantifiers adhere to type (b) of combined experiments where

each time only one quantum measurement is picked at random and will be performed

on the input state3.

Even though the focus of this work is on preparational uncertainty relations in

quantum mechanics, in principle the introduced notions can be applied to any situa-

tion where probability-based uncertainty quantifiers of classical variables are relevant.

1.3.1 List of Contributions

To conclude this chapter, we list below the contributions of this thesis. (Contributions

1-6 are also covered and discussed in [3].)

1. Based on simple information-theoretic axioms, we give a mathematical char-

acterization that unifies all single-variable uncertainty quantifiers into a single

framework. (See section 3.3 and claims 3.1 and 3.2. Also see definition 2 on

page 5 of [3].)

2. Similarly, we find a mathematical characterization of all joint uncertainty quan-

tifiers such as, ∆x∆p and H1(A) + H1(B). (Discussed in section 3.4 and defi-

nition 3.2 and also section 2 of [3].)

3The results regarding quantifier-free relations are not covered in [3], for the full discussion please
read section 4.3.
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3. We argue that joint uncertainty is a concept devoid of all single-variable un-

certainty quantifiers and any underlying operational descriptions. (See the

examples given in section 3.4, which can also be found on page 6 of [3].)

4. We provide a simple joint uncertainty quantifier (defined in equation (3.16)) as

an example to support our previous claim. (Also see page 8 of [3].)

5. We show that all typical URs have the following generic form:

J (p(ρ), q(ρ)) ≥ c, (1.11)

where J is a quantifier of the joint uncertainty of two variables, and p(ρ) and

q(ρ) are the expected outcome probability distributions of a pair of quantum

measurements performed on the same quantum state ρ. (Read the discussion

in section 4.2 or pages 7 and 8 of [3].)

6. Our formalism enables us to find new URs. To show this, we prove a new

unexplored UR in theorem 4.1. (Read section 4.2.1 or see the proof of equation

(10) of [3].)

7. We also show that there exists no universal set of distributions (s, t) such that

J (s, t) gives a non-trivial lower-bound for any given arbitrary joint uncertainty

quantifier J . (Go to the discussion in section 4.3)

8. Nonetheless, we prove a fine-grained UR (theorem 4.2) that gives us a pair of

distributions (s, t) such that

J (p(ρ), q(ρ)) ≥ J (s, t), ∀J ∈ J2, (1.12)

where J2 is a subclass of all joint uncertainty quantifiers. (For a complete

discussion read the proofs to theorem 4.2 and lemma 4.1.)
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Chapter 2

Background

Quantum mechanics and Majorization theory make the cornerstone of this thesis.

This chapter gives a brief review of notions and main theorems, which will be used

in the rest of this thesis. There are many great books on quantum mechanics and

quantum information; among these we point out the books by Wilde [18] and Nielsen

and Chuang [19]. The book by Marshall, et al [17] is a useful reference on the theory

of majorization.

2.1 Theory of Majorization

In this section, we review the main concepts and theorems of majorization theory that

are used in the next chapters. We start by introducing the notations that are used

in this thesis for discrete random variables, probability distributions, and discrete

classical channels.

2.1.1 Discrete Random Variables

Random variables model random systems. A random variable X : Ω 7→ X is a

function from the probability space Ω to some set X . Denote by px = Pr {X = x}

the probability of each realization x ∈ X . The probability mass function associated
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with a discrete random variable is a column vector

pX =


p1
...

p|X |

 ,
I sometimes denote it by pX = (p1, · · · , p|X |), or pX = (px). Note that these should

be understood as notations for a column vector, not for a row vector.

2.1.2 Discrete Memoryless Channels

In the context of digital communication systems, a discrete memoryless channel

(DMC) is defined as:

Definition 2.1. A discrete channel is a system with some input alphabet X , some

output alphabet Y and a probability transition matrix Ty|x = Pr {Y = y |X = x},

which represents the conditional probability of occurring y at the output if x was

sent through the channel. If T is independent of the previous inputs and outputs of

the channel, the channel is said to be memoryless.

Figure 2.1: Diagram of a digital communication system with a discrete memoryless
channel.

Example 2.1. Consider the following binary channel. The input alphabet is X =

{0, 1}, and the output alphabet is Y = {0, e, 1}. For this channel, there are two

kinds of probable errors to each input bit, namely erasure and flip bit. Erasure errors
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happen when an input x is missed at the receiver. Flip bit errors occur when a “0”

in the input transfers to a “1” at the output, or vice versa.

Figure 2.2: An example of a discrete channel.

Based on Fig. 2.2, the transition matrix of this particular channel is the following

column stochastic matrix:

T =


1
3

1
6

1
3

1
6

1
3

2
3

 .
Note that if the input probability vector is pX , the channel output probability vector

is equal to: qY = TpX , where T is the column-stochastic matrix representing the

channel with
∑

y Ty|x = 1.

2.1.3 Majorization

Majorization is a relation defined among real vectors. It is a useful mathematical

tool to compare between the non-uniformity of two different probability vectors. Let

p↓ denote the sorted version of p in a non-increasing order, meaning that p↓1 ≥ p↓2 ≥

· · · ≥ p↓d.
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Definition 2.2. The d-dimensional real vector p majorizes the d-dimensional real

vector q, or in short q ≺ p (also can be read as q is majorized by p), if and only if

k∑
j=1

q↓j ≤
k∑
j=1

p↓j , ∀k ∈ {1, · · · , d− 1}, (2.1)

and
d∑
j=1

q↓j =
d∑
j=1

p↓j . (2.2)

Obviously, the last equality condition will be satisfied automatically for all prob-

ability distribution vectors. Note that the following relations are also equivalent to

q ≺ p, where p↑ denotes the sorted version of p in a non-decreasing order:

k∑
j=1

q↑j ≥
k∑
j=1

p↑j , ∀k ∈ {1, · · · , d− 1}, (2.3)

and
d∑
j=1

q↑j =
d∑
j=1

p↑j . (2.4)

Note that it is easy to check whether a vector majorizes the other or not, simply by

manipulations of the two vector elements.

Majorization can be regarded as a mathematical tool to compare the non-uniformity

between different probability distribution vectors. The intuition to this notion of dis-

orderedness can be understood by the following theorem [17].

Theorem 2.1. The d-dimensional real vector p majorizes the d-dimensional real vec-

tor q, or in short q ≺ p, if and only if there exist a set of d-dimensional permutation

matrices {Pπ}π and a probability vector t = (tπ) such that

q =
∑
π

tπPπp. (2.5)
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Accordingly, “p majorizes q” (or q ≺ p) means that q is more disordered than p,

since we can generate q merely by randomly permuting p and then averaging over all

the permuted versions of p. For example, in the 2-dimensional space, we can generate

any 2-dimensional probability vector from random permutations of e2 = (1, 0), or

equivalently p ≺ e2,∀p ∈ R2. More precisely, for any 2-dimensional probability

vector p = (p, 1− p) we have

p = pP0e2 + (1− p)P1e2,

with

P0 =

 1 0

0 1

 , P1 =

 0 1

1 0

 .
In general, all d-dimensional probability vectors are bounded between the ‘com-

pletely certain’ and ‘completely uncertain’ distributions e = (1, 0, · · · , 0) and u =

(1/d, · · · , 1/d), meaning that

u ≺ p ≺ e, ∀p ∈ Rd. (2.6)

In other words, the fully certain distribution e and all its permuted versions are at

the top the majorization hierarchy, meaning that they majorize all other probability

vectors of the same dimension. Also, the uniform distribution u and all its per-

muted versions are at the bottom of majorization hierarchy, which means they can

be majorized by all the other distributions.

However, it is important to notice that majorization expresses a partial ordering

on all probability vectors. Unlike a total order, for which the comparison of any two

elements is possible, there exist some cases that neither q ≺ p nor p ≺ q. Two vectors

are incomparable if neither of them can be generated by different permutations of the

other, i.e. q ⊀ p and p ⊀ q. For instance, the following vectors are incomparable:

p = (0.5, 0.25, 0.25), and q = (0.4, 0.4, 0.2) [17].
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2.1.4 Doubly Stochastic Matrices

There is a close connection between doubly stochastic matrices and the theory of

majorization. In this section, only basic definitions and some of the main theorems,

which are used in the next chapters, will be reviewed. Doubly Stochastic matrices are

square matrices in which the entries in every column and every row adds up to one.

Therefore, D = (Dkj) is doubly stochastic if
∑d

j=1Dkj =
∑d

k=1Dkj = 1 and Dkj ≥ 0.

One can view doubly stochastic matrices as square probability transition matrices

with the uniform distribution as their stationary state. More precisely, any classical

channel D with the same number of inputs and outputs d is doubly stochastic if

u = Du,

where u = (1/d, · · · , 1/d) is the uniform distribution.

There are two important theorems about doubly stochastic maps. The first one

[20] is about characterization of majorization based on doubly stochastic maps. The

second one states that the set of d × d doubly stochastic matrices is identical to

the convex hull of all d-dimensional permutation matrices [21]. Here, we state these

theorems:

Theorem 2.2 (Hardy, et al. [20]). A d-dimensional real vector p majorizes a d-

dimensional real vector q if and only if there exists a d × d doubly stochastic matrix

D such that

q = Dp. (2.7)

Theorem 2.3 (Brikhoff [21]). Any d×d doubly stochastic matrix D can be expressed

as

D =
∑
π

tπPπ, (2.8)
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where t = (tπ) is some probability distribution and {Pπ}π is the set of all d-dimensional

permutation matrices.

Let D denote the set of all doubly stochastic matrices. The Birkhoff’s theorem

shows thatD is a convex set with its extreme points being all the permutation matrices

Pπ.

2.1.5 Schur-Concave Functions

Schur-concave functions are functions that preserve the majorization relation.

Definition 2.3. A function Φ : Rd 7→ R is schur-concave if it is monotonic under

majorization, i.e. for two given real vectors p and q

q ≺ p⇒ Φ(p) ≤ Φ(q). (2.9)

Note that if a function is concave, and symmetric under all permutations, it is

Schur-concave. It is actually easy to see why. Assume Φ is concave and symmetric

under all permutations, i.e.

Φ(Pπp) = Φ(p).

Now, if q ≺ p, then

Φ(q) = Φ

(∑
π

tπPπp

)

Φ(q) ≥
∑
π

tπΦ(Pπp)

= Φ(p),

where the inequality is due to concavity of Φ and the equality comes from the fact that∑
tπ = 1. Therefore, any concave function that is symmetric under all permutations

is Schur-concave; however, the opposite implication is not true.
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Shannon entropy

H1(p) = −
∑
x

px log px , (2.10)

and Rényi entropies

Hα(p) =
1

1− α
log

(∑
x

pαx

)
, (2.11)

are some important examples of Schur-concave functions. The following theorem

provides a method to check Schur-concavity of a given function.

Theorem 2.4 ( [17]). Consider a differentiable function Φ : Rd 7→ R. Φ is schur-

concave if and only if it satisfies the following conditions:

1. Φ is invariant under all permutations, that is

Φ(Pπp) = Φ(p) ∀Pπ. (2.12)

2. For all p ∈ Rd and any indices k and j,

(pk − pj)
(
∂Φ

∂pk
− ∂Φ

∂pj

)
≤ 0. (2.13)

To summarize, given two probability distribution vectors p and q, all the following

statements are equivalent [17]:

1. q ≺ p.

2. q =
∑

π tπPπp, for some probability distribution vector t and a set of

permutation matrices {Pπ}.

3. q = Dp, for some doubly stochastic matrix D.

4. Φ(p) ≤ Φ(q) for all Schur-concave functions Φ.
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2.2 Quantum Mechanics - Quick Review

A simple example of a classical information source is a random bit generator, i.e. a

device that outputs zeros and ones at random. For example, consider a device that

outputs a random square wave signal of 5 volts amplitude with some clock frequency.

We can modulate the classical bits by the following mapping:

5 volts 7→ “1”,

0 volts 7→ “0”.

Figure 2.3: An example of a bit stream output of a random bit generator.

In quantum mechanics, states of quantum systems are described by vectors in a

Hilbert space H over the complex field. In the Dirac notation, we denote a column

vector associated with the state of a quantum system by ‘ket’ notation, |ψ〉.

A qubit is a two-dimensional normalized complex vector. It describes the prepa-

ration of a two-level system. For instance, the spin of an electron, a two-energy-level

quantum system (such as the ground state and exited state), etc.

Now assume we measure a qubit with respect to an orthonormal basis {|0〉, |1〉}.

One possible outcome of the measurement is |0〉 which we modulate with the classical

bit “0”, and the other possible outcome of the measurement is |1〉 which we modulate

with the classical bit “1”. Thus, we have modeled a classical random bit generator
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using a quantum system with the following mapping:

|1〉 7→ “1”,

|0〉 7→ “0”.

However, according to quantum mechanics, |0〉 and |1〉 are not the only possibilities

for the state of the qubit before the measurement. The state of a qubit can be in any

superposition of |0〉 and |1〉, meaning that the describing state vector of the system

is some |ψ〉 ∈ C2 such that

|ψ〉 = α|0〉+ β|1〉, (2.14)

where α, β ∈ C with |α|2 + |β|2 = 1.

This means that unlike classical bits, for qubits there exist many possible quantum

states other than |0〉 and |1〉. Moreover, if the state of the qubit is known to be

|ψ〉 = α|0〉 + β|1〉, the probability of measuring “0” is |α|2 and the probability of

measuring “1” is |β|2. This superposition property is one of the primary features of

quantum mechanics that distinguishes it from other classical theories.

The vector representations of |0〉, |1〉 and |ψ〉 = α|0〉+ β|1〉 are as follows:

|0〉 =

 1

0

 , |1〉 =

 0

1

 , |ψ〉 =

 α

β

 . (2.15)

In Dirac notation the conjugate transpose of each ket is called ‘bra’, 〈ψ| = (|ψ〉)†.

With this notation, the inner and outer product of two general arbitrary states,

|ψ〉 =
∑
aj|j〉 and |φ〉 =

∑
bj |j 〉(in some basis {|j〉}dj=1) are defined as follows:

The inner product:

〈ψ|φ〉 =
∑
j

a∗jbj, (2.16)
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The outer product:

|ψ〉〈φ| =


a1
...

ad

 [b∗1 · · · b∗d] . (2.17)

Also, the norm of a ket is defined as

|||ψ〉|| =
√
〈ψ|ψ〉. (2.18)

Note that all quantum states must have norm one, i.e. 〈ψ|ψ〉 = 1. Therefore, any

representation of a general quantum state |ψ〉 =
∑
aj|j〉 given in an arbitrary or-

thonormal basis {|j〉} satisfies ∑
j

|aj|2 = 1. (2.19)

2.2.1 Density Operator

Typically, we don’t have full certainty about the quantum state of a system, meaning

that the quantum system is described by an ensemble of quantum states. For instance,

the system might be in one of the m states of the set {|ψj〉}mj=1 with some probability

pj. The quantum state of such ensemble is described by its corresponding density

operator:

ρ =
m∑
j=1

pj|ψj〉〈ψj|. (2.20)

For any density operator ρ =
∑m

j=1 pj|ψj〉〈ψj|, I denote the vector of non-zero

eigenvalues by λ(ρ), and the set of its corresponding eigenstates by {|x〉}. Further-

more, I assume λ(ρ) is sorted in a non-increasing order.

properties of density operators:

1. A density operator ρ is a trace-one, positive semi-definite (Hermitian)

24



operator that belongs to the space of all linear operators acting on the

Hilbert space H, i.e. ρ ∈ L(H).

2. Since any ρ is a trace-one Hermitian operator, λx(ρ) ≥ 0 for all x, and∑
λx(ρ) = 1.

Note that for a given density operator ρ =
∑
pj |ψj〉 〈ψj|, the set {|ψj〉} is not

unique, and it is not necessarily an orthonormal basis. However, the set {|x〉} of all

eigenstates of a density operator, forms an orthonormal basis, i.e. 〈x|x′〉 = δ(x, x′).

Example 2.2. The maximally mixed state is

ρ ≡ 1

2
|0〉 〈0|+ 1

2
|1〉 〈1| = 1

2

 1 0

0 1

 . (2.21)

It is easy to show that this state can be re-expressed in any arbitrary orthonormal

basis {|v0〉, |v1〉} by

ρ ≡ 1

2
|0〉 〈0|+ 1

2
|1〉 〈1| = 1

2
|v0〉 〈v0|+

1

2
|v1〉 〈v1| . (2.22)

If the actual state of a system is known with certainty, then its density operator

has the form ρ = |ψ〉〈ψ| and the state is referred to as a pure state [19]. For example,

if the system is in the state |ψ〉 = α|0〉+ β|1〉, its density matrix is:

ρ =

 |α|2 αβ∗

α∗β |β|2

 . (2.23)

2.2.2 Quantum Measurements

Projective Measurement: One of the primary types of quantum measurements,

which has a key role in many QIP applications, is projective measurement. A projec-

tive measurement with respect to an arbitrary orthonormal basis {|ax〉}x∈X is defined

as follows:
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Definition 2.4. A projective measurement is represented by a Hermitian operator,

called observable Â, that has a spectral decomposition of the following form:

Â =
∑
x

axΠax , (2.24)

where Πax = |ax〉 〈ax| is the projector onto the eigenspace of Â with eigenvalue ax.

The eigenvalues ax represent different outcomes of the measurement. Also, the

probability of obtaining x as a result of measuring |ψ〉 by Â is

px = 〈ψ|Πax|ψ〉. (2.25)

Example 2.3. Consider the quantum measurement observable Ẑ = |0〉 〈0| − |1〉 〈1|,

which measures whether the state is |0〉 or |1〉. If the answer is |0〉 the measurement

output is z0 = 0, and if the answer is |1〉 the measurement output is z1 = −1. Given

|ψ〉 = α|0〉+ β|1〉 as the input quantum state to this measurement, the probabilities

of obtaining 0 and 1 are:

p0 = 〈ψ|Π0|ψ〉 = |α|2,

p1 = 〈ψ|Π1|ψ〉 = |β|2,

with Π0 = |0〉 〈0| , Π1 = |1〉 〈1| .

According to postulates of quantum mechanics, the post-measurement state |ψ′x〉

(the state of the system after obtaining m) is the following:

|ψ′x〉 =
Πax|ψ〉√

px
. (2.26)

POVM Measurements: For many applications, we don’t care about the post-

measurement state of the system, yet we are concerned with calculating probabilities

of obtaining different outcomes. POVM measurements are useful for such cases.
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Definition 2.5. A positive operator-valued measurement (POVM) A is described by

a set {Λm}m of operators acting on H satisfying the following:

Λm ≥ 0, ∀m, (2.27)∑
m

Λm = 1. (2.28)

The probability of obtaining m can be calculated by

pm = Tr {Λmρ} , (2.29)

which is equal to pm = 〈ψ|Λm|ψ〉 for a pure state ρ = |ψ〉 〈ψ|.

2.2.3 Heisenberg Uncertainty Relation

As previously discussed, the superposition principle was one of the first bizarre fea-

tures of quantum physics. Physicists realized that the outcomes of the measurements

on a quantum system do not appear to be predictable; the best they can do is calcu-

lating the probabilities of different possible outcomes. This sort of unpredictability

could be eliminated by preparing the system in a suitable initial state. In his seminal

work [1], Heisenberg introduced a stronger sort of unpredictability: The outcomes

of certain pairs of measurements can never be predicted simultaneously with cer-

tainty—regardless of how the system is prepared! He showed that, for any state

preparation, the product of the uncertainties of the position and the momentum of a

single quantum particle is bounded from below with a non-zero constant:

∆x∆p ≥ ~
2
. (2.30)

Robertson [22] later generalized Heisenberg’s formalism to any pair of observables.

For general observables Â and B̂ the Robertson-Heisenberg uncertainty relation is

∆Â∆B̂ ≥ 1

2
|〈ψ|[Â, B̂]|ψ〉|, (2.31)
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where ∆Ô ≡
√
〈ψ|
(

Ô− 〈ψ|Ô|ψ〉
)2
|ψ〉 is the standard deviation of observable Ô,

and [Â, B̂] ≡ ÂB̂− B̂Â is the commutator of Â and B̂.

There are some conceptual shortcomings in Robertson-Heisenberg formulation

which motivated development of entropic uncertainty relations (EUR). First, the

lower-bound of (2.31) can be zero even if [Â, B̂] 6= 0. Second, the left hand side of

(2.31) involves variance which can change by mere relabeling [15].

A brief review on EURs, and similar other uncertainty relations will be given in

the subsequent chapters.
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Chapter 3

Quantifying Uncertainty and Joint Uncertainty

In this chapter, we introduce quantifier-independent notions of uncertainty and joint

uncertainty. We use operational information-theoretic principles to identify the com-

mon properties of all uncertainty quantifiers. We observe that most existing quan-

tum entropic uncertainty relations use one particular quantifier of joint uncertainty to

quantify the uncertainty associated with the two measurements. Our notion relaxes

this restriction to one particular quantifier, thereby bringing out previously unex-

plored joint uncertainty quantifiers. To exemplify the utility of our formalism, we

derive a quantum uncertainty relation (in the following chapter) based on one such

new quantifier of joint uncertainty.

3.1 Uncertainty and Majorization

Suppose Alice is performing a die role experiment, which we model with a random

variable X. We are interested in the uncertainty of X, interpreted as the minimum

uncertainty that Alice necessarily has prior to the experiment, no matter how much

prior knowledge she has. Before doing the experiment, Alice can at most know the

distribution pX . Therefore, the uncertainty of X is a property of pX ; meaning that, a

quantifier of uncertainty is a real-valued function U(pX) of probability distributions

on X.

Alice can also relabel the faces of her die, for example by replacing each x by

(7 − x), or even to a different set of labels, such as {a, b, · · · }. Let us assume Alice
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applies only one-to-one correspondence, i.e. bijective maps. Such transformations are

merely a change in Alice’s language, and should not make the relabeled outcome Y

any more or less uncertain than X. Even if the new alphabet is different from the

old one, the effect of any such relabeling on pX is as though the original labels were

just permuted amongst themselves:

pY = PπpX ,

where Pπ is the matrix representation of a permutation π of the elements of X. Thus,

from the uncertainty standpoint, permutations of a fixed alphabet of labels effectively

capture all relabeling schemes. Thus far, we have found a way to tell when the

uncertainties of two variables are equal. That is if pY = PπpX , then U(pY ) = U(pX).

Now imagine the following thought experiment. Alice tosses a fair coin before

rolling her die. If she gets tails she will relabel the faces of her die with a permutation

π1 and if she gets heads she will relabel the faces of her die with a permutation π2.

Then, right before rolling the die, she forgets the coin toss result and thus does not

know which permutation she has applied. In this case, from Alice’s perspective, the

probability distribution of the die roll experiment after forgetting the coin toss result,

is

pY =
1

2
Pπ1pX +

1

2
Pπ2pX , (3.1)

which describes a more uncertain random variable.

In general, we can conclude that the resulting random variable after any random

relabeling followed by forgetting is more uncertain than the initial random variable.

In other words, any uncertainty quantifiers must be monotonically non-decreasing

under the action of all random relabelings followed by forgetting.

Note that the action of a random relabeling followed by forgetting on a probability
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distribution is equivalent to the action of a convex combination of permutations. As

discussed in chapter 2, any convex combination of permutation matrices is equal to

a doubly stochastic matrix. Recall that if pY = DpX , where D is doubly stochastic

matrix, then pY ≺ pX . Thus all Schur-concave functions (functions that preserve

majorization relations) are qualified to be valid quantifiers of uncertainty [15].

In conclusion, an experiment modeled with probability distribution pY is more

uncertain than an experiment with associated probability distribution pX if and only

if pY ≺ pX .

3.2 Not All Doubly Stochastic Maps Are Allowed !

As we saw in the previous section, for experiments such as a die roll, the uncertainty

quantifier has to be monotonic under the action of any doubly stochastic map. In

general, we show that not all doubly stochastic maps are allowed.

We consider two different information-theoretic thought experiments and show

that a valid quantifier of uncertainty has to be monotonic under the action of a

subset of all doubly stochastic matrices. The first scenario is similar to the random

relabeling experiment discussed before.

3.2.1 Restrictions Due to Physical Symmetries

In Alice’s random relabeling and forgetting experiment discussed earlier, any permu-

tation π results in a variable Y that, despite being different from X, still carries the

meaning of a die-roll outcome. Instead, if X were a physical observable such as the

energy of a quantum harmonic oscillator, arbitrary permutations could result in new

variables that can no longer be interpreted as energy levels. In this sense, to preserve

the physical meaning of energy represented by the random variables, we would have
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Figure 3.1: Alice has a die and knows its probability distribution. She randomly
relabels her die based on a coin toss. Then she forgets the coin toss result, which
makes her more uncertain about the outcome of her die.

to restrict the allowed permutations to only shifts. In general, the restricted class of

relabelings is a group G of symmetries of the observable underlying the random vari-

able, with each symmetry g ∈ G corresponding to a change in one’s reference frame.

For discrete observables, G is a subgroup of the group of all permutations, while for

observables with uncountably many possible values (e.g. positions and momenta of

particles) the symmetries g are transformations of continuous variables (e.g. Galilean

transformations).

Our first requirement from a valid quantifier U of uncertainty is that it must be

invariant under the symmetry group G of the underlying observable:

U(PgpX) = U(pX). (3.2)

This immediately leads to the following: two variables X and Y , both representing

the same physical observable, are considered equally uncertain if their distribution

vectors are related by some permutation g ∈ G, i.e. pY = PgpX .

Now consider Alice’s random relabeling and forgetting experiment discussed pre-

viously (see Fig. 3.1). Recall that Alice tosses a coin before rolling her die; she then

relabels the die’s faces with a permutation that is determined by the outcome of this

coin toss; then she forgets the result of the coin toss. The outcome Y of the relabeled
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die in this modified experiment cannot be more certain than X—after all, X car-

ries the fundamental uncertainty of the die. In fact, the random choice of relabeling

(about which Alice is a priori ignorant) renders Y more uncertain than X.

Suppose g ∈ G is a permutation chosen at random from the symmetry group G

under some distribution t ≡ (tg). If variable X is transformed under this random

action of g, then the resulting random variable Y is distributed as

qY = DsympX , (3.3)

where Dsym =
∑

g∈G tgPg is the convex combination of the symmetry matrices Pg

under the distribution t. Since each Pg is a permutation matrix, every possible Dsym

is doubly stochastic. We denote by Dsym the set of all such Dsym matrices.

3.2.2 Restrictions Due to Information Processing

Now, consider a different scenario: Alice performs an experiment whose random out-

put is modeled by random variable X. She sends the outcome X to Bob via some

classical channel given by the column-stochastic matrix T ≡ (Ty|x). Bob will get

information about X in the form of a new random variable Y , which in turn is dis-

tributed according to qY = TpX . Using his knowledge of the channel, Bob plans to

recover X (see Fig. 3.2).

Why does Bob need to recover X from the channel output? Because the uncer-

tainty of Y , the channel output, will not necessarily have a meaningful relation to

the uncertainty of X. The channel could transmit x perfectly, or with some added

noise. In these cases, the output Y is equally or more uncertain than X. On the other

hand, the channel could also completely ignore x and output some constant value, in

which case the uncertainty of Y would be less than that of X. Actually, the channel
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Figure 3.2: Bob tries to recover Alice’s message about the variable X after it has
been corrupted by the channel T .

might result in information in a fundamentally different form from X. For example,

the channel could just send the parity of the die outcome to Bob, in which case Y

does not even represent the same underlying observable as X. Hence, we cannot

make a general statement about the relation between the uncertainty of X and the

uncertainty of Y . In order to compare the uncertainty of X with the uncertainty of

a relevant random variable, we must extract from Y some variable that has the same

physical meaning as X, so that we can treat them both on an equal footing.

In this scenario, Bob’s aim in his recovery task is not to maximize his chances

of guessing X correctly, but rather to faithfully account for the uncertainty that Y

contains about X. Given that Bob does not have any access to pX , one natural

recovery protocol would be to do a randomized likelihood guessing. In this recovery

method, Bob’s guess for the likelihoods of different x’s that could have resulted in a

particular final label y are of the form cyTy|x, where cy is a proportionality constant

depending only on y. Therefore, the corresponding recovery scheme is of the following
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form

Rx|y =
Ty|x∑
x′ Ty|x′

. (3.4)

The resulting distribution of X̃ is given by the composite action of T and R on pX :

prec
X̃

= RTpX =: DrecpX . (3.5)

For any column-stochastic T , with the corresponding R (note that R is completely

determined by T ) constructed as in (3.4), the matrix Drec = RT is doubly stochastic.

In fact, Drec = (djk) where djk =
∑

y Rj|yTy|k. Thus

∑
j

djk =
∑
j

∑
y

Ty|jTy|k∑
x Ty|x

(3.6)

=
∑
y

∑
j Ty|jTy|k∑
x Ty|x

(3.7)

=
∑
y

Ty|k = 1, (3.8)

and analogously
∑

k djk = 1, which proves doubly stochasticity of Drec.

The (necessarily degenerative) evolution of the uncertainty of a particular vari-

able, under any classical processing (represented by the action of the channel) of the

variable, is always via such matrices. We denote the collection of all such matrices

by Drec.

While Dsym depends on the symmetry group of the observable, Drec depends only

on the size of the outcome space. For a variable with complete permutation symmetry,

as noted above, Dsym contains all doubly stochastic matrices, in particular all of Drec.

But in situations with restricted symmetries, each class can contain members not

belonging to the other. For instance, consider a variable with 3 possible outcomes

and whose symmetry group is the (order-3) group of cyclic permutations. The two

nontrivial permutations are transformations contained (by design) in Dsym, but not
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in Drec. On the other hand, we can show that the matrix
1 0 0

0 0.5 0.5

0 0.5 0.5


is in Drec, but not in Dsym. Therefore, the structure of the union of these classes

cannot be reduced to either one of the classes. This example can be generalized

naturally to higher dimensions. Further characterization of the classes Drec and Dsym

is an interesting problem that we leave for future work.

Recall that majorization relations are induced by the action of all doubly stochastic

matrices. Now the interesting question is to find and characterize the hierarchy

relations among real vectors induced by the action of doubly stochastic matrices in

the union of Drec and Dsym. We also leave this question here for future researches.

3.3 Single-Variable Quantifiers of Uncertainty

The “sym” and “rec” classes of doubly stochastic matrices together capture the mech-

anisms of uncertainty increase in our formalism. Based on this, we have the following

definition:

Definition 3.1. Let random variable X with alphabet X and dimension d = |X |

represent a physical system with underlying symmetry groupG. Also let Pg denote the

matrix representation of permutation g ∈ G, and Dsym = {D|D =
∑

g∈G tgPg, ∀t =

(tg)} and Drec = {D|D = RT, ∀T}, where t is a probability vector, and T is a

matrix representation of a classical channel with d inputs and some arbitrary number

of outputs, and R is the matrix representation of the recovery map based on T defined

as in (3.4). Then, a quantifier of uncertainty of the random variable X is a function
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U of the distribution p ≡ pX of the variable, satisfying the following constraints:

(i) Invariance under symmetry group G

U(Pgp) = U(p), ∀g ∈ G. (3.9)

(ii) Monotonicity under random symmetry-transformations:

U(Dp) ≥ U(p), ∀D ∈ Dsym. (3.10)

(iii) Monotonicity under information processing and recovering:

U(Dp) ≥ U(p), ∀D ∈ Drec. (3.11)

Here “sym” is determined by the symmetries of the variable’s underlying physical

observable. Without loss of generality, we will also require U(e) = 0, where e ≡

(1, 0, 0 . . . , 0).

A function satisfying (i) and (ii), but not (iii), will be called a weak quantifier

of uncertainty, since the “sym” class is more important than the “rec”. Indeed, the

former is based on the natural symmetries of an observable, and therefore the con-

straints that it induces on uncertainty quantifiers are inviolable. On the other hand,

“rec”, even though it is an essential ingredient in the strictest information-theoretic

definition of uncertainty, can be ignored in natural situations where information pro-

cessing is not involved. Functions that respect the “sym” constraints, but violate the

“rec” ones nevertheless turn out to be useful indicators of uncertainty.

Claim 3.1. All Schur-concave functions are valid uncertainty quantifiers under def-

inition 3.1.

If the observable’s symmetry group G includes all permutations, then by Birkhoff’s

theorem [21, 23] Dsym is the set of all doubly stochastic matrices. Hence, condition
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(3.10) implies (3.11), because D in (3.10) can be any doubly stochastic matrix. In this

case, any Schur-concave function, e.g. Shannon entropy and Rényi entropies, can play

the role of an uncertainty quantifier [17]. In other words, the majorization relation

qY ≺ pX indicates that the uncertainty of Y is more than X. Note that, as the

majorization ordering is not total, no single Schur-concave function can determine

the relation between two arbitrary vectors under this ordering [15].

If a variable has restricted symmetries, then the uncertainty hierarchy of its distri-

butions becomes different from the majorization hierarchy. All Schur-concave func-

tions still remain valid uncertainty quantifiers. But in addition, by virtue of the

reduction in the class Dsym, some non-Schur-concave functions could also qualify to

be quantifiers of uncertainty. Not all such quantifiers may respect condition (iii),

which makes them weak quantifiers of uncertainty.

Claim 3.2. The variance and standard deviation are weak quantifiers of uncertainty.

In fact, we prove the following: If the observable underlying X can take integer

values, and if its symmetries are shift permutations, the variance of X is only a weak

uncertainty quantifier (i.e. does not satisfy (iii)). An example of such an observable

is the energy of a quantum Harmonic oscillator.

Let X be a variable that takes positive integer values, {x ∈ Z+} (any variable with

equally-spaced possible values can be suitably rescaled). As in the case of the energy

levels of a harmonic oscillator, we will consider the symmetries of X to be shifts, i.e.

transformations x 7→ x + d, for integers d. Let’s investigate if the variance σ2
X is a

valid quantifier of the uncertainty of X. To this end, we must check if the variance

is monotonically non-decreasing under the two classes of doubly stochastic matrices,

Drec and Dsym. First, unsurprisingly, we show that the variance is non-decreasing

under Dsym, i.e. the class of all random shifts.
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Let a shift by dk be applied with probability qk. Then X is replaced by a new

random variable Y with realizations x − dk, and associated probability distribution

pY = pX ⊗ qK , which has the following variance:

σ2
Y =E{Y 2} − E{Y }2

=
∑
x,k

pxqk(x− dk)2 −

(∑
x,k

pxqk(x− dk)

)2

=E{X2}+ E{K2} − 2E{X}E{K} − (E{X} − E{K})2

=E{X2} − E{X}2 + E{K2} − E{K}2

=σ2
X + σ2

K .

Therefore, σ2
Y ≥ σ2

X , as we had anticipated. Now we provide a counterexample

that shows that the variance can decrease under Drec. Consider a channel T that is

the identity channel except for the block acting on x ∈ {0, 1}, where it acts as the

completely-randomizing channel:

T =


0.5 0.5

0.5 0.5
0

0 1

 . (3.12)

By a straightforward calculation one can show that the recovery channel would also

have the same matrix representation, R = T , resulting in the overall transformation

Drec = R = T on the probability distribution. Now consider an initial distribution

pX such that p0 = p2 = 0.5, with all other components zero; thus the initial variance

is σ2
X = 1. The outcome of the recovery channel would be a random variable X̃ with

probability vector prec
X̃

such that prec2 = 0.5 and prec0 = prec1 = 0.25. As we can see,

σ2
X̃

= 11/16 < σ2
X = 1.

This shows that the variance can be decreased under Drec, and is therefore only a

weak uncertainty quantifier under our definition.
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3.4 Joint Uncertainty

The uncertainty of the outcomes of individual measurements cannot provide a com-

plete description of the uncertainty principle since uncertainty relations are character-

ized in terms of lower bounds on quantifiers of joint uncertainty. The joint uncertainty

is about the outcomes of at least two measurements. For example, in Heisenberg’s

uncertainty relation the joint uncertainty of the position and momentum of a particle

is measured through the quantity ∆x∆p. Other uncertainty relations use various

other quantifiers of joint uncertainty, e.g. the sum of Rényi entropies of the outcome

distributions of individual experiments [4]. We now formulate a notion that captures

the essence of the concept of joint uncertainty.

In general, we seek a notion of the joint uncertainty of a collection of n potential

experiments, each of which could have an arbitrary number of possible outcomes. For

simplicity, here we will restrict the discussion to collections of n = 2 experiments,

each with a finite number of possible outcomes. Generalization to arbitrary n can

be carried out in a straightforward manner. Before we state the precise definition of

joint uncertainty, we give two examples to demonstrate the different forms that joint

uncertainty can take in different scenarios.

Example 3.1. Consider two experiments, one tossing a coin whose 2 outcomes are

represented by the random variable X, and the other is rolling a die whose 6 outcomes

are represented by the random variable Y . To define the joint uncertainty of the two

experiments, we construct a new combined experiment as an independent and simul-

taneous performance of both the original experiments. In other words, tossing the

coin and independently rolling the die (see Fig. 3.3). In this scenario, the joint uncer-

tainty of the outcomes X and Y , is the single-variable uncertainty of the combined
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Figure 3.3: Example 1: Both experiments are performed simultaneously. The proba-
bility to obtain the combined outcome z ≡ (x, y) is p

Z=z
= p

X=x
p
Y =y

.

variable Z ≡ (X, Y ). Note that the combined variable Z has |Z| = |X ||Y| = 12

outcomes. In this case, the probability distribution of the combined variable Z is

given by pZ = pX ⊗ pY , and therefore the joint uncertainty can be written as

U(pX ⊗ pY ), (3.13)

where U is a quantifier of single-variable uncertainty as per Def. 3.1. Most joint un-

certainty quantifiers considered in the literature, e.g. the sum of Shannon entropies of

the individual outcome distributions, can be interpreted as a quantifier of uncertainty

of such a combined experiment [15].

Example 3.2. In this example we consider again the same two random variables

X and Y . But this time we first toss a different coin to make a choice between the

actions “toss the coin” (resulting in outcome X) and “roll the die” (leading to Y ),

and then perform only the chosen action (Fig. 3.4). The combined variable Z of this

experiment has |Z| = |X | + |Y| = 8 possible outcomes, and the uncertainty of the

outcome of this new experiment is (modulo the uncertainty in the choice of action)

also a manifestation of the joint uncertainty of (X, Y ). In this case, if the first coin
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Figure 3.4: Example 2: Another combination of two experiments; only one of them
is performed.

is unbiased, pZ = 1
2
pX ⊕ 1

2
pY and therefore the joint uncertainty can be written as

U
(

1

2
pX ⊕

1

2
pY

)
where U is a single-variable uncertainty quantifier. The quantifiers of joint uncer-

tainty proposed in [7] can be interpreted as quantifiers of uncertainty of such a single

combined experiment.

As these scenarios illustrate, there could be different ways in which experiments

could be combined into one super-experiment, whose outcomes have uncertainty that

reflects an aspect of the joint uncertainty of (X, Y ). But the essence of joint un-

certainty is not quite captured by any one of these joint experiments. In fact, the

functions

Hα(pX) +Hβ(pY ), (3.14)

which are quantifiers of joint uncertainty proposed in [4] (where Hα and Hβ are Rényi

entropies), cannot be interpreted as a quantifier of the uncertainty of any single

42



combined experiment (unless α = β). Another such quantifier is the Heisenberg

quantity ∆x∆p.

Our ultimate intention is to apply the notion of joint uncertainty to the quantum

uncertainty principle, which is simply about several potential measurements, each a

potential (actual or counterfactual) experiment in its own right. By all means, we

could construct counterfactual scenarios that feature two or more of these measure-

ments, but the uncertainty principle itself neither depends on, nor is bound by, such

“connected narratives”.

These considerations indicate that the notion of joint uncertainty is not bound

to a single combined experiment, or even to the concept of combined experiments.

Let us identify the desired properties of a quantifier of the joint uncertainty of two

random variables X and Y . The pairs (X, Y ) that have the smallest joint uncertainty

are ones where both distributions are completely certain. The most jointly-uncertain

pairs, on the other hand, are the ones where both variables are completely uncertain.

Furthermore, all the quantifiers of the joint uncertainty of (X, Y ) are real-valued

functions of the distributions p ≡ pX and q ≡ qY , and must reduce to the quantifiers

of single-variable uncertainty (as in Def. 3.1) if one of the vectors p and q is kept

fixed. This brings us to the following definition:

Definition 3.2. A quantifier of joint uncertainty of two variables X and Y is a

real-valued function J of (p, q) ≡ (pX , qY ), such that

J (D1p, D2q) ≥ J (p, q) (3.15)

for all doubly stochastic matrices D1, D2 in the respective “sym” and “rec” classes

of both variables. Without loss of generality, we can require that J (e1, e2) = 0

(where e1 and e2 are maximally-certain distributions on the respective spaces), so that
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J (p, q) is always nonnegative. As in the single-variable case, we will call functions

satisfying (3.15) for the “sym” class, but not for the “rec” class, weak quantifiers of

joint uncertainty.

Claim 3.3. All entropic quantifiers of uncertainty including the one in (3.14) are

all valid joint uncertainty quantifiers under definition 3.2. The ∆x∆p quantifier in

Heisenberg’s relation is a weak joint uncertainty quantifier under a restriction to

(random) Galilean transformations.

Note that if the symmetry groups of both variables are the respective full permuta-

tion groups, then D1 and D2 can be any two doubly stochastic matrices of appropriate

dimensions. In this case, the relation in (3.15) states that J is monotonic under the

direct product relation “Ï” defined by:

(p1, q1) Ï (p2, q2)⇔ (p1 � p2 and q1 � q2).

An important advantage of Definition 3.2 is that it gives us the chance to find more,

new quantifiers of joint uncertainty. As we discussed, quantifiers of joint uncertainty

should neither be necessarily interpreted with a practical setup of actual experiments

nor be a mathematical combination of different single-variable uncertainty quantifiers,

such as product of two quantifiers as in ∆x∆p or sum of two different entropies as in

Hα(pX)+Hβ(pY ). To show the existence of joint uncertainty quantifiers independent

of such restrictions, we introduce the following function:

J2(p, q) = 1− p↓ · q↓, (3.16)

where p↓ is the rearranged version of p in a non-increasing order, and (·) denotes the

usual dot product.
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To show that J2(p, q) is a valid quantifier of joint uncertainty, we need to prove

that it is a Schur-concave function of p for a fixed distribution q. Assume that

J2 = 1− (· · ·+ pkql + · · ·+ pjqm + · · · ), with pk ≥ pj and thus ql ≥ qm. Then:

(pk − pj)
(
∂J2

∂pk
− ∂J2

∂pj

)
=

(pk − pj)(−ql + qm) ≤ 0.

It is apparent that J2 is also invariant under different permutations of p, as we

have to sort p and q initially and then compute p↓ · q↓. Therefore, according to

Theorem 2.4 we have proved that J2 is a Schur-concave function of p for a fixed

distribution q. Analogously we can show that J2 is also a Schur-concave function of

q for a fixed distribution p and thus, is indeed a valid quantifier of joint uncertainty

under definition 3.2.

3.5 Conclusion

In this chapter, we discovered a unifying axiomatic definition of a valid uncertainty

quantifier. More importantly, we showed that variance, which seemed to be funda-

mentally different from all entropy functions, can be defined as an appropriate (but

weak) quantifier of uncertainty, under the very same defining characterizations of

entropies as (strong) valid uncertainty quantifiers.

By taking the same approach, we defined valid joint uncertainty quantifiers. The

novelty of this definition is its independence from different practical scenarios with

which most existing joint uncertainty quantifiers are defined. Though some joint un-

certainty quantifiers, such as Heisenberg’s ∆x∆p, cannot be interpreted with a single

combination of different actual measurements, they are mathematically constructed

from single-variable uncertainty quantifiers. Our definition of joint uncertainty quan-
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tifiers is also free of individual single-variable quantifiers of uncertainty. To show

that these usual approaches to define joint uncertainty quantifiers are unnecessarily

restrictive, we gave one simple example of a joint uncertainty quantifier, which nei-

ther can be interpreted with a practical setup of experiments nor is a mathematical

combination of single-variable quantifiers of uncertainty.

46



Chapter 4

Fine-Grained Quantum Uncertainty Relations

In this chapter, we utilize the notion of joint uncertainty developed in the previous

chapter to show how our formalism generalizes a large class of uncertainty relations.

There are two major types of preparational uncertainty relations: those based on

standard deviation, and entropic uncertainty relations (EURs). A very brief review

of the early history of these URs is given in the next section. Thereafter, we show

that our formalism not only unifies these two large classes of uncertainty relations,

but also provides a method for deriving new uncertainty relations. We take the joint

uncertainty quantifier, which was introduced in chapter 3, and prove that these new

quantum uncertainty relations exist. This relation is non-trivially different from all

existing URs.

We further use our formalism to study the theory of fine-grained quantum un-

certainty relations. Fine-grained uncertainty relations (or quantifier-free URs) are

mathematical expressions that are formulated independent of any particular uncer-

tainty quantifier. We see that there exist no universal quantifier-free formalism of

all uncertainty relations. However, under some restrictions fine-grained uncertainty

relations can be found. Using majorization techniques, we then prove a new class of

fine-grained uncertainty relations.
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4.1 Background

Revealing one of the most striking features of quantum mechanics, Heisenberg [1]

showed that the outcomes of certain pairs of measurements on a quantum system

can never be predicted simultaneously with certainty—regardless of how the system

is prepared. Heisenberg’s original statement of what he called the “indeterminacy”

principle concerned potential measurements of the position and the momentum of a

single quantum particle.

Later, Robertson [22] and others [24–27] generalized Heisenberg’s original idea,

both in the number and type of measurements involved, and in the quantifiers used

to quantify joint uncertainty. At the same time, Heisenberg himself set off another

chain of research on a related concept: measurement-induced disturbance and so-

called noise-disturbance relations [28–31].

The Heisenberg–Robertson class of uncertainty relations use the standard devia-

tion as a quantifier of the uncertainty of the outcomes of a measurement:

∆Â∆B̂ ≥ 1

2
|〈ψ|[Â, B̂]|ψ〉|, (4.1)

where ∆Ô ≡
√
〈ψ|
(

Ô− 〈ψ|Ô|ψ〉
)2
|ψ〉 is the standard deviation of observable Ô.

However, one can use other quantifiers of uncertainty to formulate the quantum me-

chanical indeterminacy principle. Hirschman [25] introduced the first uncertainty

relation in terms of entropies. Later, improved versions of Hirschman’s entropic

relation, proved in [26], were shown to imply Heisenberg’s original statement [27].

Deutsch [32] provided an objective argument for the superiority of entropic uncer-

tainty relations to the previous variance-based approach. First, he argued that the

lower bound of (4.1) depends on the state of the system |ψ〉. Thus, the lower bound
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can be trivially zero if |ψ〉 belongs to the null space of commutator [Â, B̂], which is

possible in finite dimensions. Second, he indicated that the variance quantifiers, such

as standard deviation used in Heisenberg’s relation, can be increased by mere relabel-

ing of the random variables associated with the measurement results. He concluded

that the essence of uncertainty is contained in the probability distributions of the

outcomes, rather than the somewhat arbitrary values that we associate with them.

He also found a state-independent entropic uncertainty relation, which Maassen and

Uffink [4] later improved to:

H1(pX) +H1(qY ) ≥ −2 log η, (4.2)

where Â =
∑

x ax |ax〉 〈ax| and B̂ =
∑

y by |by〉 〈by| are two projective measurements

with associated probability vectors pX and qY , respectively; and η is the maximum

overlap of the two measurements defined as η ≡ maxx,y |〈ax|by〉|.

Deutsch’s work pioneered a paradigm shift towards more information-theoretic

quantifiers of uncertainty [33–37]. Many different entropic relations have since been

proposed, mostly using Shannon and Rényi entropies as quantifiers of uncertainty

[38,39]. Much effort has also been directed towards generalizing the concept to more

than two measurements [40–42].

Moreover, a new type of URs have been introduced recently: fine-grained uncer-

tainty relations. Instead of setting the constraints on the output probability distribu-

tions of the given set of measurements through some inequalities in terms of uncer-

tainty quantifiers, these quantifier-free URs are mathematically formulated directly

in terms of the output probability distributions themselves (see [7, 14–16,43,44]).

Despite the increasing research trend towards tightening the bounds of different

EURs and finding new applications of them in other research areas, here we focus on

a better understanding of the essence of the uncertainty principle itself.
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4.2 The Quantum Uncertainty Principle

According to the laws of quantum mechanics, given a pair of incompatible quantum

measurements (non-commuting observables), it is impossible to prepare a quantum

state such that both measurements result in certain outcomes. In this case, at least

one measurement outcome is always uncertain to some degree. Generally, for any set

of two or more measurements, quantum mechanics predicts restrictions on the prob-

ability distributions associated with the measurements outcomes of on an arbitrary

quantum state. The “uncertainty principle” is indeed a collection of identities known

as uncertainty relations (URs), all quantifying these restrictions.

Broadly, there are three different operational contexts of URs: different measure-

ments applied on the same quantum state (either counterfactually or by preparing

many copies of the same state); (approximately) simultaneous execution of several

measurements; and sequential execution of several measurements. The notions that

we developed in the last two sections can be applied in all of these contexts, since they

all include instances of finite-dimensional classical variables. Here we will focus on

the first type of situation, where different measurements are considered on identical

preparations.

Since these URs depend only on the probabilities of the outcomes, a positive-

operator–valued measure (POVM) description of measurements is adequate in the

formalism. Consider the case of two POVM’s A ≡ {Λx}x and B ≡ {Γy}y. Note that

without loss of generality we assume both p and q have the same length d; we can

always pad some zeros to the shorter vector. For a quantum state ρ, measurement

A leads to outcome probability distribution p(ρ) where px(ρ) = Tr {Λxρ}, and B to

q(ρ) with qy(ρ) = Tr {Γyρ}.
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For a so-called incompatible pair of POVM’s (A,B), there is no ρ that results in

both p(ρ) and q(ρ) completely certain, leading to the existence of a “minimal joint

uncertainty”. Many URs are statements to this effect:

J (p(ρ), q(ρ)) ≥ c ∀ρ, (4.3)

where J is a quantifier of joint uncertainty, and 0 < c ≤ CJ (A,B) := minρ J (p(ρ), q(ρ)).

In some relations (e.g. Robertson’s), c is not a constant but rather a non-negative

function of ρ. The disadvantage of such a state-dependent lower bound is that it

can be zero in some cases even if A and B are incompatible. For this reason, state-

independent c’s are favored in most of the recent literature.

Claim 4.1. In general, our analysis of uncertainty and joint uncertainty enables us

to unify the understanding of all URs of the form

J (p1(ρ),p2(ρ) . . . ,pn(ρ)) ≥ c, ∀ρ (4.4)

where J (·) is a (strong or weak) joint uncertainty quantifier (under a generalized

version of Def. 3.2) of the n probability distributions (p1 . . . ,pn) that result from

measurements (A1 . . . ,An) (counterfactually) applied to the same state ρ. A vast

number of URs reported in the literature, including most entropic URs, take this

form.

In fact, most of the entropic URs found so far fall under a much stronger restric-

tion. As we mentioned in the previous section, they can all be constructed upon

specific notions of joint uncertainty based on the “combined experiment” scenarios

where either all the measurements are performed on independent, identically prepared

quantum systems [as in Fig. 3.3], or a random choice is made to decide which of the

several measurements to perform [as in Fig. 3.4]. All entropic relations based on joint
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uncertainty quantifiers of the form f(p) + f(q), where f is an entropy function, fall

under this category.

Going beyond these operational notions and using our general definition of joint

uncertainty enables us to construct new URs, with the following “recipe”:

1. Find a quantifier of the joint uncertainty (under a restricted class of

symmetries, if applicable) of the desired number n of distributions,

based on Def. 3.2.

2. For the given n measurements, find a lower bound on the n-joint un-

certainty of the outcome distributions of the measurements applied to

quantum states, like the c in (4.3). This bound leads to an assertion of

the form (4.3), i.e. an uncertainty relation.

4.2.1 A New Quantum Uncertainty Relation

To demonstrate the utility of the aforementioned recipe, we derive an uncertainty

relation for two projective measurements on pure state preparations of a 2-level

system, using the following joint uncertainty quantifier constructed using Def. 3.2:

J2(p, q) = 1 − p↓ · q↓. Here (·) denotes the usual dot product, and p↓ is the re-

arraigned version of p in a non-increasing order. Note that this quantifier of joint

uncertainty is faithful in the sense that it is zero if and only if both vectors p and q

are completely certain.

Theorem 4.1. Given a pair of projective measurements A = {|a1〉, |a2〉} and B =

{|b1〉, |b2〉}, for any quantum state |ψ〉,

1− p↓(ψ) · q↓(ψ) ≥ 1

2
(1− η2), ∀ψ (4.5)
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where p and q are the outcome distributions of the projective measurements A and B;

and η ≡ maxi,j |〈ai|bj〉|. Also, p↓ denotes the sorted version of p in a non-increasing

order.

Proof. Given a two-level quantum system (a qubit) in a pure state |ψ〉, consider two

rank-1 projective measurements A and B, respectively defined by the orthonormal

bases {|a1〉, |a2〉} and {|b1〉, |b2〉}. When A is applied to |ψ〉, the resulting outcome

distribution p(ψ) has the components p ≡ p1(ψ) = |〈a1|ψ〉|2 and p2(ψ) = 1 − p;

similarly, we denote the distribution of the outcomes of B, q(ψ) ≡ (q, 1 − q). We

shall now find a lower bound on the minimum joint uncertainty of (p(ψ), q(ψ)), over

all pure states |ψ〉, under the quantifier

J2(p, q) = 1− p↓ · q↓. (4.6)

Note that J2 is a valid quantifier of joint uncertainty as it satisfies the constraints

in Definition 3.2. We can partition the set of all pure states into two subsets S1 and

S2 given by

S1 = {|ψ〉|(p ≥ 0.5, q ≥ 0.5) or (p < 0.5, q < 0.5)};

S2 = {|ψ〉|(p ≥ 0.5, q < 0.5) or (p < 0.5, q ≥ 0.5)},

where p and q are understood to be ψ-dependent. The function J2 can be defined

piecewise using this partition as

J2(ψ) =

 p+ q − 2pq, |ψ〉 ∈ S1;

1− p− q + 2pq, |ψ〉 ∈ S2.
(4.7)

Modulo a global phase, |ψ〉 can be parametrized as

|ψ〉 = cosα|b1〉+ eiϕ sinα|b2〉, (4.8)
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with α ∈ [0, π/2] and ϕ ∈ [0, 2π). Appropriate global phases can be added to the

measurement basis vectors so that

q = cos2 α;

p =
∣∣cosα cos β + sinα sin βeiϕ

∣∣2 ,
where cos (β) ≡ |〈a1|b1〉|. The minimization of the function J2 using its piecewise

definition (4.7) can be done by separately minimizing over S1 and S2 and then finding

the smaller of the two minimums. Let us first consider S1. Now, it can be verified

that the ϕ dependence of J2 is through a term of the form f(α, β) sin2(ϕ/2), so that

the minimization can be carried out first over ϕ alone, and then over all α. In the

cases where f(α, β) > 0, the minimum over ϕ is achieved when sin2(ϕ/2) = 1; if

f(α, β) < 0, the minimum occurs when sin2(ϕ/2) = 0. In either case, the minimum

over ϕ, as a function of α, takes the form

min
ϕ
J2(ψ) ≡ J(α)

= cos2 α + cos2(β ± α)− 2 cos2 α cos2(β ± α).

Since J(α) is even in α, the subsequent minimization over α leads to the same value

regardless of whether the positive or negative sign is used in the ± above. One can

check that the minimum is attained at α = β/2, yielding

min
|ψ〉∈S1

J2 =
1

2
sin2 β. (4.9)

Using similar arguments, we can determine the minimum over the other partition

S2:

min
|ψ〉∈S2

J2 =
1

2
cos2 β. (4.10)
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Note that without loss of generality we can take 0 ≤ β ≤ π/2. Comparing the

two local minimums, we can express the global minimum succinctly as

min
|ψ〉
J2(p, q) =

1

2
(1− η2), (4.11)

where η = maxi,j |〈ai|bj〉|.

Since the quantifier J2 cannot be interpreted based on the two combined-experiment

scenarios under which most existing entropic URs fall, or indeed based on any single-

experiment scenario, the above UR is non-trivially different from all previous ones.

More generally, for d-dimensional p and q, any joint uncertainty quantifier con-

structed as a Schur-concave function of the vector (p↓1q
↓
1, p
↓
2q
↓
2 . . . , p

↓
dq
↓
d) is a valid joint

uncertainty quantifier of (p, q). So is any Schur-concave function of vectors of dimen-

sion k < d constructed with the components (p↓1 + q↓1, p
↓
2 + q↓2 . . . , p

↓
k + q↓k). These are

just a couple of examples that we contrived for illustration, suggesting that a rich

variety of URs could be obtained by allowing joint uncertainty quantifiers that don’t

yield themselves to interpetation as the outcome uncertainty of any single experiment.

4.3 Fine-Grained Uncertainty Relations

Is it possible to find a universal relation that is independent of any quantifier of joint

uncertainty, such that it generalizes all possible uncertainty relations with the generic

form of (4.4), valid for any arbitrary quantifier J ? In this section we argue that such

a universal relation does not exist. However, under some circumstances we are able

to prove a large class of quantifier-free uncertainty relations.

Assume we intend to characterize the joint uncertainty of a given collection of

quantum measurements; for convenience, suppose it is a pair of measurements (A,B).

We could construct various uncertainty relations using the aforementioned recipe,
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with the given pair (A,B) and different joint uncertainty quantifiers J . Every un-

certainty relation is stated in terms of a lower bound like the c of (4.3), which in turn

depends on J . In general, for a given J it might be hard to compute such a bound;

it would be convenient if there were a shortcut.

For example, perhaps we could find a fixed pair (s, t) of distribution vectors (that

only depend on (A,B)), and some mathematically defined binary relation 2 such

that

(p(ρ), q(ρ)) 2 (s, t) ∀ρ

means

J (p(ρ), q(ρ)) ≥ J (s, t) ∀ρ,J . (4.12)

If there were such a pair, then for any given J0 we would merely have to compute

J0(s, t), immediately yielding a bound. In this sense, finding such a pair would

amount to finding a plethora of uncertainty relations; therefore, such a pair can be

said to constitute a quantifier-free uncertainty relation for the pair (A,B) [15, 16].

Of course, there is always a trivial possibility of such a pair: Just choose s0 and

t0 such that s0 � p(ρ) and t0 � q(ρ) for all ρ. Such a (s0, t0) would be unhelpful

in that it would not impose joint restrictions on (p, q). What we would really like

is a nontrivial pair (s, t) that does better. As it turns out, such a nontrivial pair

satisfying (4.12) never exists for any given (A,B), because the clause “∀J ” in (4.12)

includes all single-uncertainty quantifiers of p and q alone, leading necessarily to the

trivial choice (s0, t0). In particular, if the POVM associated with the measurement

A contains any rank-1 operators, then the condition s � p(ρ) for all ρ is possible

only if s = e ≡ (1, 0, · · · , 0); likewise for B.

In order to salvage the possibility of nontrivial quantifier-free uncertainty relations,

we can relax the condition “∀J ”, and instead require the inequality in (4.12) to only
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Figure 4.1: Type (a) combination of quantum measurements.

hold for some restricted class of J ’s. Sometimes such restricted classes of quantifiers

do admit nontrivial (s, t) pairs. Here we find two such restricted classes.

Interestingly, these classes are related to the two examples we considered in Sec-

tion 3.4. The first scenario considers the experiment where both A and B are carried

out independently of each other, on the same state ρ. Since measurements in general

destroy the state of a quantum system, independently carrying out both A and B

requires us to first prepare two independent (i.e. uncorrelated) copies of the state ρ

(Fig. 4.1). These copies, represented by the tensor product ρ⊗ ρ, are then subjected

to the measurements A and B, and the outcome of this joint experiment is a random

variable Z ≡ (X, Y ).

We can then restrict to those joint uncertainty quantifiers J that are obtained

as quantifiers of the single-variable uncertainty of the variable Z. Therefore the

quantifiers in our restricted class are of the form

J (p(ρ), q(ρ)) = U (p(ρ)⊗ q(ρ)) , (4.13)
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where U is a single-variable uncertainty quantifier. It was shown [15,16] that for any

given projective measurements (A,B) there exists a distribution vector s ≡ s(A,B)

such that

p(ρ)⊗ q(ρ) ≺ s, ∀ρ. (4.14)

This uncertainty relation is a fine-grained uncertainty relation, since it is independent

of the choice of the function used to quantify the uncertainty.

By applying any quantifier of uncertainty (any Schur-concave function U) to the

quantifier-free uncertainty relation (4.14) we will have

U (p(ρ)⊗ q(ρ)) ≥ U(s) = const., ∀ρ. (4.15)

Note that for Rényi entropies (and in general any Schur-concave function that is

additive under direct product, i.e. U(p⊗ q) = U(p) +U(q)) equation (4.15) becomes

an entropic uncertainty relation (EUR) of the following form:

Hα(p(ρ)) +Hα(q(ρ)) ≥ Hα(s) = const., ∀ρ. (4.16)

Similarly, following Example 2 of Section 3.4, we can consider another combination

wherein we first pick, at random, only one of the two projective measurements A and

B, and then perform it on a pure state ρ = |ψ〉 〈ψ|. This is the same scenario

considered in [7]. For this case, we can find a nontrivial (s, t).

Theorem 4.2. For a given pair of projective measurements, there exists a non-trivial

pair of distributions (s, t), independent of |ψ〉, such that, for any 0 ≤ r ≤ 1 and any

quantum state |ψ〉

U(rp(ψ)⊕ (1− r)q(ψ)) ≥ U(rs⊕ (1− r)t), ∀ |ψ〉 (4.17)

where p and q are probability vectors respectively associated with the two measure-

ments performed on |ψ〉; and U is a Schur-concave function.
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Figure 4.2: Type (b) combination of quantum measurements.

Proof. Let A ≡ {Λx = |ax〉 〈ax|} and B ≡ {Γy = |by〉 〈by|} be two rank-1 projective

measurements on a d-dimensional quantum system. Consider a particular combina-

tion of these measurements, shown in Fig. 4.2: We first randomly choose one of A and

B, as per the distribution (r, 1−r) (without loss of generality we assume r ≥ 0.5); we

then perform the chosen measurement. Let px = |〈ax|ψ〉|2 and qy = |〈by|ψ〉|2 denote

the output probability distributions of measurements. Thus, the output probability

vector of this combined setup will have the following form

h(ψ) = (rp(ψ))⊕ ((1− r)q(ψ)) , (4.18)

understood as the vector obtained by concatenating the components of the two vectors

rp and (1− r)q.

If there exist a probability vector ω(A,B) ≡ rs⊕ (1− r)t such that

h(ψ) ≺ ω ∀ |ψ〉, (4.19)

we can immediately have

J (p(ψ), q(ψ)) ≥ J (s, t) ∀ |ψ〉, (4.20)

59



for all the Schur-concave functions J (p, q) ≡ U(rp⊕ (1− r)q). Hence, 4.19 forms a

quantifier-free quantum uncertainty relation.

We shall now find such an ω. Let h↓ be the vector h with its components arranged

in a non-increasing order. Then define

Ωk ≡ max
|ψ〉

k∑
j=1

(
h↓(ψ)

)
j
, (4.21)

where 1 ≤ k ≤ 2d. According to theorem 2.2, probability vector ω constructed as

ω = (Ω1,Ω2 − Ω1, · · · ,Ω2d − Ω2d−1), (4.22)

majorizes h(ψ) for all |ψ〉.

It is straightforward to prove that Ω1 = r, and that Ωk = 1 for all d+ 1 ≤ k ≤ 2d

(take |ψ〉 = |ax0〉 and |ψ〉 = |by0〉 respectively, where x0 and y0 are specific instances

of x and y). Also, in the following lemma we find Ωk, for 2 ≤ k ≤ d, using minor

modifications of the lemma in the appendix of Ref. [16]. Thus, in a simplified form:

ω = (r,Ω2 − r, · · · , 1− Ωd, 0, · · · , 0). (4.23)

As the order of components is not important for the majorization relation, we can

rewrite the majorizing probability vector ω as

ω = re⊕ (1− r)tr, (4.24)

where e = (1, 0, 0, · · · ) and the probability vector tr is given by

tr(A,B) =
1

1− r
(Ω2 − r,Ω3 − Ω2, · · · ) . (4.25)

Clearly, the pair (e, tr) is the desired (s, t) of theorem 4.2.

Lemma 4.1. Given two projective measurements A ≡ {|ax〉 〈ax|} and B ≡ {|by〉 〈by|},

define the matrix G = (gxy) with gxy = 〈ax|by〉. Also define the set S(G, k) of all sub-

matrices of G, the numbers of whose rows and columns together add up to k (i.e. all
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submatrices with 1 row and (k− 1) columns, all submatrices with 2 rows and (k− 2)

columns, etc.). Let px = |〈ax|ψ〉|2 and qy = |〈by|ψ〉|2 denote the output probability

distributions of measurements. According to (4.18) let h = rp ⊕ (1 − r)q; then,

Ωk ≡ max|ψ〉
∑k

j=1

(
h↓(ψ)

)
j
, can be obtained via the following formula

Ωk = r +
√
r(1− r)

(
max

V ∈S(G,k)
σ1(V )

)
, (4.26)

where, σ1(V ) is the leading singular value of the rectangular matrix V (Note that

singular value decomposition is invariant over permutations of rows and columns of

V ).

Proof. Assume that we know the first k elements of h↓(ψ): it has k1 px’s and k2 qy’s

with k1 + k2 = k. Then:

Ωk = max
|ψ〉

k1∑
j=1

rp̃j +

k2∑
j=1

(1− r)q̃j (4.27)

= max
|ψ〉

k1∑
j=1

r|〈ãj|ψ〉|2 +

k2∑
j=1

(1− r)|〈b̃j|ψ〉|2, (4.28)

where p̃ and q̃ are some permuted versions of p and q (not necessarily the same

permutation). Let |âj〉 =
√
r|ãj〉 and |b̂j〉 =

√
1− r|b̃j〉, then we can rewrite Ωk as

Ωk = max
|ψ〉

k1∑
j=1

|〈âj|ψ〉|2 +

k2∑
j=1

|〈b̂j|ψ〉|2 (4.29)

= max
|ψ〉
||C|ψ〉||2 = σ2

1(C) = λ1(CC
†), (4.30)

where σ1(·) and λ1(·) denote the leading singular value and leading eigenvalue, re-
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spectively; and the matrix C is defined as:

C =



〈â1|
...

〈âk1|

〈b̂1|
...

〈b̂k2 |


=



√
r〈ã1|
...

√
r〈ãk1|

√
1− r〈b̃1|

...

√
1− r〈b̃k2|


. (4.31)

Note that

C† =
[√

r|ã1〉 · · ·
√
r|ãk1〉

√
1− r|b̃1〉 · · ·

√
1− r|b̃k2〉

]
, (4.32)

and consequently

CC† =

 r1k1
√
r(1− r)V√

r(1− r)V † r1k2

 , (4.33)

with V = (vij), where vij = 〈ãi|b̃j〉. Now according to the Jordan’s definition of

singular values, we can simplify λ1(CC
†) as

λ1(CC
†) = r +

√
r(1− r)λ1

 0 V

V † 0

 (4.34)

= r +
√
r(1− r)σ1(V ). (4.35)

As we don’t know the optimizing combination of px’s and qy’s we need to maximize

over all possible V matrices with k1 rows and k2 columns such that k1 + k2 = k. This

optimization leads to (4.26) which completes the proof.

In conclusion, we constructed a new fine-grained uncertainty relation:

(rp(ψ))⊕ ((1− r)q(ψ)) ≺ re⊕ (1− r)tr, ∀ |ψ〉 (4.36)
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where p and q are output probability distributions associated with quantum projec-

tive measurements A and B, respectively; and tr is defined in (4.25), where r is any

arbitrary real number 0.5 ≤ r ≤ 1.

Now by applying any Schur-concave function U , the fine-grained uncertainty re-

lation (4.36) immediately leads to the following uncertainty relation based on the

uncertainty quantifier U :

U ((rp(ψ))⊕ ((1− r)q(ψ))) ≺ U (re⊕ (1− r)tr) , ∀ |ψ〉. (4.37)

For example, for the case of Shannon entropy (U = H1), and r = 0.5, our uncertainty

relation simply generates the following entropic uncertainty relation:

H1(p(ψ)) +H1(q(ψ)) ≥ H1(t0.5) = const., ∀ |ψ〉 (4.38)

where H1(t0.5) is a positive constant independent of |ψ〉.

4.4 Conclusion

We took our axiomatic approach discussed in chapter 3 and used it to generalize

a large class of uncertainty relations into a single framework. Our framework also

provides a recipe to discover new uncertainty relations. We gave one such example of

new quantum uncertainty relations that was not discussed in the literature.

We then studied fine-grained (or quantifier-free) quantum uncertainty relations.

We showed that no universal quantifier-free relation exists that can generalize all

uncertainty relations. Nonetheless, we proved a fine-grained majorization uncertainty

relation that generalizes a restricted, but a large class of entropic uncertainty relations.

These majorization relations are fine-grained in the sense that they provide a direct

constraint on the probability distribution vectors that are associated with the two

quantum measurement outcomes.

63



Chapter 5

Conclusion and Open Problems

In this work, we indicated that uncertainty is a property of a physical system that

cannot be reduced by mere relabeling or by random relabeling. One can further

restrict allowed relabelings to a particular symmetry group depending on the physical

system.

We based our analysis on an information-theoretic study of the mechanisms of

uncertainty increase: 1) randomly-chosen symmetry transformations; and 2) classical

processing via channels followed by recovery. Corresponding to these, we identified

two classes of doubly stochastic matrices, Dsym and Drec. Uncertainty quantifiers, in

the strictest sense, must be monotonically non-decreasing under the action of these

two classes.

We then took a similar information-theoretic approach to the concept of joint un-

certainty of several variables, resulting in the principle that the most basic features of

joint uncertainty quantifiers must not depend on specific operational combinations of

the variables. We then considered quantum uncertainty relations (URs) of the prepa-

rational uncertainty type, where past works have always assumed specific operational

combinations. Applying our new notion of joint uncertainty not only resulted in a

unified understanding of a large class of URs, but also opened up the possibility of

deriving a new class of preparational URs, namely identities that are mathematically

valid for any preparation, but cannot be interpreted based on any single experimental

scenario. To illustrate, we constructed a class of joint uncertainty quantifiers with

this property, and proved a new quantum uncertainty relation based on one of these
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quantifiers as an example.

Finally, we found that so-called universal uncertainty relations cannot be found

over all possible quantifiers of joint uncertainty. We connected fine-grained uncer-

tainty relations found in past works (see [15, 16, 43, 44]) with specific operational

interpretations of joint uncertainty. Considering one such operational scenario we

also derived a new class of fine-grained uncertainty relations.

In addition, we noted the limitations of all fine-grained uncertainty relations.

They are powerful tools inasmuch as they generate a variety of uncertainty relations,

but we must bear in mind that the bounds they yield on a specific joint uncertainty

quantifier may not be tight.

5.1 Future Work

There is much to be understood about the classes Drec and Dsym of doubly stochastic

matrices. First open question here is to find a rigorous characterization of Drec.

Second question is to find the definition of the hierarchy relations among real vectors

induced by the action of doubly stochastic matrices in the union of these two classes.

In other words, it is interesting to find the necessary and sufficient conditions on the

elements of the two given real vectors p and q, if q = Dp with D belonging to the

union of Drec and Dsym. One other interesting question would be to find quantifiers

of uncertainty that are not Schur-concave but are concave under the action of the

matrices in the union of Drec and Dsym.

We introduced and discussed two classes of quantifier-free uncertainty relations

in section 4.3. It might be possible to unify the spirit of the two classes of the ma-

jorization URs mentioned in the previous chapter into a larger class, by including all

quantifiers of joint uncertainty that are symmetric in the two (or more) distributions:
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J (p, q) = J (q,p). (5.1)

This requirement avoids the case of trivial relations resulting from the requirement

(s, t) Ï (p, q), but we leave it open whether a nontrivial (s, t) can be found. Another

way of unifiying several classes of quantifier-free relations, each with its respective

(si, ti), is by bounding any quantifier J as follows:

J (p(ρ), q(ρ)) ≥ min
j∈{1,...,m}

J (sj, tj) ∀ρ,J . (5.2)

An interesting open problem is whether there exists a finite integer m such that min-

imizing over all j ≤ m provides a nontrivial bound for all nontrivial joint uncertainty

quantifiers.

Moreover, a more complete characterization of uncertainty on infinite-dimensional

systems is another challenging future project. This could impact applications of

squeezed states, which are ubiquitous in quantum information processing with con-

tinuous variables.

One significance of our work is our approach to the notions of uncertainty and joint

uncertainty. It would be very intriguing to find more applications of this approach in

other areas of research, such as classical information theory, cryptography, etc.
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Appendix A

Copyright and Permissions

This thesis uses the material from Ref. [3] under the Creative Commons Attribution

3.0 Unported (CC-BY) license. For more documentation and information regarding

the copyright and permissions of the New Journal of Physics please see figure below or

go to http://iopscience.iop.org/journal/1367-2630/page/Copyright%20and%

20permissions.

Figure A.1: Copyright and reuse permissions of the New Journal of Physics.
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