UNIVERSITY OF CALGARY

Nonlinear dynamics of mathematical models and proposed implementations in ultracold atoms

Hon Wai Lau

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN PHYSICS AND ASTRONOMY

CALGARY, ALBERTA

JULY, 2017

(© Hon Wai Lau 2017



Abstract

Nonlinear effects are ubiquitous in nature. Many interesting phenomena are described by differ-
ential equations that are nonlinear. Even richer dynamics can be observed with additional long-
range spatial coupling. For example, an interesting type of pattern discovered recently can form
in systems with nonlocal coupling. The pattern, called chimera states, is composed of both phase
coherent and incoherent regions coexisting in the same system. Through numerical studies of os-
cillatory media with nonlocal diffusive coupling, I show here for the first time that stable chimera
knot structures can exist in 3D. Knots were not previously known to be stable in oscillatory media,
nor were such non-trivial chimera patterns known to exist in 3D.

To realize different nonlinear phenomena in a controlled way in experiments, a flexible physical
system is required. Ultracold atomic systems, specifically, Bose-Einstein condensates (BECs),
are good candidates because of the high controllability of almost all parameters, including the
nonlinearity, in real time. Hence, experimental studies can be carried out for a variety physical
systems, including many classical and quantum field equations. In particular, in this thesis I study
a setup of BECs with a third-order Kerr nonlinearity to generate Schrodinger cat states, which have
applications in quantum metrology. I showed that cat states involving hundreds of atoms should be
realizable in BECs. This requires careful optimization of the experimental parameters and analysis
of the atom loss.

Inspired by the previous two projects, it is an interesting question if chimera states can exist in
BECs. By analyzing the underlying mechanism of the effective nonlocal diffusive coupling, I es-
tablish here a new analogous mechanism to achieve mediated nonlocal spatial hopping for particles
in BECs with two interconvertible states. By adiabatically eliminating the fast mediating channel, I
obtain the mean-field of Bose-Hubbard model with fully tunable hopping strength, hopping range,
and nonlinearity. This is the first known conservative system exhibiting chimera patterns. More

importantly, I show that the model should be implementable in BECs with current technology.
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Chapter 1

Introduction

Many interesting dynamics and physical phenomena observed in nature can only be modeled by
nonlinear differential equations. These phenomena include chaos, solitons, and many patterns that
are unique to nonlinear systems. One of the most famous nonlinear differential equations yielding
a variety of different patterns is the complex Ginzburg-Landau equation (CGLE) [1, 2], which
describes many physical systems phenomenologically, such as superconductivity and nonlinear
waves. The CGLE is famous because it is the normal form of any system close to a Hopf bifurcation
- a critical point where a stationary system begins to oscillate [2} 13]].

Chimera states are a particular type of pattern that have been recently discovered [4), 5], which
are states that contain oscillators synchronized in some region, but unsynchronized in another
region (see Fig. [1.3). This happens for oscillators that are completely identical. It is understood
that the nonlocal diffusive coupling plays a key role in the formation of most chimera patterns.
In particular, many chimera patterns can be observed in the nonlocal CGLE in 1D and 2D [6), [7].
In this thesis, I will present a new chimera pattern called chimera knots in 3D that have never
been seen before [8]. It is a pattern with synchronized regions everywhere except around a knot
structure in 3D. This is an important discovery because no stable knots were known to exist with
local coupling in CGLE, or more generally, oscillatory media.

Another famous and related nonlinear differential equation is the Gross-Pitaevskii equation
(GPE) [9]], which was derived as a mean-field description of Bose-Einstein condensates (BECs).
A BEC is a state with all bosons occupying the same single particle state [10]. Hence, in the
limit of large numbers of particles, a simple description is possible by taking the mean of the
corresponding quantum field equation . The GPE is the Schrodinger equation but with an extra

nonlinearity originating from two-particle collisions, and it is identical to the CGLE in certain



parameter regimes.

In quantum systems, the nonlinearity from two-particle collisions can be used to generate
Schrodinger cat states, which are superpositions of two macroscopically distinct states. The cat
states in BECs can involve many atoms and are very sensitive to particle loss. Even the loss of a
single particle can cause significant decoherence and destroy the cat states. Therefore, analyzing
the effects of particle loss is important when making practical scheme proposals. Large cat states
have applications from precise quantum metrology that can surpass the standard quantum limit,
to detect the hypothetical energy collapse model [[11]. In this thesis, I will propose and analyze a
scheme using two-component BECs to generate cat states [[12].

The differential equations CGLE and GPE are very similar to each other. For example, both
of them have a third-order nonlinearity, are equivalent in some regime, and show similar patterns.
This close relationship between CGLE and GPE suggests that chimera states may also exist in
BECs. As mentioned, the nonlocal diffusive coupling in the CGLE is important for chimera states,
so it is reasonable to speculate that there may be an analogue for the GPE too. After studying
the underlying mediating mechanism of the nonlocal diffusive coupling, I have found such an
analogue to be the mediated nonlocal hopping. The idea is similar to the typical mediating mecha-
nisms for particle-particle interactions such as Coulomb’s law: The complete description typically
involves the consideration of the particle-field-particle interaction. However, if the field is orders
of magnitude faster than the interesting dynamics of the particles, then the field can be eliminated
adiabatically, resulting in an effective, simple, and instantaneous nonlocal description. By using
two-component BECs with one of the components treated as a mediating channel with matter-
wave as a mediating field, I show that an effective mediated nonlocal hopping can appear. This
nonlocal hopping model (NLHM) allows experimentally tunable hopping range, hopping strength
and, nonlinearity. Since ultracold atomic BECs are highly controllable, I have also found an exper-
imentally realistic parameter regime in which my proposed mechanism should work, and where

chimera states should be observable. This discovery will allow the study of chimera states in BECs
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Figure 1.1: Spatio-temporal patterns in 1D. The horizontal axis is space x, and the vertical axis is
time 7. Values increases from blue to red. (a,b) Amplitude A(x,) of two systems. (c) Phase 0 (x,?)
of (b).

and conservative systems. The quantization of this NLHM is the Bose-Hubbard model with

nonlocal hopping, and there are likely interesting physics and quantum phases to be discovered.
In the remainder of this chapter, I will introduce the three main topics involved in this thesis:

chimera states, cat states, and Bose-Einstein condensates. The theoretical background required to

understand my results will be presented in the following chapter.

1.1 A new type of pattern - chimera states

Various interesting structures exist everywhere in nature, and easily recognizable structures are of-
ten referred to as patterns [3, 15,16, [17]]. A pattern may be considered as a high-level macroscopic
description of the structures in different subparts of a given system. Patterns are usually visually
distinct such as the spatio-temporal patterns in Fig. [I.T} or snapshots of spatial patterns in Fig.
[[.2] These distinct features suggest that mathematical modeling is possible. For example, if the

local dynamics of every spatial location r are oscillators, then the system may be described by two
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Figure 1.2: Snapshots of the patterns of in 2D. Amplitude A(r,7) and phase 0(r,t) for (a,e) a
single spiral, (b,f) multiple spirals, and (c,g) turbulence-like pattern. (d) Plane wave. (h) A line
defect from the center to the left edge in Rossler model [14].

T

dynamical variables, the amplitude field A(r,) and the phase field 6(r,7). A new type of pattern
called chimera states has been discovered recently, as shown Fig. [I.3p-e. The visual feature of
this pattern is the coexistence of phase coherence in one region and phase incoherence in another
region.

This chimera pattern is surprising because it can exist in a system with identical oscillators and
identical coupling between oscillators. Before the discovery in 2002, for a long time, a network of
identical oscillators was believed to be relatively boring with only two possibilities: Fully coherent
or incoherent [3)]. This viewpoint changed in 2002 when Yoshiki Kuramoto and his collaborator
Dorjsuren Battogtokh were studying a ring of identically and nonlocally coupled phase oscillators
[4]. They discovered that, for certain initial conditions, some of the oscillators can synchronize
while the remaining oscillators are incoherent. This happens even in systems with translational
and rotational symmetry in 2D studied in the follow-up studies [7, (18} [19]. The patterns include
coherent and incoherent spots, stripes and spirals with randomized cores as shown in Fig. [I.3] The
term chimera state was coined by Steve Strogatz in 2004 because of the similarity with the

Greek mythological creature composed of different animals.
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Figure 1.3: Snapshots of patterns observed in the nonlocal Kuramoto model (see Chapter 3).
The plots are the phase 0(r,¢) of oscillators. (a) Incoherent spot. (b) Coherent spot. (c) Chimera
strip. (d) Incoherent core with a spiral. (¢) Multiple incoherent cores. (f) Irregular pattern with the
expansion of cores. (g) Near-random pattern. (h) Completing plane wave. Initial condition for all
patterns are random phase, except (d) which starts from a spiral. Each direction has length L =200
oscillators.

Only a decade later, in 2012, the existence of chimera states in experimental systems was con-
firmed in two demonstrations. The first one used photosensitive chemical oscillators with the light
feedback coupling in a two-cluster setup [21]], and later in a 1D ring [22]. The second experiment
used a coupled map lattice with coupling through camera detections and light feedback [23]]. The
criticism of computer-controlled coupling was addressed by a third experiment using pure me-
chanical oscillators in 2013 [24]]. The success of these experiments raises the interest of explaining
physical phenomena in systems that resemble oscillator dynamics such as brains, hearts, and power
grids [3].

As mentioned above, a chimera state is defined as a state with subpopulations that are mutually
synchronized and the remaining populations unsynchronized. The term synchronization, as defined

in [25]], is the adjustment of rhythms of oscillating objects due to their weak interaction. A simple



harmonic oscillator is an example of an oscillating object. Most oscillators with multiple oscillating
cycles need an input of energy to be self-sustained such as clocks, pendulum, lasers, chemical
oscillation, pacemakers, and neuron activity. For these systems, a natural frequency @y and phase 6
can be defined. The coupling between oscillators change the rhythms, or the oscillating frequency
and phase dynamics, of the oscillators. The synchronization of oscillators occurs when different
natural frequencies that become locked to a common frequency due to weak coupling [26]. The
simplest mathematical modeling for this phenomenon is the Kuramoto model [27]].

The fact that coherent and incoherent regions can coexist in systems with completely identical
oscillators is a prime example of the spontaneous breaking of synchrony. It is worth mentioning
that with specially selected natural frequencies and couplings, patterns similar to chimera states
may be created [5]], which may not be considered as chimera states. Chimera states can appear
as spatio-temporal patterns in 1D, 2D, two-cluster, and complex networks as listed in Ref. [J3].
Numerical simulations suggest that most chimera states are stable, as well as robust against noises
and perturbations. A few chimera states in 1D are known to be transient states with a long lifetime
and become stable in the thermodynamic limit [28]]. There are many classifications of chimera
states. For example, stationary chimera patterns have a stationary boundary between coherence
and incoherence regions as shown in Fig. [1.3[(a-c), but still show phase randomness in time. In this
case, an ansatz may be used to simplify the analysis of the stability [29} [30]].

Oscillatory media are continuous media where each spatial point can be treated as an oscillator
locally [16]. While in general continuous media u(r,) with space r, time 7, and field u continuum
can be described by partial differential equations. Therefore, synchronization can exist in oscilla-
tory media because oscillator dynamics exist locally and are coupled through, say, diffusion of the
form V2u. One of the most-studied and well-known equations for oscillatory media is the complex
Ginzburg-Landau equation (CGLE) [1]. It is the normal form of all oscillatory media close to a
supercritical Hopf bifurcation [17]. A Hopf bifurcation happens when tuning a control parameter

causes a stable point in phase space to become a stable limit cycle oscillation.



The developments of CGLE can be traced back to the early work of Lev Davidovich Landau
on phase transitions in 1937 [31), 132]. Later in 1950, together with Vitaly Lazarevich Ginzburg,
they postulated the Ginzburg-Landau theory as a phenomenological description of superconduc-
tors [33]. Similar equations were eventually found to provide good descriptions of diverse phe-
nomena including nonlinear waves, Rayleigh-Bénard convection, and Bose-Einstein condensates.
An example of oscillatory media is reaction-diffusion systems where the local reactions behave
like self-sustained oscillators and are coupled through spatial diffusion. Experimentally, it can be
realized by chemical oscillations such as the Belousov-Zhabotinsky chemical reaction [2]].

Nonlocal coupling plays a key role in most formations of spatial patterns of chimera states. As
shown in the original works in 1D and 2D [4] [7], chimera states can be observed in the nonlocal
CGLE where the typical diffusion term is replaced by a nonlocally coupled term, and later in the
simplified nonlocal Kuramoto model [[18]. A study of chimera states in 3D only happened recently
[34]]. In 3D, the point-like phase singularity in 2D at the center of Fig. [[.2a will become a line-like
structure, often called a filament. The spiral wave in 2D becomes a scroll wave in 3D. Instead of a
straight filament, filaments can also be closed like a ring. The stability of straight filaments, rings,
and twisted filaments have been studied [35,36]. However, no stable knots and links such as Hopf
links (two intertwined rings) and trefoils have been observed. In contrast, stable knots and links
exist in excitable media [37, 38]. The local dynamics of excitable media is normally in a stable
non-oscillating state, and will only go through an oscillating cycle when the perturbation is large
enough. Excitable media are very similar to oscillatory media and show many similar patterns,
so it is surprising that knot structures are not stable in oscillatory media. On the other hand, the
incoherent core in 2D in Fig. [I.3d should become a tube-like structure filled with incoherent
oscillators in 3D. This suggests there are structures combining line-like topological structures with
chimera structures in 3D, as studied in [34]. It is reasonable to expect that stable knots may also
exist. The existence of stable chimera knots in oscillatory media with nonlocal coupling is the

theme of Chapter 3.
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Figure 1.4: Quasi-probability distribution of (a) a coherent state, (b) and a cat state, which is the
superposition of two coherent states. The negative values in the fringes indicate the non-classicality
of the state.

As a new research field, there are still many open questions about the nature of chimera states
as listed in a review paper [3] such as the stability criteria, the necessary conditions for chimera
states, and their relationship with resonance. All chimera states studied until now occur in driven-
dissipative systems that are out of equilibrium. In Chapter 5, I will present the existence of chimera
states in conservative Hamiltonian systems. Moreover, there is evidence that chimera states may
also exist in BECs with a mediated nonlocal hopping, which is an analogue of the nonlocal cou-

pling in the CGLE.

1.2 Quantum effects in macroscopic systems - Schrodinger cat states

One of the most striking aspects of quantum mechanics is the superposition and entanglement of
particles, which have no counterpart in classical systems. In particular, quantum nonlocality due
to entanglement between particles has been conclusively proven in a series of recent experiments.
Loophole free tests of the violation of Bell’s inequality were finally performed by Ronald Hanson’s
group [39], shortly followed by Anton Zeilinger’s group [40] and Lynden Shalm’s group [41] in

2015. There is little doubt that quantum mechanics is the correct description of reality at the



microscopic level. However, it is still an open question if quantum mechanics is correct on all
scales. After all, the current form of quantum mechanics is incompatible with general relativity.

The mathematical description of quantum systems has various interpretations that are not in-
tuitive. To illustrate the counter-intuitive nature of applying quantum mechanics to macroscopic
objects, in 1935, Schrodinger proposed a thought experiment now known as Schrodinger’s cat
[42]]. In quantum mechanics, a quantum system can be in a superposition of two states, which
can interact differently with a macroscopic object, say, a cat. Suppose the decay of a radioactive
atom triggers a mechanism to kill the cat, while the non-decayed atom will do nothing. If quantum
mechanics works on all scales, then the macroscopic cat will become a superposition of being dead
and alive simultaneously, with the decayed and non-decayed atom respectively. However, when
the chamber is opened, only one of the results can be observed, either an alive cat or a dead cat,
but not both. Such superposition can happen between all kinds of objects, but we never observe
them in our daily life. There are two main reasons for assuming quantum physics is universal.
Firstly, decoherence of quantum systems is effectively a measurement which forces particles to
follow classical mechanics [43] 44]. Hence, superpositions can be destroyed by decoherence due
to interactions with the environment, such as radiation and collision with air molecules, so a large
superposition will decay much faster [45]. Secondly, the required measurement precision grows as
the size of the system grows in general [46], so it is extremely difficult to measure large systems.
Hence, a carefully designed experiment with very high sensitivity is required for measuring any
macroscopic, or even mesoscopic, quantum superposition.

A cat state is defined as a superposition of two macroscopically distinct quasi-classical states.
However, macroscopicity of a state has no unique definition. It can refer to a large spatial extent, a
large mass, or a large number of particles involved. One definition of cat states is the superposition
of two, or more, coherent states in phase space (see Fig. [I.4p), where the coherent states are often
considered to be the most classical particle-like states [47, 48, 49]] (see Fig. E}a). This definition

is commonly used in quantum optics, and the size of a cat depends on the number of particles. A



good quantification of macroscopicity for this definition is provided by Lee and Jeong [50]] which
measures the effective size and coherence at the same time. The size of a cat state can be as large
as one hundred particles as achieved in a recent experiment using microwave photons [31]].

Applications of cat states include quantum computation [52, 53], which treats a coherent state
as a qubit so that a cat state corresponds to a qubit with a superposition of zero and one. In addition,
cat states are useful in high-precision quantum metrology to bypass the standard quantum limit.
For example, cat states in phase space can reduce the shot-noise of measurements. Cat states of
massive objects can be used to improve the sensitivity of detection of the gravitational waves,
which were recently experimentally confirmed [54]. Energy cat states and position cat states may
be used to detect hypothetical collapse models [S5].

Generation of cat states is no easy task. There are a few conceptually different schemes to
generate cat states in phase space. One of the methods is based on bifurcation [56]]. In classical
systems, a particle located at an unstable point will go to one of the stable points upon a small
perturbation. However, a corresponding quantum state that starts at the same unstable point will
spread out due to quantum uncertainty, which will result in a superposition state at both stable
points. A similar method allows cat states to be created in open systems [37, 58], which requires
squeezing and two-particle loss to create an unstable point at the origin. A pure quantum mechan-
ical approach was proposed by Yurke and Stoler [59, |60] using the third-order Kerr nonlinearity.
Using this method, starting from a coherent state with the nonlinearity, a cat state will appear at a
certain time because of the phase matching of all number states (see Chapter 2.1). After exactly
the same amount of time, it will evolve back to the coherent state because of the recurrence. The
nonlinearity in BECs takes a similar form of Kerr nonlinearity (see Chapter 2.3). Hence, with a
special setting, atomic cat states involving hundreds of atoms can be created. The detailed analysis

of my proposal will be presented in Chapter 4.
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Figure 1.5: Velocity distribution of the Rubidium atoms undergoing a Bose-Einstein condensation.
The temperature T decreases from left to right, T > T, T < T, and T < T,, where T, is the
transition temperature. Thermal excitations disappear when the temperature is sufficiently low, so
all particles are in the ground state with minimum uncertainty,which is displayed as a sharp peak.
(E. Cornell [61]]/ Creative Commons)

1.3 Simulating physical systems - Bose Einstein condensates

The experimental realization of Bose-Einstein condensation in ultracold atomic gases in 1995 has
marked a new era of physics and opened up a whole new exciting field that continues to thrive.
After the first realization, BECs quickly attracted lots of attention and were the subject of an ex-
plosion of research, with review articles on different aspects almost every year [9, 62, 163, 164, 165,
66,167,168, 169, 70,71} 72, [73],74]], ranging from experimental techniques to the theory and applica-
tions of BECs. Now, after two decades of development, the relevant experimental techniques have
become mature and are treated as basic tools for atomic physicists to study fundamental physics
and simulate other physical systems.

The theoretical study of BECs dates back to 1924, when Satyendra Nath Bose re-derived the
statistical distribution of photons in the black-body radiation by using the correct way of counting
states of identical and indistinguishable particles, now called bosons. After the paper was rejected

once, Bose sent it to Albert Einstein who agreed with the idea and helped with translating it into
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German for publication [75]]. Extending Bose’s work in the following year, Einstein obtained the
quantum statistical distribution for the non-interacting ideal gas [/6], now known as BEC. This
requires cooling the weakly interacting atoms to a temperature a billion times lower than room
temperature and no technique for achieving it existed at the time. The invention of powerful
laser cooling techniques for alkali atoms in the 1970s eventually made it possible to bring the
temperature down to the order of 100uK. The barrier of the remaining two orders of magnitude
was eliminated by further evaporative cooling that let the high energy particles leave the system.
Combining these techniques finally led to the groundbreaking observation of BEC (see Fig. [1.3),
over 70 years after its first prediction [[/7,[/8[79]. The Nobel Prize in Physics was awarded to Eric
Cornell, Carl Wieman, and Wolfgang Ketterle in 2001 for this achievement [80, 81]].

A Bose-Einstein condensate is a state of matter with a macroscopic number of identical bosons
occupying the same single-particle state. The phase transition towards a BEC happens when the
system is cooled below a critical temperature 7. such that the temperature-dependent de Broglie
wavelength becomes larger than the inter-particle separation. At such a low temperature, a macro-
scopic wavefunction forms due to the overlap of the individual wave packets, such that the bosons
lose their distinguishability based on position. In the condensate, every atom behaves exactly
the same. Hence, instead of describing the system by a quantum field {(r), a simple mean-
field treatment {(r) — ({¥(r)) = w(r) may be used. This theoretical method was developed in
the early 1960s independently by Eugene Gross and Lev Pitaevskii for weakly interacting BECs
[82, 183} |84]. The mean-field macroscopic wavefunction obeys a Schrodinger-like equation with a
third order nonlinear term, usually called Gross-Pitaevskii equation (GPE), which will be derived
in Chapter 2.3.

The main advantages of BECs include a very good isolation from environmental influence,
high tunability and very precise controllability of almost all parameters [85)]. BECs are particularly
good at simulating other physical systems, or quantum simulators as suggested by Feynman [86],

and testbeds for diverse theories. For example, analogue black holes can be created in BECs [87]]
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and the corresponding Hawking radiation with phonon replacing photon can be observed [88, 89].
BECs in optical lattices can also simulate various condensed matter systems such as quantum
phase transitions [90] and Anderson localizations [91]. Moreover, the nonlinearity in BECs allows
the study of soliton dynamics [92, 93, 94]. An experimental test of BECs under microgravity
in a drop tower [95] suggest the possibility of probing the boundary between general relativity
and quantum mechanics. The potential of entangling large numbers of particles in BECs can find
applications in quantum metrology such as using spin squeezing to surpass standard quantum limit
[96, 97]. Mathematical models such as effective negative mass can also be engineered with spin-
orbit coupling [98]].

A reason for the high controllability is because of many available choices of BEC systems.
Today, BEC has been realized in many different systems, including almost all alkali atoms, lithium
("Li), sodium (**Na), potassium (3K, ¥'K), rubidium (®’Rb, 87Rb), caesium (133Cs) [10]. Other
atomic BECs include hydrogen ('H), chromium (°*Cr), ytterbium (170Yb, !74YD), the metastable
excited state of helium (*He*), Calcium (*°Ca), Strontium (3*Sr, 8¢S, #Sr), Dysprosium (164Dy),
and Erbium (168Er). It is also possible to have molecular BECs, for example, bosons formed by
a pair of fermionic atoms, such as °Li and “°K molecules. Since photons are also bosons, the
BEC transition for photons can also be observed [99]]. Room-temperature BECs can be created for
exciton-polaritons because of their very low effective mass and resulting high transition tempera-
ture [|100].

The typical scales of time, length, temperature, and energy of dilute atomic BECs can span
several orders of magnitude. For atomic BECs, the lifetime 7 can be as long as T ~ 10ms — 100s,
where T ~ 100ms for most experiments. A typical experiment usually involves between 10° to
10° atoms, and the transition temperature 7. is between 100nK to 1000nK. Near 7, only a small
fraction of particles are in the condensate, while the other particles are in the thermal component.
To have a pure condensate, a much lower temperature 7 must be used. For instance, at 7 ~ 0.17¢,

the thermal component will be about~ 0.1% and can be ignored. It is worth emphasizing that no
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cryogenic equipment is typically used in the experiments, so such cold condensates exist with a
room temperature background. With alternative technique, the temperature of a condensate can be
in the low picoKelvin regime [101]. The size of the condensates can be of order £ ~ 0.1um—10um
corresponding roughly to a trapping angular frequency @ ~ 10Hz — 10kHz. The length can be
adjusted independently in all directions, such that a strong trapping along one direction can reduce
the system to an effective 2D BEC system of disk shape, and similarly for a 1D system with
cigarette shape. This translates to a peak density p ~ 10”m™> — 10?>m™3, which is much lower
than the density of air ~ 102>m™—3. Higher densities are hard to achieve because the loss from
three-particle collisions grows as p°, so the lifetime becomes short.

Atoms are particles with many internal states that can be controlled by light frequencies from
optical to microwave, as well as electric and magnetic fields. For dilute atomic gases at such low
density, the two-particle interactions can be well described by a single s-wave scattering length a;
that is independent of the details of the collision. The nonlinear interaction parameter U in the GPE
is proportional to a5, which can be controlled by Feshbach resonances in real time [69, 102]. By
tuning the magnetic field near a Feshbach resonance, all values of a; can be achieved theoretically,
including positive a; > 0 for repulsive interaction, negative a; < 0 for attractive interaction, and
as = 0 for no interaction. It has been demonstrated experimentally that this can be done over many
orders of magnitude [103]. For Rubidium, U /h = 6 X 10’17Hz/m3, together with the density
discussed above, pU /i ~ 10°Hz — 10%Hz. The effect of nonlinearity is significant when the term
is comparable or higher than the scale of the trapping frequency or other scale presented in the
system such as kinetic energy.

Another setup typically considered is BECs with more than one type of boson created by mix-
ing different types of atoms. Alternatively, atoms with different hyperfine states are distinguish-
able bosons, so creating two-component BECs with the same atoms is possible. In this setup, the
atoms with different hyperfine states can be inter-convertible during experiments. Studying two-

component BECs are the important part of my proposals as will be discussed in Chapter 2, Chapter
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4, and Chapter 5.

1.4 Outline of the thesis

This thesis includes three main projects that I have studied. They are chimera knots in 3D, macro-
scopic spin cat states in BECs, and mediated nonlocal hopping in BECs. The first two projects
provided me with the theoretical foundation for the last one. Since knowledge from several differ-
ent fields is needed to understand the results, the relevant background is provided in Chapter 2. It
includes the dynamics of various oscillators, including quantum, classical, and nonlinear. The two
main differential equations, CGLE and GPE, are introduced. This is followed by the mechanism
of the nonlocal diffusive coupling, the nonlocal hopping, and the basics of BECs.

In Chapter 3, I present the new discovery of stable chimera knot states as published in [8]].
Prior to my work, knots were not known to be stable in oscillatory media, nor were such non-
trivial chimera patterns known to exist in 3D. As my simulations show, the stability depends on the
nonlocal coupling. I show the properties, structures, and dynamics for Hopf links and trefoils with
good 3D visualization. The same conclusion holds for simple, complex, and chaotic oscillators. In
complex oscillatory media, we can even observe the synchronization defect sheet for the first time.

In Chapter 4, I present my proposal for creating macroscopic cat states in two-component BECs
using the Kerr nonlinearity as published in [12]. It was unclear how large cat states can be in such
systems. In order to increase the nonlinearity and lifetime, we proposed to use strong trapping of
the smaller BEC component and Feshbach resonance respectively. We analyzed the loss and other
experimental imperfections and concluded that cat states involving hundreds of atoms should be
possible.

In Chapter 5, I present a new mediating mechanism that can result in mediated nonlocal hop-
ping, which is analogous to the effective nonlocal interaction between charged particles mediated
by an electromagnetic field. In my scheme, due to the additional mediating channel without energy

barrier, particles can bypass all energy barriers in the original system by jumping into the mediat-
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ing channel, and can thus reach much further distances. My derivation shows that this approach
allows independently adjustable on-site nonlinearity, hopping strength and range. This nonlocal
hopping model is interesting also because further results show that it is the first known conservative
Hamiltonian system showing chimera states. To show that it is more than a mathematical model,
I also analyze the possibility of implementing mediated hopping in BECs and conclude that it can
be done using current technology. Moreover, simulations show strong evidence of the presence of
chimera states in the BEC system. The mechanism was discovered while I was attempting to search
for chimera states in quantum systems. After dozens of trials of different dynamical equations, I
found suitable equations and immediately realized that they correspond to a two-component GPE
because of the similarity with diffusive coupling. I also recognized that they represent the Bose-
Hubbard model [13}1104] with nonlocal hopping. A mean-field treatment is used in this thesis and
the full quantum treatment will be the future work.

In Chapter 6, I summarize the main results presented in this thesis and discuss the possible

future directions.
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Chapter 2

Theoretical background

This chapter is comprised of three main sections with the theoretical background for the next
three chapters. Sec. 2.1 is devoted to the basis of the nonlinear dynamic systems and formulation
in phase spaces. I will review various types of oscillators, including both classical oscillators,
quantum oscillators, and nonlinear oscillators. The mechanism of creating cat states based on Kerr
nonlinearity will also be introduced. Sec. 2.2 introduces the diffusive coupling between oscillators
which gives the complex Ginzburg-Landau equation (CGLE). I will then discuss the mechanism
of the nonlocal diffusive coupling and introduce the nonlocal CGLE. The analogue mechanism of
nonlocal hopping is derived. Sec 2.3 is dedicated to the Bose-Einstein Condensates. Starting from
an interacting BEC, the Gross-Pitaevskii equation (GPE) is derived as the mean-field of a quantum
field equation. Moreover, the nonlinear Kerr Hamiltonian of BECs can be obtained with a single-
mode approximation of the same quantum field equation. Finally, I will give the mathematical
formulation of two-component BECs, which will be used to derive the nonlocal hopping in Chapter

5.

2.1 Oscillators and phase space dynamics

Oscillators are one of the fundamental concepts across all branches of physics and describe many
systems existing in nature with regular bounded motion. This is particularly true for the simple
harmonic oscillator, which happens everywhere as a result of the linear approximation. In this
section, various types of oscillators are introduced, including simple harmonic oscillators, nonlin-
ear oscillators, and self-sustained oscillators. Both classical and quantum oscillators are discussed.
Specifically, the nonlinear Kerr effect in quantum systems provides a method to create Schrodinger

cat states, which will be used in Chapter 4.
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2.1.1 Simple harmonic oscillators and nonlinear oscillators

Classical Harmonic Oscillator: A classical simple harmonic oscillator (SHO) is given by the
Hamiltonian
1

1
H (%, p) = 5—p* + Smagx’, @1

where m is the mass and @y is the natural angular frequency, with two canonical variables, canoni-
cal coordinate x and canonical momentum p. The corresponding dynamical equations can be found

by the Hamilton’s equation

i = 9P 2.2)
dp m

- E )

p = _a_q = —ma)o.x, (23)

which is linear. The solution can be solved directly using the eigenvalue method, which shows a
rotation around a circle with constant angular speed @y, as shown in Fig. 2.1] Alternatively, those

two equations can be combined to a second order linear differential equation ¥ = —a)o2

x, which
gives the same solution.
The same equation can be represented in a different canonical pair of action variable I =

¢ pdq/2m and angle variable 0 [105]. The transformation for the SHO can be written as

1 2 1 2
I = —— — 2.4
m wop +2mwox ; (2.4)
6 = tan ' (mawox/p), (2.5)
and the Hamiltonian becomes
H(1,0) = apl. (2.6)

Similarly, the dynamical equations can be obtained by using Hamilton’s equation, which gives
[=—-05¢/00 =0and 6 = 0.7 /91 = ay. Hence, I(t) is a conserved quantity, which is propor-
tional to the energy in this system, and the phase 0(z) is increasing over time. The quantity 7 is

proportional to the number of particles in quantum mechanics, as will be clear soon.
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(a) Simple harmonic oscillator (b) Simple nonlinear oscillator (c) Self-sustained oscillator

Figure 2.1: Dynamics in a phase space with the bright spots indicate two different initial con-
ditions, and the faint spots indicate the final states. (a) Simple harmonic oscillator. Phase gain
is independent of the amplitude. (b) Simple nonlinear oscillator. The phase gain depends on the
amplitude. (c) Self-sustained oscillator. Different initial conditions get closer and closer to the
limit circle over time.

An alternative convenient representation is given by the transformation

1 1
z = —(vmwox—+i , 2.7
ﬂ< N )
1 1
7 = —(Ymopx—i . (2.8)
The Hamiltonian can be rewritten as
H(z,i7") = wylz|* = apz*z. (2.9)

With z and iz* treated similar to conjugate variables, the dynamic equation can be found by z =
0¢ /d(iz*), giving

iz(t) = oz, (2.10)
and the solution

z(t) = z(0)e 'Y, 2.11)

This implies that the phase points with different initial conditions gain the same phase over time

as shown in Fig. 2.Tp.
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Simple nonlinear oscillator: There are various types of nonlinear oscillators. The simplest non-

linear oscillator is given by the third order nonlinearity, or a quartic term in the Hamiltonian
. % 1 4
H(z,i") = §x|z| : (2.12)
Again, the dynamical equation can be obtained by using Hamilton’s equation, as
iz(t) = x|z|*z. (2.13)

To solve this equation, we note that the action I = |z|? is time independent because

dl d

B dz* Ldz 1
dt  dt

1

2 _x 2 *

= — + - =0 2.14
dr Z+z dr l,(|Z| Z )Z l,(|Z| Z)Z y ( )

(z"2) =

which means the energy ./ = I /2 is also conserved. Hence, using |z(¢)|> = |z(0)|?, the equation

can be rewritten as
iz(1) = x2(0)[*z(t). (2.15)
The solution is

2(t) = 2(0)e~XROF, (2.16)

which behaves the same as the SHO, except now the angular speed @ depends on the amplitude as
® = x|z(0)|>. Therefore, initial points with different amplitudes will lead to different phases at a
later time as shown in Fig. [2.1p.

Typically, a linear term also exists in the system even when the expansion is done to the lowest

order nonlinear as

iz(1) = oz + x|z|%z. (2.17)

It can be shown easily that this equation reduces to Eq. (2.13)) using the co-rotating frame as
7 — ze "' Tn such a frame, the constant rotation generated by the linear term can be eliminated.

The equation above is the simplest nonlinear oscillator because it has the lowest order nonlinear
term for the system with the phase symmetry (or global U(1)-gauge symmetry) z — ze'? for all

0. This is a symmetry that often exists in fundamental physics and conservative systems. Without
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this symmetry, the second order nonlinearity can exist. To make it clear, if we assume a general

Hamiltonian with the form

H(Z?iz*) = Z KWIWI + Z KW1W2W1W2+ Z KW1,W27W3W1W2W3
wi={z,z"} wiwr={z,2*} wi,wo,w3={z,2*}
+ ) Kupy sy g WIWIWIWA = e, (2.18)

wi,wa,w3,wa={z,2*}
substitute the symmetry above and compare with the original one, all odd power terms have to be
zero. For each even power term, only one combination remains. Hence, the general Hamiltonian

that preserves the phase symmetry is:

B

%:alz|2+5|z|4+g|z|6..., 2.19)

More generally, the system that preserves the gauge symmetry can be written as
A = f(|z]%). (2.20)

Self-sustained oscillator: Instead of a pure nonlinear oscillator that conserves energy as discussed
above, a simple non-conservative nonlinear system can be described by the normal form of a Stuart-
Landau oscillator [2]]

2(1) = z— (1+ib)|z|%z. (2.21)

It is a simple self-sustain oscillator representing a broad class of system with z(¢) = (a, + ia;)z —
(b, +ib;)|z|*z and a,,b, > 0. This equation can be reduced to the Eq. by going into a co-
rotating frame, rescaling the time ¢ and rescaling the amplitude z. The dynamics are illustrated in
Fig. with all phase points trending towards the unit circle |z| = 1. It can be understood easily
by rewriting the variable z(r) = A(t)e’®®) in terms of amplitude A(r) and phase 6(¢). Substituting

back, the resulting coupled equations are

A = A4, (2.22)

0 = —bAZ, (2.23)

21



If the amplitude is too small A < 1, then the amplitude will increase over time as A > 0 and vice
versa. So, the equilibrium condition A = 0 gives A = 1. Any small perturbation will eventually
disappear and the system is stable with small noise. Also, the phase advances depending on the
amplitude. In the equilibrium system, it oscillates with a constant angular frequency @ = 6 = —b.
Since the dynamics is always attracted to the unit circle |z| = 1 and is oscillating, hence, the name
self-sustained oscillator. The closed loop attractor, |z| = 1 here, is referred as the limit circle. For

the change of the quantity 7 = |z|2, we have

dl_d | de
i dt S YA

2z|* —2Jz|* = 21— 2P, (2.24)

which is consistent with the amplitude equation above. The quantity / can be interpreted as the
number of particles, so the first term corresponds to the pumping of particles into the system, and

the second term corresponds to the nonlinear particle loss.

Complex oscillators: In general, oscillator dynamics exist in any systems with a well-defined
phase 0. Consider a system with two bounded dynamic variables X and Y, then the phase may be

defined as

6(r) = tan~! (%) : (2.25)

if X(¢t) —Xp and Y (r) = Y are not equal to zero simultaneously. (Xo,Yp) is a reference point,
which is a center in case of limit cycle dynamics. For the systems with more than two dynamic
variables, there may have a two-dimensional submanifold that the dynamics behave in a way that 0
is well defined, in particular, near the Hopf bifurcation point. An example is the specially designed

Rossler model [106] with three variables X (¢), Y (¢), Z(t) with differential equations

X(t) = -Y-Z,

Y(t) = X+aY,

Z(t) = b+Z(X—c), (2.26)
where a, b, c are the control variables and the phase can be defined in the XY plane with (X, Yp) =
(0,0). Therefore, in general, the phase can be well-defined for much broader systems such as the
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Figure 2.2: Formation of a cat state. The plots of Husimi Q-function of a coherent state under
Kerr nonlinearity are shown. Time increase uniformly from ¢t = 0 to # = 7., from left to right and
from top to bottom.

chemical, biological and neural systems [23]. If two or more such subsystems are put together with
some form of coupling, then the relative phase dynamics can be interesting and allows the study of

the synchronization between subsystems.

2.1.2  Quantum oscillators, Kerr nonlinearity and cat states

Quantum harmonic oscillator:  The quantum harmonic oscillator behaves similarly to the classical
counterpart in the limit with a large number of particles. The formulation can be done using the

first quantization rules x — £, p — p = —ihd;, or replacing the Poisson bracket {x,p} =1 by
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commutator [£, p] = ih, or replacing z — /7d in the formulation in previous section. Or simply
start with the commutation relation of annihilation operators @ with commutator [@,4"] = 1.

With this definition, we can write down the Hamiltonian for the quantum harmonic oscillator:

H = (ﬁ+ %) ho, (2.27)

with the Planck constant #, the trapping frequency @ and the number operator 42 = @'d. The

dynamics is given by the Schrodinger equation
0 >
i) = Av). (2.28)

which can be easily solved using the eigenvalue equation 7i|n) = n|n) with Fock basis |n), and the

solution is

(1)) =Y cpe Bt/ ), (2.29)

n

with the eigenvalue E, = (n+ 1/2)h®. Note that the global phase is unimportant, so it can be

written simply as
lw()) =Y cae™™ |n), (2.30)
n

A special state called coherent state |o) is known as the most classical state because the dynam-
ics resemble the oscillatory behavior of the classical counterpart [47]]. It is defined as the eigenstate
of the annihilation operator as

A

ala) = ala), (2.31)

with associated eigenvalue o = |c|e’®, which is a continuous complex number with amplitude ||
and phase 6. Hence, it gives a quantum-classical correspondence, say for the electromagnetic field,
where the state |a) has the corresponding amplitude c, phase 0 and intensity |ct|>. The coherent

states are also states with the minimum uncertainty. It can be written in terms of the Fock basis as

) = ef“/zz%m, (232)
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which is normalized (o|at) = 1. The probability of detecting n photons is therefore given by the

Poisson distribution

2n
o
P(n) =|(n|a)|? = e-IQIZQ. (2.33)
n!
The dynamics of the coherent states can be found using the Heisenberg picture:
ihdd = —[#,4) = hoa, (2.34)
with solution
a(r) = a(0)e ", (2.35)
and similarly for the eigenvalue
a(t) = a(0)e ", (2.36)

So, the motion of the coherent state is periodic with angular frequency ®.
To compare the classical and quantum harmonic oscillator, a phase space representation of the
states 1s required. One such common representation used in quantum optics is given by the Husimi

Q-function:
0(B) = —(BIIB) @.37)

with a complex number 3 and the corresponding coherent state |3). The density operator p =
Y pilvi) (w;| with probability p; describes the statistical mixture of quantum states, and takes the
form p = |y)(y| for a pure state |y). A density operator description is required if there is uncer-
tainty about the quantum states such as decoherence or experimental uncertainty. The Q-function
is essentially a measure of how close the state p is to the coherent state with . It is normal-
ized as [ Q(B)dB =1, so Q(B) may be interpreted as the probability to measure the state with
value . Note that f3 is a complex number and is not directly measurable, which corresponding to
the fact that |8) forms an over-complete basis. Experimentally, Q(f3) can be reconstructed using

tomographic techniques. In particular, the Q-function of the coherent state p = |ot) (| is
! 21 la-pp
o(B) = %|<0‘\ﬁ>’ =2¢ ; (2.38)
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which is Gaussian distributed as shown in the first plot in Fig. [2.2] The existence of the width of
order 1 independent of || is due to the minimum uncertainty principle. Also, under the harmonic

oscillator Hamiltonian 7% above, the dynamics of the Q-function is

0(B.1) = —|(a(n)|B)> = e 11 BF = —lae P, (2.39)

It means that the Gaussian bump rotates along the circle with radius |¢t| with angular frequency @
in the phase space. If the amplitude || becomes large enough, the distribution may be treated as a

point. Hence, the system behaves similarly to the classical harmonic oscillator.

Nonlinear Kerr effect: ~ Similar to the classical system, the lowest order nonlinearity of the system

preserving the gauge symmetry is given by
H = hyh®. (2.40)

where 7i is the number operator, and y is the Kerr nonlinearity. This Hamiltonian is usually known
as the Kerr Hamiltonian in quantum optics, which is originated from the refractive index change of
the material when a light with strong intensity is passing through. Similarly, in BEC, similar term

exist because of the two-particle interaction. A state evolves under this Hamiltonian as

W) = Y coe M) = Y coe™H ), (2.41)

which has a recurrence time y#, = 27 in which the state returns back to the same initial state

_in? :
because e~ 2" = 1 for integer n.

This Hamiltonian can be used to generate a cat state |CAT) ~ |a) +i| — &), if the system starts
with the coherent state |y) = |o) at r = 0, as originally proposed in [59]. At time xt = /2, the

factor becomes e~ "X = 1,—i,1,—i,...forn=0,1,2,3,.... Multiplying by the global phase ¢*/4,
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which rotates the phase space by 7 /4, the series becomes ¢/ 4omin' Al — (14 (=i)")/v/2, and

W) = e (2.42)

_ e—lalz/zz;‘;“*i(él)nﬂn) (2.43)

_ ey (o0
- (G A (244

_ %(]a>+i|—a)), (2.45)

The state becomes a cat state at a special time called cat time 7. = 7/(2)). The dynamics of a

cat state formation can be visualized in the phase space using the Q-function as shown in Fig. 2.2]

This construction mechanism is purely quantum mechanical and has no classical counter part.

2.2 Field equations and nonlocal coupling

Oscillations often refer to spatial motion, e.g. for a spring-mass system or a pendulum. But
oscillators can also exist in phase space without any reference to spatial coordinates. For example,
the electromagnetic field can oscillate in any spatial point. This leads to the concept of a physical
field, which describes the assignment of quantities at all points in space and time, for example, the
electromagnetic field and the gravitational field. Other systems can often be well approximated
by field equations, when the scale of interest is much larger than the discreteness of the smallest
system scale, such as the continuum approximation in fluid dynamics for the tiny particles. In this
section, I introduce the field equations and the nonlocal coupling that will be used in Chapter 3 and
Chapter 5. In particular, I try to emphasis the similarity between the nonlocal diffusive coupling

and nonlocal hopping, which provides the motivation to study the nonlocal hopping in Chapter 5.

2.2.1 Local coupling and complex Ginzburg-Landau equation

A system with oscillators coupled locally with their nearest neighbor can be written as reaction-
diffusion system [|16]
9:X(r,1) = F(X) +DV?X, (2.46)
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for a dynamic variable X. The vector field F represents a local limit-cycle oscillator of X. The
coupling of local oscillators is through the diffusion V>X with diffusion matrix D. Note that D
usually contains no imaginary part, but for, say, quantum systems, a similar term like this can have

complex numbers. Suppose the self-sustained Stuart-Landau oscillators are used
F(z) =z— (1+ib)|z)*z, (2.47)
with z a complex number, then the field equation can become
2(t) = z— (14 ib)|z]*z+ (1 +ic)V?z, (2.48)

with a choice on the diffusion. This is called the complex Ginzburg-Landau equation (CGLE)
which describes a broad dissipative system near the Hopf bifurcation. The full derivation of CGLE
for any oscillators near the Hopf bifurcation can be found in, say, [16]. Similar can be done in the
Rassler model with the local oscillators given by Eq. (2.26). On the other hand, if non-dissipative
isolated oscillators are used

F(z) = —iulz|’z, (2.49)

then the field equation is

iz(t) = ulz]*z— xV?z, (2.50)

with a pure imaginary diffusion. It is often called the nonlinear Schrodinger equation. Note that this
equation can be treated as a special case of the CLGE by setting a — —oo and b — oo. In addition,
it is also a special case of the Gross-Pitaevskii equation (GPE) with no trapping potential (see
next section). In literature, GPE is sometimes mixed with nonlinear Schrédinger equation. In this
thesis, I will refer GPE exclusively to the mean-field equations of BECs. Note that the properties
of these equations are significantly different. CGLE describes an open system that the energy and

particles can be exchanged, while nonlinear Schrodinger equation and GPE are conservative.
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2.2.2 Nonlocal diffusive coupling

Similar to the direct local coupling discussed above, localized oscillators can be coupled with each

other through a mediating channel. It can be illustrated by the following equation [6]

aX(r,t) = F(X)+kg(S), (2.51)

19,8(r,t) = DV2S—S+h(X), (2.52)

where F(X) describes a self-sustained oscillator with the dynamic variable X(r,?). k is the control
parameter of the feedback strength from the the channel with the form g(S). S(r,?) is a real variable
that decays over time plus a source term /4(X). The spatial coupling dynamics is the diffusion
in the mediating channel with diffusion constant D > 0. 7 in the second equation sets the time
scale. With a large separated time scales, adiabatic elimination can be used to derive the nonlocal
diffusive coupling as done in [6].

Here, I will derive a similar alternative form which can highlight the similarity between the
nonlocal diffusive coupling and the mediated nonlocal hopping derived in the next subsection. Let

the local dynamic be the Stuart-Landau oscillator F(z), and the equations

diz(r,t) = z—(1+ib)|z]*z+kE, (2.53)

19,E(r,t) = DV?E —E& +hoz, (2.54)

where both z and & are complex dynamical variables. The second equation is a mediating channel
that propagates the perturbation between oscillators and can be considered as two independent
diffusion equations for the real and imaginary part of £. Note that the second equation is linear,
so it has an exact solution. Here we consider only the adiabatic limit T = 0. In this limit, the
mediating channel becomes

0= DV?E — & + hoz. (2.55)
Suppose the Fourier transform of the dynamical variables are
2q,1) = Flz(r,0)] = (1/(27)) / dre= " (r 1) (2.56)
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and similar for &(q,1) = .Z[£(r,1)]. So, the differential equation becomes an algebraic equation
0=—¢*DE — & + hyz, (2.57)

and the solution for é is
1

NZh
§=hoipm

Z. (2.58)

The inverse Fourier transform gives the convolution
E — hoG(r) x2(r,1) = ho / dr'G(r—v)z(r',1), (2.59)

assuming isotropic and translational invariant system with unbounded domain, where

1
Grr)=7"! [1 +Dq2} . (2.60)

The explicit solutions in different dimensions are

1

Gip(r) = e /%, (2.61)
1 r

Ga(r) = 5—Ko <E)’ (2.62)
11

Gap(r) = om-e r/R (2.63)

where 7 = |r| and R = /D is the effective radius and r = |r|. Kj is the modified Bessel function of

the second kind. Substituting the solution back to Eq. (2.53)), we have
dz(r,t) =z — (1 +ib)|z|>z+ kho / dv'G(r—1')z(v,1), (2.64)
and can be rewritten as
diz(r,t) =z — (1 +ib)|z]*z+ K(1 +ia) /dr/G(r— ') (z(r',1) —z(r,1)). (2.65)

This equation is called the nonlocal CGLE and can have stable chimera states. Specifically, the

first observation of chimera core patterns appears in this model [7].
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2.2.3 Nonlocal hopping with mediating channel

Considering a similar set of differential equations where simple nonlinear oscillators are used

instead of self-sustained oscillators:

i (r,r) = Ulyi[Pyi +Quys, (2.66)

in(r,r) = —kViy +Ay + Q. (2.67)

where Y| and y; are dynamic variables representing wavefunctions. U is the nonlinear coefficient,
Q is the Rabi frequency, A; is the detuning, and « is the inverse mass. All control variables are real
numbers. The equations are related to mean-field GPE of two-component BEC which is derived
in next section. Note that this model without kinetic energy term is just a mathematical model,
and a realistic system will be considered in Chapter 5. It, however, greatly simplifies the detail
and allows highlighting the mechanism for the effective nonlocality. The second equation is the
mediating channel that propagates the perturbation and is similar to the equation in the previous
section with an extra i in front of the time derivative. If adiabatic elimination is used 7= 1/A, =0,

then the mediating channel becomes

0=—xkV>yr+ Ay, +Qu. (2.68)
Let R = /K /A; and use Fourier transform, so
202~ N Q
0= 'R+ 2+ Vi, (2.69)

This equation is exactly the same as before, so it has the same solution as

Q
WZ(rat) - _A_ZG(r) * Y (l’,l), (270)

with G(r) is the same in previous section. Substituting back to the non-mediating channel, we have

: Q?
iy (r,0) = Uy Py — ™ /er(r—r’)l//l (r',1) (2.71)

Furthermore, this system has another set of solutions. Since the physical meaning of A; is

the detuning, which can be negative. The mediating equation with adiabatical elimination can be
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rewritten as
1 Q
0=-Vyp, — — = 2.72
72 R(Z)II/2+KW1, (2.72)

where Ry = \/—k/A; and the corresponding solutions for the Sommerfeld radiation boundary

condition are

.

Gip-(r) = e /R, 2.73)

Gop_(r) = iHo(r/Ro), (2.74)
1 .

Gap-(r) = e "M, (2.75)

where Hél) is the Hankel function. These equations represent wave-like solutions for negative

Ay < 0, while compared with the confined solutions for positive Ay > 0.

2.3 Bose-Einstein Condensates

Bose-Einstein Condensates are states of matter where all particles condense to the same single-
particle state. This happens by cooling non-interacting systems below the BEC transition temper-
ature. As long as the interaction is not too strong, BECs can still exist. Hence, the property that
all particles are in the same single-particle state allows simple mathematical descriptions of the
systems, in comparison with strongly interacting condensed matter systems. Depending on setups,
BECs can be used to study a large variety of interesting physics. In this section, I introduce the
weakly interacting BECs at zero temperature. The mathematical descriptions of two setups, the

Kerr effects, and the two-component BECs, used in Chapter 4 and Chapter 5 are discussed.

2.3.1 Gross-Pitaevskii equation

We consider BECs at zero temperature so that all thermal excitations can be ignored. In the ideal
situation without interaction, all bosons are in the same single-particle state. When the interaction
is turned on, some particles may be kicked out from the condensates. The Hartree mean-field

approach [[10] can be used in the weak interaction regime by assuming that the full wavefunction
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is the symmetrized product of a single-particle wavefunction ¢(r). So the full wavefunction of

N-particle system is

N
Y(ry,ry,....ry) =[] o(r), (2.76)
i=1
with normalization
/d]r|¢(r)y2 =1. (2.77)
For N identical non-interacting bosons, the Hamiltonian is
N N T p?
A=Y =Y | B v w) .78)
i i

where 77} ; is the Hamiltonian of an individual particle, p; is the momentum operator, m is the mass
of the particle, and V (r;) is the external potential. The independence and additivity of Hamiltonian

allow the use of separation of variables, so @ ;(r;) can be obtained by solving

7.i90.i = €90, (2.79)

with the eigenenergy €. Hence, the total wavefunction can be obtained by combining ¢ ;(r;).
Since all single-particle wavefunction are the same, so @ ;(r;) = Po(r;).

Now, suppose a dilute atomic gas of bosons is considered. In this system, the dominant interac-
tion are the two-particle collisions of the form Uy (r —r’) where &(r) is the Dirac delta function.
The interaction strength is Uy = 47h’a; /m with the s-wave scattering length a;. Therefore, the
system is given by the Hamiltonian

H = Hy+Up)_ 8(ri—r)), (2.80)
i<j
where the summation is taken over all pair of particles. The mean-field energy E of the state W can

be calculated as

N—-1

hz
E = (¥|.7|¥) :N/dr {%|V¢]2+V|¢|2+ Uolo|*] . (2.81)

The term N(N — 1)/2 counts the number of pair of particles and can be approximated by N(N —

1)/2 ~ N?/2, with the term of order 1/N being ignored.
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The wavefunction of the condensate, which is sometimes referred to as the order parameter,
can be defined as y(r) = v/N¢(r). Hence, the total number of particle is N = [dr|y|? and the
‘2

particle density is n(r) = |y(r)|*. So the energy can be rewritten as

n? 1
E[y] =/dr {%\W%V\wl%g%lw!“ : (2.82)

By minimizing the E — uN with respect to y*, where u is a Lagrange multiplier, we can obtain
the time-independent Gross-Pitaevskii equation (GPE)

hZ
py(r) = —ﬁVZIHVIH Uolw|w. (2.83)

This is basically the Schrodinger equation with an extra nonlinear term that originated from the
two-particle collision. The eigenvalue y has the meaning of chemical potential.

The corresponding time-dependent GPE is
: n s 2
oy (r,1) = ——— VY +Vy+Uo|y[7y, (2.84)

which describes the dynamics of the BEC in the mean-field limit. This equation can also be
obtained by the variational derivative Yy = 6E /3 (ihy™*). Note that some particles are in states that
are different from the others due to interactions. So the dynamic equation above is true for the
majority of the atoms except for a small number of particles of order (na;’)l/ 2. The fact that not
all particles are in the same state is referred as quantum depletion. For most experiments, it is of

order one percent or less and can usually be ignored.

2.3.2 Kerr nonlinearity in BEC
Using Eq. (2.80)), the second quantized Hamiltonian is

H = / dr {—%WVZWVWW %Uotiﬂtiﬂw : (2.85)
where §(r) is the boson annihilation operator and ' (r) is the corresponding creation operator
with the usual commutation relation [ (r), ¥'(r')] = §(r —r’). The time evolution of the field
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r(r) operator can be obtained by using the Heisenberg equation of motion iid; = —[7, ],
which gives

o P, e

iho, (r,t) = —%V U+ Vy+Uy§' gy, (2.86)
The field operator can be written as J(r) = y(r) + 0 (r), where y/(r) is the mean-field and 8 (r)
is the quantum fluctuation. In the mean-field limit {(r) — (J(r)) = y(r), where the quantum
fluctuation is ignored, we can obtain the same GPE in Eq. (4.06).

If the interaction is weak and the quantum fluctuation can be ignored, then a BEC can be

described by a single spatial wavefunction ¢ (r). In this case, the field operator can be rewritten as

¥(r) = ag(r), (2.87)

where 4 is the annihilation operator of the mode @ (r). Substituting this equation back to the

Hamiltonian in Eq. (2.85) can be reduced to

R 1
H = goh+ SUA(R = 1), (2.88)
with
h2 2 2
g = /dr —|Vo[*+ V|||, (2.89)
2m
U = Uo/dr|¢|4, (2.90)

where 7 = @'a is the number operator. The linear term can be dropped in a rotating frame, so the

Hamiltonian can be rewritten as

.1
H = EUﬁz, (2.91)

which is exactly the Kerr nonlinearity discussed before. It is the analogue of the optical Kerr effects

in ultracold atoms. Hence, it provides a mechanism to create cat states in BECs.

2.3.3 Kerr nonlinearity in two-component BEC

The detection of the cat states requires a reference BEC to read out the phase information. So we

may consider using a two-component BEC. To begin with, we consider a general two-component
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model given by the Hamiltonian

~ ~ 1 & ~ N
I = TG+ =U i v X, 2.92
i%( +5 )+ 12+ (2.92)
with

N o (Vo (e
A= f dr(Zm, V() + Vi ¥ 00) ). 2.93)
Ty = i [ dvd W), (2.94)
@ = ¥ [drg] ()0 +40 [ ar (9100900 + B0 (e) . 299

i=12

where m; is the mass, V;(r) is the potential function, and g;; is the two-particle collision energy
density. The Rabi oscillation term R represents the inter-conversion between the two components
with Rabi frequency Q and detuning A;. The detuning is the frequency difference A; = w; —
between the driving frequency and the frequency of the target internal energy level.

We consider the setup with R =0 here, which means that there is no conversion between the
two components and the number of particles in each component is conserved. Again, assuming
both the BEC components can be described by single-particle modes ¢;(r), so the field operator

becomes
Wi(r) = a;¢i(r). (2.96)

Substituting back into the Hamiltonian above, we have [107]

R 1 1
*%ﬂ:glﬁl+32ﬁ2+§U11ﬁ%+§U22ﬁ52+U12ﬁ1ﬁ2, (2.97)
with
& = /dr [—\V¢I\Z+V\¢i!2 , (2.98)
_ 2 2
Uij = gij/drlcbi! 0;]°. (2.99)

Since the total number of particles N = 7i| + 71> is conserved in the atomic system, so we can set it

to a constant. The above equation can be rewritten in term of 711, with the constant and linear terms
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dropped, as

H =~ (U 4 Uspy —2U12) A3, (2.100)

| =

So in this case, there is also Kerr nonlinearity that can generate a cat state. Note that ¢; and ¢,
are usually different even in the ground state for few reasons. For example, the spatial mode of
condensates with intra-atomic interactions can depend on the number of atoms. Also, the inter-
atomic interaction changes the spatial modes of both of them. If all three scattering lengths a;; are

very close, such as for Rubidium atoms, and Ny =~ N,, then ¢; =~ ¢, [96] is a good assumption.

2.3.4 Mean-field equation of two-component BEC

The time evolution of the field operators in a two-component BEC can be found by Heisenberg
equation i, ; = — [, ;] with 5 in Eq. (2.92). If the mean field of the operators is taken,

W;(r) — (i(r)) = y;(r), then the dynamic equations are

: h
ihoyi(r,t) = <—%V2+V1+g11\ll/1\2+g1zlll/2\2+hA1> v +hQy,,  (2.101)

. h
ihodyn(r,t) = (—%V2+V2+g1z\l//1\2+g22!w2\2+hA2) v, +hQyy,  (2.102)

which gives the coupled two-component GPE. Note that the physics is invariant with a constant
energy shift, so one of the detunings A or A can be eliminated, say, A; = 0. The trapping potential
V1 and V, are usually the same, but can be different by using spin dependent potential. This can
significantly change the relative density of both components and so the effective nonlinearity. The
nonlinearity g;; = 4mhla; j/m depends on the scattering a;; between components i and j. Using
Feshbach resonances, one of the scattering lengths a;; can be usually adjusted freely. Depending
on experiments, both large and small a;; can be used. For large a;;, the corresponding nonlinearity
can be enhanced, while for small g;;, the corresponding three-body loss can be suppressed.

Now, suppose we consider the system with no trapping on the second component, so V, = 0.

Also, the nonlinear interaction involving Y, is negligible, i.e. g;» = g2» = 0. Then the resulting
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equations are

. h

indyn (r,t) = (—%V2+V1+g11|l//1!2) v -+ hQyy, (2.103)
h

ind s (r,t) = (—%VvahAz) v+ hQu, (2.104)

which are the equations used in Chapter 5. Note that the equations describe a real BEC setup in

experiment and should be implementable.
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Chapter 3

Linked and knotted chimera filaments in oscillatory systems

3.1 Preface

While the existence of stable knotted and linked vortex lines has been established in many exper-
imental and theoretical systems, their existence in oscillatory systems and systems with nonlocal
coupling has remained elusive. Here, we present strong numerical evidence that stable knots and
links such as trefoils and Hopf links do exist in simple, complex, and chaotic oscillatory systems
if the coupling between the oscillators is neither too short ranged nor too long ranged. In this case,
effective repulsive forces between vortex lines in knotted and linked structures stabilize curvature-
driven shrinkage observed for single vortex rings. In contrast to real fluids and excitable media,
the vortex lines correspond to scroll wave chimeras [synchronized scroll waves with spatially ex-
tended (tubelike) unsynchronized filaments], a prime example of spontaneous synchrony breaking
in systems of identical oscillators. In the case of complex oscillatory systems, this leads to a novel
topological superstructure combining knotted filaments and synchronization defect sheets.

The results in this chapter were part of my research and were published in [8]. This work was
started by the observations of knots in 3D simulations of nonlocal Kuramoto model during the
early stage of my PhD. To further study the phenomenon, I wrote the simulation and visualization
programs specifically for this project. The manuscript was written with the guidance and criticism

from Prof. Davidsen.

3.2 Introduction

In natural science, knots and linked structures have attracted attention in various branches as they

are an essential part of many physical processes. This includes real fluids [108]], liquid crys-
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tals [[109, [110], Bose-Einstein condensates [[111, [112], electromagnetic fields and light [113}[114],
superconductors [115], proteins [116] as well as excitable media [117, [118] and bistable me-
dia [119]. Stable knots and their topological invariants are of particular interest for both theory
and experiments as they play an important role in characterizing and controlling different systems
and their dynamics [120]. This is especially true in excitable media, where linked and knotted fil-
aments of phase singularities can be essential to understand the nature of scroll wave propagation
processes [117, 1183, 1121]], including nonlinear wave activity associated with ventricular fibrilla-
tion and sudden cardiac death [[122, [123]]. While the wave propagation processes in excitable and
nonlinear oscillatory systems are very similar [16]], the existence of such stable knotted and linked
filaments in oscillatory systems has remained elusive. For example, to the best of our knowledge
no corresponding parameter regime has been identified in the complex Ginsburg-Landau equation
(CGLE), which is the normal form of oscillatory media close to the Hopf bifurcation [1}136]. This
is deeply unsatisfying as the collective behavior, spontaneous synchronization and wave propaga-
tion in oscillatory media and coupled systems of nonlinear oscillators are topics of general interest
with applications across disciplines [[16} 23], including the quantum regime [124, [125].

In this paper, we show for the first time that (i) stable knotted and linked filaments do exist
in oscillatory systems, (ii) they do exist under non-local coupling in the underlying dynamical
equations, and (iii) together with synchronization defect sheets they can form novel topological
superstructures. From the Kuramoto model of simple phase oscillators and the CGLE to com-
plex and chaotic oscillatory systems, we find in particular Hopf links and trefoils that persist over
hundreds of thousands of scroll wave rotations for a wide range of parameters. Due to the non-
local coupling, the filaments that make up the long-lived knotted structures are no longer simple
phase singularities as is typical for scroll waves, but instead the filaments correspond to spatially
extended regions in which the oscillators are unsynchronized. This is despite the fact that all oscil-
lators are identical and uniformly coupled. The coexistence of these unsynchronized local regions

with synchronized regions — exhibiting traveling waves in our specific case — is the hallmark of
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a chimera state [4} 18} 20, 126, 15, 34]. While single ringlike chimera filaments shrink, knotted and
linked filaments generate an effective repulsion that prevents shrinkage and stabilizes the pattern
even in the presence of strong noise. We find that for coupling that is too short ranged (includ-
ing local coupling) or coupling lag that is too small, the repulsion is too weak such that knotted
structures collapse. This is despite the fact that phase twists along the filaments are present, which
have been hypothesized to have a stabilizing effect by themselves [118]]. If the coupling between
oscillators is too long ranged and the coupling lag is too large, straight chimera filaments become
unstable in a way reminiscent of negative line tension [[123} 127, 128, [129, {130} 131} [132]. This

leads to the breakup of the knotted structures as well.

3.3 Phase oscillators

As the simplest paradigmatic model of an oscillatory system, we first focus on the Kuramoto
model [3,2,26]. In this model, 6(r,?) € [—x, ) denotes the state of an oscillator at a spatial point

r and time ¢. The evolution is governed by
O(r,t) = oy +Ko(r,t). (3.1)

Here, @y is the natural frequency of the oscillators and K is the coupling strength. Note that we
can set @y = 0 and rescale time Kt — t without loss of generality. Thus, @ is the instantaneous

angular frequency obeying
o(r,1) = / Go(r— ) sin[6(r',1) — O(r,1) — adr’ (3.2)
v

where Gy(r) is a coupling kernel, o is the coupling lag or phase shift, and the integration is taken

over the whole volume V. The kernel used is a top-hat kernel with coupling radius R

, T<R
Go(r) ~ (3.3)

0, r>R
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which is normalized as [, Go(r)dr = 1. In simulations, the spatial locations are discretized into
r = (x;,yi,zi) with 1 < x;,y;,z; < L taking integer values in the system of linear length L such
that V = L?. Hence, the control parameters of the system are R and o, with finite size effects
determined by L. Extensive simulations have been done using the Runge-Kutta scheme |'| with
both random initial conditions (IC) and specific functions, see the Appendix for details. We use
periodic boundary conditions (BC) here, yet our findings are quite independent of the BC.

The Kuramoto model with nonlocal coupling is known to exhibit chimera states, in which
both synchronized and unsynchronized regions of oscillators can coexist in the same system even
though all oscillators are identical and uniformly coupled. Most studies have been done on the
one dimensional ring and complex networks [5]. In higher dimensions, two qualitatively different
chimera regimes have been identified for the Kuramoto model given by Egs. (3.1)), (3.2)), (3.3). For
near global coupling with R ~ L and large o < 7/2, various coherent and incoherent strip, spot,
plane, cylinder, sphere and cross patterns have been observed in two and three dimensions (2D
and 3D) [34, [133]. The other regime involves shorter range nonlocal coupling L > R > 1 with
smaller . In 2D geometries, synchronized spiral waves with unsynchronized chimera cores can
appear. They behave like a normal spiral, yet the dynamics in the core is unsynchronized [[133, (19,
134, 1135]). Similarly, in 3D, regular scroll waves with chimera filaments (or chimera tubes) at their

center — instead of the linelike filaments of phase singularity — have been observed [34].

3.4 Existence of knots

For L>> R > 1 and large effective system size L/R, we observe different stable linked and knotted
scroll waves in the Kuramoto model as shown in Figs. and To clearly visualize the
chimera tubes and the knotted and linked structures (referred to as knots in the following), one

has to take into account that both phase 6(r,7) and angular frequency @(r,¢) fluctuate a lot in

! 'We have tested different time steps using both explicit Runge-Kutta and Euler’s method. The stable topological
structures are preserved but the trajectories deviate after a long time. This is expected since a large time step introduces
an effective noise. Similar observations have been mentioned in Ref. [[118]] for excitable media.
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Figure 3.1: (color online) Chimera nature of knots (¢ = 0.8, R = 8, L = 200). (a) Snapshot
of a Hopf-link shows the unsynchronized phase 6(r,z) on the isosurface of spatially smoothed
angular frequency @(r,t). (b) Mean angular frequency distribution of (@(r)), averaged over ap-
proximately 10 periods. The tail to the right corresponds to unsynchronized oscillators. (c) Plot of
2D cross-section of 6(r) showing the chimera and spiral wave properties. A vertical cut through
both rings in panel (a), showing four chimera cores. (d) A cut through the far edge of a ring. (e)
Slicing of a ring, showing a ring chimera and two chimera cores of the other ring.

space as shown in Fig. [3.1b- B.Ie. Thus, it is helpful to define a local mean angular frequency
@(r,t) = [, Go(r—r')o(r',r)dr. Fig. shows a snapshot of the chimera tubes by plotting the
phases of the unsynchronized oscillators for @(r,7) > const. The presence of scroll waves with
chimera filaments can also be seen directly in the phase field. Selected 2D cross-sections of the
phase field (Fig. [3.1c) show patterns similar to chimera spirals in 2D [19], while other cross-
sections show features that are specific to 3D such as the chimera ring shown in Fig. [3.1¢. Note
that the Hopf link and other knots observed generate spherical wave in the far-field. Moreover,

they are not stationary but keep rotating, drifting, and changing their shape over time as shown in
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the Appendix.
As chimera filaments are associated with scroll waves, phase twists can be present along the
filament [136]. This is visible in Fig. [3.Th, but can be better visualized by considering the local

mean phase field 8(r,?), defined by
B(r,1)e00) — / Go(r— ') ar. (3.4)
v

This is illustrated in Fig. [3.2] for example.

3.5 Phase diagram

For the Kuramoto model given by Eqs. (3.1)), (3.2)), and (3.3), our numerical simulations allow
us to obtain a phase diagram as a function of ¢. This is plotted in Fig. [3.2] together with some
of the asymptotic states. At small «, only relatively simple scroll wave structures with straight
chimera tubes are stable. For ax < a0 < o, also knots such as 1 twist Hopf links and 3 twist
trefoils (as shown in Fig. [3.2)) are stable over hundreds of thousands of scroll wave rotation periods
T H More stable structures including helices, ring-tubes and linked triple rings are shown in the
Appendix. For a > o, knots as well as simple straight tubes become unstable. The evolution
in the former case is shown in Fig. [3.3p. In the latter case, the dynamics of the chimera filament
indicates that a finite wavelength instability of the filament itself occurs such that the filament
grows rapidly (see the Appendix). In both cases, the rapid growth of filaments is accompanied
by fragmentation through collisions leading eventually to an irregular or turbulent-like behavior as
shown in Fig. Furthermore, in the same parameter regime near ¢ in 2D, chimera spirals are
stable and no irregular pattern is present [19]]. All this suggests that the underlying instability is
truly 3D in nature as the negative line tension instability and similar filament instabilities that have
been observed in excitable and oscillatory media [123]. Fig. also shows that at even higher

o ~ 1/2, no filament structures can be recognized.

2The stability of Hopf links and trefoils in the Kuramoto model has been tested for extended periods of time of at
least £ = 1.2 x 10° (or period T > 10° where T ~ 11 at o = 0.8) for L = 100 with R =4, and r = 1.2 x 10° for L = 200
with both R =4 and R = 8.
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Figure 3.2: (color online) Phase diagram of the Kuramoto model in 3D as a function of o with
nonlocal coupling L > R > 1. Various knots exist between ax and op. Top panel shows sta-
ble Hopf-link (left), and trefoil (right) as examples. The plots are similar to those in Fig. 3.1,
but smoothed phases 8(r) are used instead. Shadows on the walls correspond to perpendicular
projections of the structures.

The nature of the instability of knots at g and o are significantly different. Below ok, any
knot transforms through one or multiple reconnections into a single untwisted ring which shrinks
and disappears, leading to homogeneous oscillations. As we have tested, all single chimera rings
with a radius of up to 80 shrink and eventually vanish for 0 < o < ap with no-flux BC (see
Appendix). This together with the stable knots for o < a < o indicates that there is an effective
repulsion between filaments in knots that is sufficient to prevent curvature-driven shrinkage and
stabilize these structures above o . Below o, the repulsion is too weak to prevent reconnections.

This mechanism is similar to what has been observed for knots in bistable media [119] and plays
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Figure 3.3: (color online) Time evolution of Hopf links outside their stability regimes near og and
o, respectively. (a) o < ag. After « is decreased slightly from above ax to below, the two rings
of the Hopf link merge resulting in a single ring which eventually vanishes. (b) o > . After o
is tuned slightly from below o to above, one of the rings grows until it collides and reconnects,
resulting in a turbulent-like pattern.

an important role in other situations as well [137]. Simulation results show that different knots
have different stability regimes, especially Hopf links are stable over a broader range of & than

trefoils. Therefore, we denote ak in the following as the point at which Hopf links disappear.

3.6 Dependence on R, L, and geometry

Numerical simulations for 4 < R < 12 and 64 < L < 300 show that the phase diagram presented
in Fig. [3.2]is independent of the specific choice of R and L as long as L > R > 1. Specifically,

ok ~ 0.61 and o ~ 0.90 with uncertainty +0.02. The condition L > R ensures that finite size
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effects do not play a significant role as the size of stable knots and the wavelength scale with
R [19,[134]. For example, we find that stable Hopf links cease to exist for L/R < 16. Also, if the
effective system size is too small, more complex knots tend to decay into simpler ones (see the
Appendix). The condition R > 1 is also crucial. We find that for shorter range couplings R < 3
the lifetime of knots is finite ﬂ Specifically, no stable knots have been observed for local coupling,
R =1, independent of the IC used to generate Hopf links. This is a consequence of temporal
fluctuations in the s hape of the individual rings within a Hopf link becoming comparable to the
minimum separation between the rings such that the rings merge and disappear (see the Appendix)

— the same behavior as for the instability at ax. We observe qualitatively the same for trefoils.

3.7 Robustness with respect to noise

To further quantify the stability of different topological states, we examine them in noisy environ-

ments. This is modeled by an additional Gaussian phase noise & (r,¢) in the Kuramoto model
O(r,t) = o(r,t) +DE(r,t) (3.5)

where (€(r,t)) =0 and (& (r,t)E(r,')) = 8(r —1)8(t —¢'). As shown in Fig. Hopf links
and trefoils can survive under noise magnitude as high as D* = 0.22. This high robustness under
noise signifies the topological protection of knots. Longer range coupling as quantified by R also

increases the tolerance of local phase noise as shown in Fig. [3.4h.

3.8 Dependence on spatial kernel

In contrast to the top-hat kernel Gy, we did not observe stable knots for Gaussian kernels often
considered in the context of chimera states. This together with the existence of a minimal R dis-

cussed above indicates that the range of the spatial kernel is crucial. To substantiate this further,

3For R = 2, the lifetime can vary significantly with the used time stepping of the integrator and becomes longer for
shorter A¢. For example, the lifetime is about = ¢/(5000) and, thus, less than 1000 scroll wave rotations using 4th
order Runge-Kutta with Az = 0.02.
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Figure 3.4: (color online) (a) The tolerable phase noise level for Hopf links (HL) and trefoils
(T). f quantifies the fraction of structures persisting after r = 5000 (= 450 scroll wave rotations)
under noise intensity D. Each point corresponds to an ensemble of 10 realizations. Here, oo = 0.8,
R =4, and L = 100. Inset: D* denotes the point of f = 0.5 for a Hopf link as a function of R using
o =0.8, L/R = 16. (b) Phase diagram showing the stable regime of Hopf links for kernel G| with
L> R > 1. The red dot marks the triple point between all three phases where ax = 0. The error
bars account for different R > 4 and L up to L = 300. Note that 1/n; = 0 corresponds to the top-hat
kernel Gy used in Fig. [3.2]

let us consider the kernel G| (r) ~ e~ /R" quch that Gy — Go when ny — o if R < L. Note that
n; = 2is a Gaussian, n; = 1 is an exponential, and n; = 0 gives global coupling. Simulations show
that if G; becomes more long-ranged as n; decreases, the stable regime ox < o < ¢ of knots
shrinks as shown in Fig. [3.4p. This is the only effect on the knots as the nature of the associated

instabilities along the boundaries appears unchanged and follows the pattern shown in Fig. 3.3

The phenomenon is independent of the exact functional form of the kernel (see the Appendix).

3.9 Beyond phase oscillators
The nonlocal CGLE is given by [[/]:

A(r,t) =A—(1+ib)|APA+ (14ia)pa, (3.6)
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Figure 3.5: (color online) (a) CGLE [(a,b) = (1,0), K = 0.1]: Comparison of minimum separation
between rings in a Hopf link, d,,;,, and a measure of spontaneous fluctuations in the ring shape,
& (see the Appendix for details). Bars indicate the 99% range. (b) Rossler model: Topological
superstructure of a chimera Hopf link with an attached sychronization defect sheet in the period
doubled regime (see the Appendix for more viewpoints and dynamics).

where the control parameters are (a,b). The nonlocal coupling py4 is given by
pa(e,1) = K / Go(r —¥)[A(F 1) — A(r,1)]dr, (3.7)

and the coupling strength is K. Since the CGLE can be well approximated by the Kuramoto
model in the weak-coupling limit independent of the specific coupling [18},[138]], similar results are
expected in certain parameter regimes. Indeed, stable chimera knots with non-constant amplitudes
|A| exist in the vicinity of the parameters (a,b) = (1,0) [7] for K = 0.1 (see the Appendix) and
larger values of K. The lifetimes of knots are longer than 6 x 10°, provided that R >> 1. All results
discussed above for the Kuramoto model also hold qualitatively for the CGLE. This includes in
particular the break-up of knots for small R. Fig.[3.5a provides a clear rationale why this happens:
The separation between the rings in a Hopf link shrinks with decreasing R such that it eventually
becomes comparable to the amplitude associated with the temporal fluctuations in the shape of
individual rings. This offers an explanation of why no stable knots have been observed in the

CGLE with local coupling. Our findings for the CGLE imply that all oscillatory systems with
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appropriate nonlocal coupling should exhibit stable knots in some parameter regime near their

Hopf bifurcation.

3.10 Complex oscillatory systems

We also observe stable chimera knots if the uncoupled oscillators are far from the Hopf bifurca-
tion and undergo complex or even chaotic oscillations, requiring at least a three-dimensional local
phase space. A specific example is the Rossler model with nonlocal coupling [139], which exhibits
a phenomenology with many features in common with those observed in complex oscillatory sys-

tems including chemical experiments [140]. It is given by

X(r,t) = —-Y—-Z+px,
Y(r,t) = X+aY+py, (3.8)

Z(rit) = b+Z(X—c),

where the control parameters are (a, b, ¢) and the nonlocal coupling px (r,) and py (r,¢) are defined
analogously to Eq. (3.7). For a = b = 0.2, the effective a decreases as c increases [138]. For R > 1,
we observe stable chimera knots in the period-doubled regime (¢ = 3.6) and in the chaotic regime
(c = 4.8) with weak coupling K = 0.05 (see the Appendix). All findings described above for the
other models hold qualitatively here as well. Stable knots only exist if the coupling between the
oscillators is neither too short-ranged nor too long-ranged. For example, we did not observe stable
Hopf links or trefoils for R = 1 or when the kernels were Gaussian in the parameter regimes given
above. Moreover, in the period-doubled regime, synchronization defect sheets (SDS) — the analog
of synchronization defect lines in 2D systems [[139,141] — can be observed for the first time and,
more importantly, connect the different filaments (see Fig. [3.5b, the Appendix). This leads to
another layer of topological structure associated with the knots, making this a unique phenomenon

and adding potentially to their general robustness if multiple knots are present [[140].
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3.11 Discussion and conclusions

Our findings show that knots exist and are stable over a significant range of parameters in various
oscillatory systems with nonlocal coupling as long as the characteristic coupling length of the
kernel is sufficiently large and the tail of the kernel decays sufficiently fast. The variety of knots is
also much higher compared to what has been reported for excitable media [118,/136]. For example,
we have also observed other relevant unknotted structures such as stable double helices (see the
Appendix) — a structure that has remained elusive in the CGLE with local coupling [35]. This
suggests that the models considered here can serve as paradigmatic models to study various knotted
and unknotted structures associated with scroll waves in general, including the novel topological
superstructures of knots with SDSs. More specifically, it allows one to explore the topological
constraints imposed by the phase field on the observable phase twists associated with a given knot
— afield largely untouched [136] — as well as the effect of synchronization defect sheets on knots
for the first time.

A remaining open question is to which extent the existence of stable knots in oscillatory sys-
tems depends on the presence of a chimera state. While our findings suggest that a chimera state
is a necessary condition, there is no fundamental reason to substantiate this. However, our simula-
tions indicate that the mobility of the scroll wave filaments plays an important role. If the filaments
move or meander sufficiently fast (e.g. R =1 or for a Gaussian kernel with large ), no chimera
state can be numerically observed and stable knots are absent. This is similar to what has been
reported for chimera spirals in 2D [134] and knots in excitable media [118]. One possible way
forward 1s the recently proposed ansatz by Ott and Antonsen [29,30], which has been successfully
applied to study the existence and stability of chimera spirals [142].

In addition to the robustness of knots under dynamical noise, we also find that Hopf links
and trefoils can emerge in a self-organized way from random IC with fair probability (see the
Appendix). Both features indicate knots should be observable in real-world oscillatory systems that

follow a dynamics similar to the models studied here, with most likely candidates to be chemical
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systems [18} 139, 137, 143} 22]. Yet, the observation of chimera filaments in natural systems

remains a challenge for the future.

3.12 Appendix A: Topological structures

Fig. [3.6) shows various long-lived (stable or metastable) topological structures in the non-local
Kuramoto model within the regime ax < a < ¢. Note that knotted structures more complicated
than simple Hopf links tend to have smaller stability regimes. An exception are (knotted) structures
that require periodic boundary conditions (BC) and do not drift, which can be stable below 0.
This is shown, for example, in Fig. and includes straight filaments. Simulations suggest that

the multi-filament structure in Fig. is stable for ¢ > 0.

3.13 Appendix B: Dynamics

In the non-local Kuramoto model, knotted structures that exist independent of the specific choice
of BC (periodic vs. no-flux) are not stationary but drift, rotate and change their shape over time.
As an example, Figs. [3.8(a) and [3.8(b) show a few snapshots for different structures. Note that
for the system sizes studied, the center of mass motion is not straight over long time scales. The
phase field away from these knotted structures takes on the form of spherical waves as shown in
Fig. In case of the ring-tube structure (which is specific to periodic BC), the ring propagates
along the tube and keeps distorting the local part of the tube while it travels, see Fig.[3.8](c). In
all these cases, the direction of the filament motion can be deduced from the instantaneous angular

frequency @(x,y,z) shown in the rightmost column of Fig.
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Figure 3.6: Non-trivial topological structures in the non-local Kuramoto model with periodic BC
for L = 100. The lifetime 7 and the corresponding parameters are given for each subfigure. 7 > 7y
means that the structure is stable within the testing time limit 7y, while T ~ 7y means the structure
breaks down around 7y (order of magnitude). The period of the scroll waves is about 7' ~ 11 for
o = 0.8. This implies a lifetime of more than 1037 for Hopf links and trefoils. Together with the
robustness in the presence of noise as established in the main text, this suggests that the lifetime
T — oo when L > R.
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3.14 Appendix C: Creating chimera knots

3.14.1 Random initial condition

Knots and links can appear spontaneously from random initial conditions (IC). The transient time
is of the order of one thousand scroll wave periods in the regimes being studied. A few snapshots
of typical transient states are shown in Fig. Using random IC, we can obtain all knotted
structures shown in Figs. [3.6a{3.6f. The specific probabilities of generating Hopf links and trefoils

from random IC are summarized in Table 3.1l

3.14.2  Algorithm to create rings and Hopf links

First, the phase field of a single ring is considered. Suppose the center of a ring is located at
ro = (x0,Y0,z0) with radius Ry and the normal vector of the ring is pointing in the positive 2

direction. A parameterization of the location of this ring using ¢ € [0,27) is

r(¢) = (ry,ry,r;) = (X0 +Rocos @, yo +Rosing,zp). (3.9

To create a ring shaped filament corresponding to phase singularities, the phase field needs to
be specified in the whole domain such that it is smooth outside the ring but results in 27 phase

difference while going around a point on the filament. This can be done by defining

— -1 [ 2720
¢ = tan (Ro_f) (3.10)
fo= x5 y)? (3.11)

for any spatial point r = (x,y,z). Then the phase of each oscillator 6(r) can be computed by
0(r) = y(r), where
w(r) =kd — ¢ —s¢ — B. (3.12)

Here, k is the wavenumber, d is the distance to the closest point on the ringd = /(x — )2 + (y — ry)2 + (2 — 17)2,

¢ is the angle between the plane consisting of the ring and the line to the closest point of the ring,
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(a) Two simple filaments with no(b) Two simple filaments twisting(c) Two twisted filaments passing
twist (o0 = 0.8). once (¢ = 0.8). through all three surfaces (o = 0.05).

Figure 3.7: Various long-lived filaments with periodic BC, L = 100 and R = 4. (a-b) Each filament
connects with itself through one of the surfaces. (c¢) Each filament passes through all three surfaces
before connecting back to itself.

Table 3.1: Spontaneous formation of Hopf links and trefoils in simulations with random IC and

periodic BC.
’ o \ R \ L \ Number of simulations | Number of Hopf links | Number of trefoils ‘
0.7 | 4] 100 200 1 1
0.7 5100 500 4 0
0.8 4100 500 13 0
0.8 5100 500 5 0
0.7 5200 100 3 1
0.8 8 |200 100 4 0
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(c) Ring-tube

Figure 3.8: Dynamics of different topological structures (& = 0.8, R = 4 and periodic BC). The
first three columns are snapshots at three different instances in time. The rightmost column is the
iso-surface plot of the instantaneous angular frequency ® of the last snapshot. Blue indicates the
region with |@| < |®|, while orange indicates the region |®| > |@|. Filaments are moving away
from the orange region.
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Figure 3.9: The spherical wave generated around a Hopf link is shown by plotting the iso-surface
0 =0 (o = 0.8, R = 8 and periodic BC). The irregular pattern at the center is the region with
unsynchronized oscillators that form the filament. Note that only the lower half of the system is
shown to highlight the structures near the center.

200

(a) A transient state for R =8, L =200.(b) A transient state for R=4, L =200. (c) Same as in (b) at a later time.
See Sec.[3.14.3] for a discussion of the
significance of the red box.

Figure 3.10: Some snapshots of transient states (& = 0.8 and periodic BC).
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s is the twisting number, ¢ is the ring parameterization, and 3 is a constant phase shift. Examples
are shown in Fig.
The phase field of a Hopf link can be created by combining two rings, requiring a method to

smoothly superimpose them. This can be achieved using a distance dependent phase:

R\? .
E(r,ro,s,B) = (E) eV rsh) (3.13)

which is based on the inverse square distance. Then the phase field of a Hopf link 6(r) can be

calculated by

p(r)eie(r) = §(X,y,z,x0 _R0/27y07Z0;S7B = 0) ‘l‘g(X,Z,y,X()+R0/2,yO,Z0,S,ﬁ = TE) (314)

with twisting number s = 1. Examples are shown in Fig. [3.12] Note that a structure in a given
system size L can be rescaled to L’ using a simple scaling function of the form 6'(x',y’,7') =
0(|£x'|.|£Y], |57 ]|), where |-] denotes the floor of the number (which is necessary since the
oscillators are arranged on a discrete lattice) and the prime denotes the new phase and new location.
This rescaling works quite well for the top-hat kernel as long as R ~ R’ > 1. Also, if the smoothed

phase 6 of knots — see Eq. (4) in the main text — is used as IC, the unsynchronized region around

the filaments can redevelop.

3.14.3 Reconnecting chimera filaments using random patches

A new structure can be obtained by reconnecting local filaments of a known structure. This re-
connection requires a detailed specification of the whole local phase field that is smooth, without
creating new filaments and while matching the desired filaments. This can be hard to do if the
local filaments are obtained from a simulation. Alternatively, based on the observation that only
simple straight filament can form in a small system size L/R from random IC, it suggests a way to
transform a structure by randomizing a whole local region. Using this method, we have success-
fully created trefoils and a few other knots. To begin with, a structure that is similar to the desired

knot is needed, with the region of reconnection close to each other. For example, the structure in
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Figure 3.11: Shrinking rings with (a) non-local coupling R = 4, (b) nearest-neighbor coupling
R = 1. Parameters: L/R = 50, Ry/R = 20, a = 0.8 with no-flux BC.
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(b)

Figure 3.12: Formation of knots for (a) non-local coupling R = 4, (b) nearest neighbor coupling
R = 1. Note that the IC are exactly the same in both cases. Parameters: Ryg =25, L =100, o« = 0.8
with no-flux BC.
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the red box shown in Fig. [3.10]is a trefoil if the top parts are connected. After half a dozen trials
using different shapes of the randomized region, we were indeed able to create a trefoil. Note that
the region should be large enough to form a tube but not too large to form other structures. This

method may suggest a similar way to create knots in real world experiment.

3.15 Appendix D: Instabilities

In the main text, the instabilities at ax and og of Hopf links in the Kuramoto model have been
discussed. The instability near og is caused by a lack of repulsion to counter curvature-driven
shrinkage, so knots collapse and disappear. On the other hand, the instability near ¢ originates
from an instability of the filament where the filaments become longer and longer and eventually
collide with themselves or other filaments. This effect is particularly clear in large domains as
shown, for example, in Fig. [3.13] Note that an elongation also happens as a transient state when
the parameters are suddenly changed or starting from a non-perfect IC. However, it will eventually
shorten after refolding to an asymptotic state as also observed for other models [118]]. Other

instabilities are discussed below.

3.15.1 Instability of a single ring

Direct simulations show that rings are not stable for & < o with no-flux BC. As shown in Fig.
3.11} all rings shrink in size and eventually vanish. The largest ring tested had radius Ry = 80. This
shrinkage process occurs for both nearest neighbor coupling R = 1 and non-local coupling R = 4.
Note that the time it takes for a ring to disappear is approximately the same in both cases for the
same effective radius Ry/R and effective system size L/R. Also, almost all transient (knotted)

states resulting eventually in homogeneous oscillations become rings in their penultimate stage.
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3.15.2 Instability of knots for R =1

As shown in Fig. [3.12] using the IC for Hopf links described in Section [3.14.2] can result in a
stable knot if R > 1. For the choice of Ry, the two rings initially shrink in size and then an
effective repulsion prevents further shrinkage. At the same time, the center of the Hopf link starts
moving. In contrast, if the same IC is used with nearest neighbor coupling R = 1, the two rings will

eventually collide with each other and decay into a single ring, which in turn shrinks and vanishes.

3.15.3 Filament instability at oy

As illustrated in Fig. [3.14] the instability at o for simple straight chimera filaments is char-
acterized by the emergence of secondary structures and the elongation of filaments. The same
qualitative behavior is observed for knotted structures in the regime ¢ > ¢ as shown in the main
text. Nevertheless, the knotted structures can persist for thousands of scroll wave periods before

they break up consistent with critical slowing down near a phase transition.

3.15.4 Instabilities from finite size effects

A stable knotted structure becomes unstable when it is confined in a small effective system L/R.
While a Hopf link simply decays into a single ring which eventually vanishes, the situation is more
complicated for larger and more complex knotted structures. One example is shown in Fig. [3.13|
starting from a triple ring for R =4 in L = 100, which decays into a ring knotted with 8-shape ring,
and then transforms into a trefoil. Depending on the IC and the exact parameter regime, the decay
path can be different. Note that even for the moderately larger system size L = 150, triple rings

have significantly longer lifetimes (7 > 20000) in some parameter regimes.
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Figure 3.13: Instability of a trefoil near the transition point o (R = 4, L = 150 and periodic BC).
This snapshot shows the initial elongation of one branch of the trefoil, which has collided with
itself and formed an extra ring.

(b)

Figure 3.14: Snapshot series of the instability of straight filaments at & = 0.95 > 0. (a) Single
filament with L = 100, R = 4 and no-flux boundary conditions. Some secondary structures develop
with local twisting before break-up. (b) Two filaments in a larger domain L = 200 and R = 4 with
PBC. The rapid elongation of one of the filaments is evident.
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Figure 3.15: Decay of a triple ring for L = 100, R =5, o« = 0.7 with PBC. (a) t = 0, triple rings.
(b) t = 15000, decay into a ring knotted with an 8-shape ring. (d) + = 20000, further decay into a
trefoil.

o 2 4 6 8 10 r

Figure 3.16: (color online) Plot of the localized kernels that can still result in a stable Hopf link,
with estimated critical values n; = 3.8 and np = 1.9 for R = 4 and o = 0.8 of Kuramoto model.
Gy is shown for comparison.
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3.16 Appendix E: Spatial kernels

As mentioned in the main text, our main findings do not depend qualitatively on the exact func-

tional form of the considered kernels. For example, using the kernel

, Lo bl <R
G)(r) ~ (3.15)

0, otherwise

instead of the top-hat kernel Gy gives pretty much identical results for the stability of knots. As

another example, using the kernel
Ga(r) ~ (1+=R))~1 (3.16)

with an exponential tail instead of the kernel G; with super-exponential tail exhibits the same
phenomenology: With decreasing n,, the stable regime of knots shrinks. The shape of the kernels

at the transition points of G| and G, for R =4 and o = 0.8 are shown in Fig.

3.17 Appendix F: Other oscillatory models

3.17.1 Non-Local Complex Ginzburg-Landau equation (CGLE)

The non-local CGLE considered here is [7]]:
A(r,t) =A—(1+ib)|APA+K(1 +ia) /G(r —1')(A(r') — A(r))dr/, (3.17)

where the control parameters are (a,b), the coupling strength is K and G = G in the following.
Under sufficiently weak coupling K — 0, the local field oscillates with unit amplitude |A| ~ 1 and
behaves like a simple phase oscillator in the non-local Kuramoto model. Therefore, we can use the
knotted structures found in the Kuramoto model as IC by simply setting A(r,z = 0) = 0 We
find that one of the regimes with stable Hopf links is 0.95 < a < 1.15 for b =0 and K = 0.1 pro-
vided that L > R > 1. In Fig.[3.17(a), the phase portrait shows that the magnitude of all oscillators

only deviates slightly from |A| = 1 in this case. For stronger coupling K = 0.2, the deviations in
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Figure 3.17: Snapshot of the states of the oscillators in phase space for a Hopf link in the non-local
CGLE for (a,b) = (1,0), L =200, R = 8 and periodic BC.
A increase (see Fig.[3.17(b)) but stable knots still exist. In both cases, the phase 6(r) = arg(A(r))
behaves similar to the Kuramoto model as confirmed by Fig. [3.18|(d). As Figs.[3.18[b) and[3.18(c)
show, the chimera nature is also evident from the Re(A(x,y,z)) and Im(A(x,y,z)) fields. Using the

local mean field 6(r), one can easily locate the unsynchronized filaments ﬂ An example is shown

in Fig. [3.1§](a).

3.17.2 CGLE: Minimum separation & spontaneous fluctuations

When R becomes too small, knots are no longer stable. This instability can be characterized by the
dynamics of the filament(s) that make up the knots. Even though the region around the filament
is unsychronized, the filaments can be found by a filament detection algorithm [131] of the mean
field (see Fig. 3.19(a)). The length of filament can therefore be defined as the number of occupied
lattice sites. Denote the two rings or filaments of a Hopf link as F; and F, with circumference
(or length) C; and C», respectively. As Fig. [3.19(c) shows, C; and C, fluctuate over time in a

synchronous way. Fluctuations are also present in the minimum separation between F; and F,,

“To identify the regions with unsynchronized phase, we consider the average of the absolute phase difference with
its neighbors and select a suitable threshold.
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(b) Re(A)

Figure 3.18: Snapshot of a Hopf link in the non-local CGLE corresponding to Fig. 3.17(a). (a)
shows the unsynchronized region corresponding to the chimera knot. An x-y cross-section of the
different fields at z = 100 is plotted in (b)-(d). In (b) and (c), the color map from deep blue to red
corresponds to values from —1 to 1 in the respective field.
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(d) Length of the filament ¢ shown in (b) as a function
of time.
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(f) Roughness of the filament shown in (b) as a function
of time.

Figure 3.19: CGLE withR=4,a=1, b =0, K =0.1. (left) Temporal evolution of a Hopf link
with L = 80. (right) Temporal evolution of a single filament oriented along the z-direction with
L =91 which results in a time average filament length (¢) ~ 110 that is approximately the same as
the time average circumference (C) ~ 110 of the rings in the left column.
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Figure 3.20: CGLE witha=1,b =0, K =0.1 as in Fig. (a) System size, L, ¢y, for which
a single filament has the same average length (¢) as the average circumference (C) of a Hopf link.
(b) Measures of fluctuations for the case of a Hopf link (spread in the minimum separation between
the rings, dyin.99.5% — dmin,0.5%, see Fig. @Ke)) and for the case of a single filament (spread in the

roughness, &, see Fig. f)), both as a function of R.
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defined as d;;, = miny,cf,(ry,r2), as shown in Fig. e). To characterize these fluctuations
statistically and identify an associated length scale, we consider the difference between the 99.5%-
quantile and the 0.5%-quantile associated with d,,;,, corresponding to the error bars shown in Fig.
[3.5(a) in the main text. As shown in Fig. [3.20(b), this difference is not varying much across the
considered values of R. This is in sharp contrast to the linear scaling of d,,;,, with R (see Fig. [3.5a)
in the main text).

To substantiate that the intrinsic length scales associated with filament fluctuations do not
strongly vary with R, we further consider the fluctuations of a single straight filament (see Fig.[3.19(b)).
To ensure a fair comparison with the fluctuations of Hopf links, we choose a system size L = L,
such that the average single filament length (¢) equals the average circumference (C) = ((Cy) +
(C2))/2 of the filaments in the Hopf link (see Fig.[3.19(d)). The dependence of both these quanti-
ties as a function of R is shown in Fig.[3.20(a). To characterize the fluctuations of a single straight
filament, we calculate its roughness. Due to the chosen initial conditions, the roughness is identi-
cal to the deviation from a straight filament oriented along the z-axis. Specifically, we define the

deviation from the straight filament center ¥y, = (1/L) Y. ry,(z) to be

Axy(z) = ’rxy(z) _f'xy‘a (3.18)

where r,,(z) is the intersection point of the filament with the x-y plane for a given z. The roughness
Avy = (1/L) Y. Ayy(z) is now simply Ay (z) averaged over z. As Fig. f) shows, the roughness
varies over time. To characterize these (non-negative) fluctuations in the roughness over time and
within an ensemble and to identify an associated length scale, we consider the 99%-quantile and
denote it by &. This is the quantity shown in Fig. [3.5(a) in the main text and again it does not
vary much across the considered values of R. For a direct comparison with the length scale of

fluctuations in the case of a Hopf link, please see Fig. [3.20(b).
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3.17.3 Non-Local Rossler model

The non-local Rossler model considered here is [[139]:

X(r,i) — —Y—Z+K/G(r—r’) (X (')~ X(r)) dr’, (3.19)
Y(r,t) = X—I—aY+K/G(r—r’) (Y(r')—Y(r))ar, (3.20)
Z(rt) = b+Z(X—c), 3.21)

where the control parameters are (a,b,c) and the coupling strength is K. Again, we can use
(X,Y,Z) = (cosH,sin6,0) with O(r) from states with knotted structures generated by the Ku-
ramoto model as IC. When a = b = 0.2, the effective || decreases as ¢ increases [138]. We
observe stable knots within 3.3 < ¢ < 5 for weak coupling K = 0.05 provided that L > R > 1.
Note that as ¢ increases the intrinsic dynamics of the oscillators also changes. Namely, the dynam-
ics undergoes a period-doubling cascade to chaotic oscillations. In particular, we observe stable
knots in the period-2 regime with ¢ = 3.6 (Fig.[3.21)), as well as in the chaotic regime with ¢ = 4.8
(Fig.[3.22).

An additional feature of the wave dynamics in these regimes is evident from Fig. and
Fig. The amplitudes are modulated. For example, in the period-2 regime alternating wave
maxima are present. A topological consequence of such a behavior is that two dimensional struc-
tures exist such that the local dynamics has a lower period than that of the bulk. Specifically,
these structures, called synchronization defect sheets (SDSs) in the following, separate domains
of different oscillation phases and for periodic BC either originate from a filament or are closed.
More importantly, every filament has an attached SDS such that they become part of any knotted
structure. This can already be observed in the cross-sections shown in Fig. and Fig. To
clearly identify SDSs, we use the detection algorithm developed for the lower dimensional case
in Ref. [138]. A specific example of SDSs is shown in Fig. and their subsequent motion is

shown in the Supplementary Video.
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Figure 3.21: Snapshot of a Hopf link in the non-local Rossler model for
(a,b,c,K) = (0.2,0.2,3.6,0.05), corresponding to the period-2 regime. The lifetime of the
knot is 7 > 10°. The same 2D cross-sections of the Hopf link are shown in (b-e) for the different
fields X, Y, Z and 6. The color scheme is such that deep blue represents the most negative value,
and red represents the most positive value. The discontinuities of color along the wave fronts
correspond to cross-sections of synchronization defect sheets. L = 200, R = 8 and periodic BC.
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Figure 3.22: Similar to Fig. [3.21] but in the chaotic regime (a,b,c,K) = (0.2,0.2,4.8,0.05).
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(a) Synchronization defect sheets (b) Synchronization defect sheets (another view)

() z=50 (d) z=285 () z=93

(f) z=109 (g) z=118 (h) z=130

Figure 3.23: Visualization of the synchronization defect sheets (SDSs) present in Fig. 3.21] (a),
(b): Different 3D plots of the SDSs. (c¢)-(h): 2D cross-sections at different values of z. The red
lines represent the cross-sections of SDSs and the yellow-red dots indicate the unsynchronized

regions. Note that the cross-section in (e) is the same cross-section as in Fig. (b-e).
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Chapter 4

Proposal for the Creation and Optical Detection of Spin Cat

States in Bose-Einstein Condensates

4.1 Preface

We propose a method to create “spin cat states”, i.e. macroscopic superpositions of coherent spin
states, in Bose-Einstein condensates using the Kerr nonlinearity due to atomic collisions. Based on
a detailed study of atom loss, we conclude that cat sizes of hundreds of atoms should be realistic.
The existence of the spin cat states can be demonstrated by optical readout. Our analysis also
includes the effects of higher-order nonlinearities, atom number fluctuations, and limited readout
efficiency.

The work in this chapter was published in [12]]. The detailed calculations in this chapter were
the results of my own work. The original idea was proposed by Prof. Simon. Under his guidance,
I was able to work out all the details of this proposal. During the development of this proposal,
Dr. Zachary Dutton provided valuable suggestions thanks to his expertise in BECs. Another BEC
expert I consulted is Dr. Rui Zhang. Their involvement made my proposal more realistic. Tian

Wang was involved in the part related to the Kerr effect.

4.2 Introduction

Great efforts are currently made in many areas to bring quantum effects such as superposition and
entanglement to the macroscopic level 144} 145,146, 147,148,149, 150, 151,197, 1152, 1153} 1154,
155011564 1157, 51]]. A particularly dramatic class of macroscopic superposition states are so-called
cat states, i.e. superpositions of coherent states where the distance between the two components

in phase space can be much greater than their individual size [144) [145]]. For example, the recent
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experiment of [S1]] created a cat state of over one hundred microwave photons in a waveguide
cavity coupled to a superconducting qubit. It was essential for the success of the latter experiment
that the loss in that system is extremely small, since even the loss of a single particle from a cat
state of this size will lead to almost complete decoherence.

Here we show that it should be possible to create cat states involving the spins of hundreds of
atoms in another system where particle losses can be greatly suppressed, namely, Bose-Einstein
condensates (BECs), where the spins correspond to different hyperfine states. We use the Kerr
nonlinearity due to atomic collisions, which also played a key role in recent demonstrations of
atomic spin squeezing [97, 152, 153]. In contrast to previous proposals [107,158] we do not make
use of Josephson couplings to create the cat state, but rely purely on the Kerr nonlinearity in the
spirit of the well-known optical proposal of Ref. [59].

Our approach is inspired by the experiment of Ref. [159], which stored light in a BEC for
over a second. Ref. [160] proposed to use collision-based interactions in this system to implement
photon-photon gates, see also Ref. [161]. Here we apply a similar approach to the creation and
optical detection of spin cat states. Because of the great sensitivity of these states, this requires a
careful analysis of atom loss. Our theoretical treatment goes beyond that of Ref. [160], which was
based on the Thomas-Fermi approximation (TFA). Our new approach allows us to study several
key imperfections in addition to loss, including higher-order nonlinearities, atom number fluctua-

tions, and inefficient readout, and we conclude that their effects should be manageable.

4.3 Spin cat states creation scheme

Our scheme is illustrated in Fig. The setup is similar to the experiment of Ref. [159]; See also
Ref. [164]. In particular, the light is converted into atomic coherences using a control beam (’slow’

and ’stopped’ light) [165} 159} 166, 167, 168, 169, [170]. We start with a ground state BEC with

N atoms in internal states |A). To create a spin state, a coherent light pulse, |a); =Y, ¢, |n) with

mean photon number 7 = |¢|? and ¢, = e"“'z/z(a”/\/rﬁ), is sent into the BEC (see Fig. ).
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Figure 4.1:  (color online) Spin cat state creation (a)-(d) and detection (e)-(g). In (a)-(f) the
radially symmetric photons and spherically symmetric BECs are represented by spatial density
distributions. (a) A coherent light pulse is sent into the BEC. (b) The light state is absorbed in the
BEC (see inset), creating a CSS. The shape of the input pulse is chosen such that the two-compo-
nent BEC is in its ground state after the absorption. (c) The trapping frequency ), for the small
component is increased adiabatically. The density of the small component now exceeds that of the
large component at the center. (d) The collision-induced Kerr nonlinearity drives the system into a
spin cat state (CAT). (e) The trapping frequency is adiabatically reduced to its initial value. (f) The
spin state is reconverted into light, whose Husimi Q function [47] is determined via homodyne de-
tection [[162]]. (g) Expected shape of the Q(f3) function in phase space. The coherent state at 1 = 0
gives a single peak, while the cat state at = 7, yields two peaks. Further evolution for another
interval T, returns the output light to a coherent state, yielding a single peak at t = 27.. This would
not be possible if the two peaks at t = 7, corresponded to an incoherent mixture, thus proving the
existence of a coherent superposition of CSSs in the BEC at 7, [163].

The light is absorbed by the BEC and some atoms are converted into internal states |B) as:

Y culn) IN,0)s = [0)L ) calN —n,n)s :=0)]ax)s, (4.1)

where the Fock state |N,,N,)s represents N, and N, excitations of wavefunctions y, and y}, in the

A and B components respectively. Note that |ot)s is an excellent approximation of a CSS [171]]

N o /N!/(n!(N —n)!)a"|N — n,n) in the limit of N > 7 which is the case in this scheme.
The described absorption process should prepare the two-component BEC in its motional

ground state to avoid the complication of unnecessary dynamics such as oscillations. This can
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be achieved by matching the shape of the input pulse to the ground state of the effective trapping
potential for the small component [[160], provided that the effective trap is not too steep. Once the
light has been absorbed, the trapping frequency @y is then increased adiabatically independently of
@,, which can be achieved by combining optical and magnetic trapping. In the regime @, > @,
a narrow wavefunction Y}, is formed at the center and its density can exceed the large component
A, see Fig. . Tk. This results in strong self-interaction and hence a large Kerr nonlinearity. On the
other hand, keeping @, low reduces the unwanted effects due to collision loss involving the large
component.

The spin state will now evolve with time according to

(1) =Y cae ENIN — nn) (4.2)

with [ (0))g = |&)s. If the energy takes the Kerr nonlinear form .2 = hinpi2, then a spin cat
state |x(7.))s = (|&t)s +i| — &t)g)/v/2 is formed at the time 7. = 7/|21,] in full analogy with the
proposal of Ref. [59]. The problem is thus reduced to the computation of the ground state energy

E(N,n).

4.4 Calculating energy

The energy of the system can be calculated by the following mean-field energy functional E [y, Wp; Ny, Np|:
1
E=Y N (%+7/,-+§(Ni— 1)%‘5) + NaNp b (4.3)
i=a,b

where 7, Vi, %; and %, are the Kinetic energy, potential energy, intra- and inter-component in-
teraction energy respectively, given by 7 = [(*/2m)|V;|2, % = [ Vi|y;i|? with spherically sym-
metric trapping V; = mw?r? /2, and %, = [ U;;|wi|?|w;|* with interaction strength U;; = 4nh*a;; /m.
Here, y; are single particle wavefunctions for i-th component with normalization [ |y;|?d’r = 1, a; j
are the scattering lengths, and m is the atom mass. The corresponding dynamic equation governing

the system evolution is the Gross-Pitaevskii equation (GPE) [[172, 173} [10]. With the restriction
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N, =N —n and N, = n of spin states creation in Eq. (4.1), the nonlinearity in n can be obtained by

the expansion of the energy E(N,n) = hn(N,n) around n = 0 as:
NN, n) = Mo(N) + 1 (N)n+ T (N)n? 4 3 (N’ .. (44)

where /i1 generates a global phase and iny; = —u, + U, with chemical potential y; (i = a,b) is
the energy to remove one atom from |A) and add one atom to |B). i1 generates a simple rotation
in phase space |a) — |ote="™7), which can be eliminated by a frame rotation. The term 1), is the
Kerr nonlinearity. We obtain these coefficients by fitting the total energy E(N,n) with n € [0,200]
up to fourth orders in Eq. (4.4), where the numerical ground state y; of GPE used in Eq. #.3)
is found by the imaginary time method [174]. This numerical approach is better than Ref. [160]
because we can avoid the problems associated with the TFA of high densities [[175]. Also, the high
density for the small component at the center limits the negative effect of quantum fluctuations in
the large component [176]. The latter are less important than the classical fluctuations in 1M (N)
due to uncertainty in N, whose effects will be discussed below. Moreover, we can now study the

effects of higher-order nonlinearities (in particular 13 and 14).

4.5 Cat creation time

Fig. shows our results for the spin cat creation time 7, = /|21, | and achievable cat size 7,
taking into account the effects of atom loss. It is clear that the cat time 7, decreases significantly as
the trapping strength @), increases. Note that the Kerr effect disappears (1, = 0) around @, ~ 27 X
55Hz, which may be used for long term storage. As mentioned above, the reason for the strong
Kerr effect for large @y, is that strong trapping potential forces v, into a highly localized Gaussian
oo(r) = (mﬂ—“,;")3/ 4e=(mapr®)/2h  The radius of W, is of the order of the characteristic length s, =
\/7h/(mey), and the density py,(r) = n|y,(r)|? is peaked at the center pj(0) ~ ns;3 which can
be much higher than p,(0) in our regime, see Fig. . Therefore, the system can be effectively

described by 7 ~ TUpp(A—1) [ d3r|@o|*, and the second order term is approximately /i (N) ~
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Figure 4.2: (color online) (a) The time to create a spin cat state 7. = 7/|21;| (thick red curve)
versus the time to lose one atom 7, in component B (thick black curve) as a function of the trapping
frequency for the small component @. The size of the cat 7 = 100 in this example. One sees that
T. < Ty is possible for sufficiently large @;. The plot also shows the main individual loss channels
contributing to the calculation of 7y, where 7, . is the individual time of losing one atom through
m-body collision with particle combinations c. It furthermore shows analytic approximations for
Tp ~ a)b_ 3/2 (red dotted curve) and T3 ppp ~ @) 3 (blue dashed curve), see text. (b) Achievable cat
size 7 as a function of @p. The shaded region corresponds to 7, < 7, for a condensate size N = 10°
as in (a). The cat size can be increased somewhat by reducing N (dashed line). We also show
that there is a region where 7, < 0.17; so that loss should really be negligible. The green circles
correspond to 7. = 10,1,0.1s (from left to right). The star corresponds to the values used in Fig.
3, and the corresponding density distributions are shown in Fig. 1(d). Both plots are for >*Na
with spin states |[A) = |[F = 1,m = 0), |B) = |F = 2,m = —2), scattering lengths a,, = 2.8nm,
apy = ag, = 3.4nm [[159], loss coefficients L; = 0.01/s, Ly = 0, L3 = 2 x 10~*m®/s [177]], and a
trapping frequency @, = 27 x 20Hz for the large component.
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(Upp/2) [ dPrlo|* = Upp2™>/ 2s;3 , which is consistent with the first order perturbation theory in

the Appendix.

4.6 Atom loss

The phase between the two components of the spin cat state is flipped by losing just one atom (see
the Appendix for more details on the effects of atom loss). This means that 7. must be smaller than
the time to lose one atom 7;, which depends on the density and thus 7. In our scheme, the loss of
atoms in component A will not affect the cat states directly, so we focus on the loss of component

B only, which can be estimated by the following loss rate equation [69, 178, [179]:
dnjdt = -1, = (L + L+ L) (4.5)

where 7, = 1 /(4 + % + £3) is the approximate time to lose one atom through all possible loss
channels if n > 1. The loss rates ., correspond to the loss through m-body collisions involving
particles in component B, where .#; = Ln is due to collisions with the background gas, %> =
Y.jL2b; J pppj is due to spin exchange collisions, and .23 = Y ; ; L3 [ ppp;px is due to three-body
recombination [69]]. It is known that the two-particle loss can be eliminated by certain choices
of internal states and control methods such as applying a microwave field in [96], or a specific
magnetic field as in Ref. [159]. The latter example motivates our choice of parameters in Fig. {.2]

Fig. shows the time to lose one atom through different channels: 7, = (Lin)~! for one-
body loss and T3 ;5 = (L3 [ d°rpip;px) " for three-body loss with different combination of colli-

6n3, which

sions. It can be observed that the high @, regime is dominated by the loss of [ pg ~ Sy
corresponds to T3 pp,. For even larger values of @), than those shown in the figure, the three-body
loss time T3 ;5 becomes shorter than 7.. The small @), regime is dominated by the effect of 7.
See the Appendix for an approximate analytical treatment of atom loss. The desirable region for

experiments is 7. < Ty which also depends on 7i. Therefore, we can draw a 7i1-w), phase diagram,

which shows the achievable cat size as the shaded area in Fig. 4.2b.
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4.7 Detection scheme

We now discuss how the existence of the spin cat states can be demonstrated via optical readout,
see also Fig. 1(e) to 1(g). Our detection scheme is based on a revival argument and hence involves
measurements at different times [[163]] (See also the related experiment of Ref. [180]). In all cases
the readout process starts by reducing the trapping frequency adiabatically to its initial value. Then
the spin state |x()) is reconverted into a state of light |x(z)),, followed by homodyne detection
on the output light. Using optical homodyne tomography [162], we can reconstruct the Husimi
Q-function [47] Q(B,t) = = (B |p(¢)| B) with the density matrix p(t) = |x(t)), (x(¢)|. The Q-
function allows us to visualize the resulting spin states of BEC as a function of time.

Higher-order nonlinearities distort the cat state and shift the cat creation time from 7, for a pure
Kerr nonlinearity to a different observed value 7. Fig. 4.3(a) shows Q(B, 7;") for @, = 27 x 500Hz
including up to fourth-order nonlinear terms 7. Two peaks at r = 7" can be identified clearly. At
the revival time ¢ = 27/, a single peak is recovered, which proves the existence of spin cat states in
the BEC at 7", as described in Fig. {4.1[(g). Note that the definition of 7 used is the time at which the
Q-function shows the two highest peaks. In general, n3 < 0 and hence 7} > 7. for w, > ®, since
Y, is less localized than ¢y due to the repulsive self-interaction. For the weakly phase separated
regime (dgaapy S aib) used in Fig. the effective compression from component A on Y}, can
have the reverse effect. This gives 13 ~ 0 and thus nearly perfect cat states at @, ~ 27 x 400 Hz.
Further higher-order effects are shown in the Appendix.

In current experiments the light storage and retrieval process involves significant photon loss,
e.g. about 90% loss in Ref. [159]. Its main effect is to move the peaks towards the origin, see
Fig. 3b and Appendix. One important requirement for achieving high absorption and emission
efficiency is high optical depth. For the example of Fig. 4.2} the optical depth can be estimated as
d ~ NA?/(nR?) = 34 with N = 10°, wavelength A = 590nm and the BEC radius R = 18um. This
is in principle sufficient to achieve an overall efficiency close to 1 [[181].

Another important experimental imperfection is the fact that the total atom number N cannot
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Figure 4.3: (color online) Optical demonstration of the spin cat state in the presence of vari-
ous imperfections for the parameter values corresponding to the star in Fig. 2(b) (7 = 100 and
@y =27 x 500Hz). The spin state is reconverted into light and the Husimi phase space distribution
function Q(B) is determined via homodyne tomography. (a) Includes the effects of the higher-order
nonlinearities M3 and 14. Two far separated peaks corresponding to the cat state are clearly visible
at 7 = 0.68s, and one peak corresponding to the revived coherent state at 27;. The shift of the
cat creation time due to the higher-order terms is 7)/7. = 1.06. (b) Furthermore includes 90%
photon retrieval loss, which moves the peaks towards the origin, and 5% uncertainty in the total
atom number, which spreads the peaks in the angular direction.
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be precisely controlled from shot to shot. This leads to fluctuations in the nonlinear coefficients 7.
The most important negative effect of these fluctuations is dephasing, i.e. angular spreading of the
peaks in Fig. 3 in phase space [46]. The magnitude of the angular spread at the time 7, = 7/|21;|
of the cat state creation can be estimated as A@p = 2TI ANy ik 8117\? , where AN is the uncertainty in
N, as discussed in more detail in the Appendix. We find that the sensitivity of our scheme to atom
number fluctuations is minimized for @, ~ 27 x 600Hz. Fig. 3b shows that a 5% uncertainty in

N can be tolerated for @, = 27 x 500 Hz (even when occurring in combination with 90 % photon

loss).

4.8 Summary

Two key ingredients for the success of the present scheme are the use of a high trapping frequency
for the small component and the achievement of very low loss. The high trapping frequency
enhances the strength of the Kerr nonlinearity, making it possible to create cat states without relying
on a Feshbach resonance as proposed in Ref. [160]. This makes it possible to avoid the substantial
atom loss typically associated with these resonances [69], and also allows one to use the magnetic
field to eliminate two-body loss, which is critical. For example, the loss rates for the choice of
Rubidium internal states discussed in Ref. [179] would only allow cat sizes of order ten atoms,
see the Appendix. The high trapping frequency also helped us to suppress the unwanted effects
of higher-order nonlinearities and atom number fluctuations. If the readout efficiency could be
increased significantly, then the present scheme could also be used to create optical cat states.
Besides their fundamental interest, both spin cat states and optical cat states are attractive in the

context of quantum metrology [182]].

4.9 Appendix A: Properties of two-component BEC

The most important results in the main text and these Appendixes are based on numerical methods.

Therefore, the results can be considered exact within the domain of validity of the equations we
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Figure 4.4: Properties of spin states in the two-component BEC for the scheme with cat size
in = 100. (a) The width of component B becomes close to the width of a Gaussian as in Eq.
(4.9) around wj, ~ 27w50Hz (red dash curve). The deviation at high w, is because of self-repulsion
in component B. Also, in this weakly phase separated regime agqap, < aﬁb with equal trapping
@, = w, = 2120Hz, the component B is located outside of component A. The component B only
peaks at the center with @y, about 10% higher than @,. (b) Density p,(r = 0) and p,(r = 0) at the
center of the trap. Note that the density p,(0) becomes greater than p,(0) around @y, /27 ~ 250Hz
(see Fig. [4.5|for a spatial distribution). This suggests that most effects from the main BEC compo-
nent A, including its quantum depletion, should be relatively small beyond @ /27 > 250Hz. The
red dashed curve is the density of the Gaussian approximation Eq. (4.9) (c) The numerical results
for 1 show a good agreement with first order perturbation theory. (d) The numerical solution for
1> crosses zero around @), /27 ~ 55Hz, which causes the cat time 7. = 7/|21,| to diverge around
this point. The inset shows that the numerical results approach the simple scaling 1, ~ a)z/ ? at
large @j. (e) The third order term 73 also shows a zero-crossing point at around @y, /27 =~ 375Hz,
which is a good region to observe nearly perfect cat states with small 72. (f) The relative change of
the best real cat time 7 from 7, = 7/|21n;|. The region with 7' /7, > 1 is roughly @, /27 = 375Hz
depending on 71, which corresponds roughly to the region 13 < 0 in subfigure e, and vice versa.
Note that the fourth order term is included when determining 7}, see text for its definition and Fig.
The parameters used here are the same as in Fig. 2 in the main text: >Na with spin states
|A) =|F =1,m=0), |B) = |F =2,m = —2), scattering lengths a,, = 2.8nm, ap, = a,, = 3.4nm
[159], loss coefficients L} = 0.01/s, L, =0, L3 =2 x 10_42m6/s [1777], and a trapping frequency
@, = 271 X 20Hz for the large component.
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used, without relying on analytic approximations. The two-component BEC can be described by
the mean-field Gross-Pitaevskii equation (GPE) [172, 173, [10]. However, the typical analytical
treatment, the Thomas-Fermi approximation (TFA), [[183] which ignores the kinetic energy term,
is not reliable in our case. It is known that TFA cannot be used in the case of high density [175],

which is the case we are studying. Instead, we numerically solve the GPE:

0 " 2
i Yi= |5V +Vi+j_za,bUij(Ni—5ij)|llfj| Vi (4.6)

where 9;; is the Kronecker delta which cannot be ignored if ; is of order one; y; and N; are the sin-
gle mode wavefunction and the number of particles of the i-th BEC component respectively. The
normalization is [ dr|y;|> = 1 and the density is given by p(r) = N;|w;(r)|?. The trapping poten-
tial is V; = ma)l.zr2 /2, with trapping strength ®;, and the interaction strength is U;; = Amh’a; i/m,
with scattering length a;; between component i and j. Our target is to find the ground state energy
and wavefunction, which can be done by using the imaginary time method [174]. First, we use
a Wick rotation r+ — —it on Eq. (4.6) to obtain the corresponding diffusion equation, which is
then reduced to two coupled 1D non-linear diffusion equations with the assumption of spherical
symmetry. Finally, we let the system relax to the ground state with the fourth order Runge-Kutta

method in time and finite difference method in space. After finding the ground state wavefunction,

we can use it to calculate the mean-field energy functional:

E[Wa, Yp: Na; Ny = ) Ni/d3’” <%|V%|2+W|%|2+%(Ni— 1)U,~l-|1;/i|4) +NaNb/d3FUab|1lfa|2Wb|2
i=a,b @7

which depends on the spatial mode y; and the number of particles &;. Note that the spatial modes

v; depend implicitly on N; through Eq. (4.6). In our scheme, the focus is the ground state energy

E(N,n) as a function of N, = N —n and N, = n because the total number of particles N = N, + N

in the two-component BEC is fixed. After solving a set of BECs with different small component

in the range n € [0,200], we fit the results up to fourth order to get the expansion coefficients
1
FE(N,m) =n(N,n) = o(N) +m (N)n+m(N)n? +3(N)w* +ma(N)n' .. (4.8)
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Fig. [4.4] shows how the most relevant properties of the ground state of the two-component
BEC change with @j,. For the scheme described in the main text, the interesting regime is when
component B is located at the center of the trap. This can be achieved with a slightly higher
trapping for @y, in this weakly phase separated regime as described in Fig. 4.4 with cat size 7 = 100.
Note that in the case of equal trapping @, = ®p, the small component B will locate outside of
component A because of the effective repulsion in this regime. As shown in Fig. f.4p, the width
of py, is close to the width of a Gaussian at around ®j, /27 = 50Hz, while at higher ®,, the width is
larger than the corresponding Gaussian because of the self-repulsion with other atoms in the same
component B. The same effects can be observed for the real density p,(r = 0) at the center (Fig.
[.4b), which is lower than the corresponding Gaussian density with @,. When @, /271 >> 250Hz,
the component B has higher density than the main component A. This allows us to ignore most
effects of the component A, including the quantum depletion. Fig. [d.4c-e shows the expansion
coefficients 7M. Note that both 1, and 13 have zero-crossing points. With zero Kerr coefficient,
N> = 0, the system may be used to store spin states for a long time. Also, the zero third order,
N3 = 0, suggests a regime to create good small spin cat states. Fig. [4.4f shows the effects of the
third order term on the shift of the “best” cat time 7, see definition below.

Qualitatively, the change in 1, with respect to @, can be understood as follow. The contribu-
tions to the Kerr nonlinearity come from intra-species (aa, bb) and inter-species (ab) interactions,
which have opposite sign to each other. When the trapping is weak and identical for both compo-
nents, the Kerr nonlinearity is close to zero. Also, for the phase separated regime, the component
B is staying in the outer region. When the trapping frequency @) for the B component is increased,
the B component moves to the center and the overlap between A and B increases at first, which
leads to an increase in the inter-species interaction term, resulting in a larger and negative Kerr
nonlinearity. For very strong trapping of the B component, the overlap between A and B decreases
again whereas the intra-species interaction for the B component increases strongly, leading to a

large positive Kerr nonlinearity. This explains the crossover from negative to positive Kerr non-
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Figure 4.5: Numerical density distribution for both components (A and B) and its approximation
with cat size 7 = 100 and trapping strength @, /27w = 500Hz. p,o(r) and pyo(r) are the unperturbed
wavefunction used by the first order perturbation calculation. pyo(r) is another approximation. See
text for details. Other parameters used are the same as in Fig.

linearity as shown in Fig. S1d. In contrast, for the non-phase separated regime, the B component
always stays inside the A component, and there is no crossover as discussed in Section IV (see Fig.

S35).

4.10 Appendix B: Ground state energy from first order perturbation theory

The numerically obtained spatial density distribution p; is shown in Fig. The approximate
solution of a harmonic oscillator ground state p,o for B is good. If we follow a Thomas-Fermi
approach similar to the one used in the previous paper [160] by dropping the kinetic energy term
in Eq. (@.6), we will get puo = (Mg — Va — UapPpo)/Uaa- As expected, this approximation is not
good and gives a negative density as shown in Fig. .5] In contrast, the TFA solution for a single

component BEC p,o gives a fair approximation for A, given by [173}10]:

2/5
“aO(Na) -V 1 15a, 2/5
(Pa()(r;Na) = T arrr .ua()(Na) = _hwa <—> Na
\/ NaUgq 2 I/ (may) (4.9)

mp\3/4
Buole) = (o) e/ 0

3
h v Upo = Shoy

2
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Therefore we perform first order perturbation theory with the following splitting for the GPE:

.0 h?
ih=Va = (=5-V>+Va+ NoUaal §al* + NoUas| 95I) Vi (4.10)
t _ 2m L N————
[_};) Hal
. J hz 2 2 2
lh@‘lfb = (—%V + Vi + NaUsb|9a|™ + (Np = 1) Upp 9|7 W (4.11)
%O jﬁ)l

where .77} is the unperturbed Hamiltonian and the perturbation is given by .7#7;. Note that N, — 1 ~
N, is used. The solutions of .7}, are given by Eq. (4.9).
To calculate the energy analytically, we expand the ground state energy E (N,, N, ) as the Taylor

series:

oE _ 1 0 OE
(N;i—Nj)+ =

E(Na;Np) = E(NasNp) + ), 5 9N; ON;
i:a7b 8Nl (Na7Nb) 2 j:(l,bi:d7b aN] 8Nl (Na’Nb)

(Ni = Ni)(Nj = Nj) + (4.12)

Note that the chemical potentials (energy change with respect to the number of particles) are given
by Wi(Ng,Np) = %(Na,Nb). Since the main component A in the scheme is much larger than the

small component B, or N —n > n, the expansion can be carried out around the point (N,0) :

hno(N) = E(N,0) (4.13)

hnl(N) = _ua(N>0)+ub(N70) (414)
1

ma(N) = 3 [ON,Ha(N,0) — O, 1a(N,0) — Iy, (N, 0) + I, (N, 0)] (4.15)

Note that the u; here denote the exact chemical potentials from the GPE, which can be approxi-

mated by the unperturbed ;o plus the perturbed chemical potential Ap;:

Hi = Wio + AU, (4.16)

Using the unperturbed solutions Eq. (4.9), the chemical potential can be calculated as:

Atla = UapNy (9a0 ||960]*| a0) (4.17)
- & Uab . éUabwa
=N (Uaa Hao(Ng) 1 Uaawbhc%) (4.18)
Aty = UapNa (80 |10a0l*| #50) + Upp(Np — 1) (w0 | |0p0]*| #0) (4.19)
U, 3U,p0, _
— (U—ai‘ua()(Na) — Z UaZg})h&h) + Ubb<Nb — 1)(\/§Sb) 3 (4.20)
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where s; = /7h/(ma@;) is the characteristic length of a Gaussian. Note that the perturbation
involves an integration whose range is chosen to be the whole space for simplicity, which is justified
by the fact that component B is much narrower than component A when @, > @, (see Fig. [4.5)).

Substituting these results back into 1y in Eq. (#.14)), we have:

3 U 3U,m _
AN = — a0 (N) + 220y + ~22 1120 (N) — > 2L fiwy, — Uy (V253) 7 4.21)
2 Uaa 4 Uaawb
—— - - _
Heo Ay (N,0)

The third and fourth terms on the right hand side are the effective interaction between the main
BEC and the component B. The last term is the repulsion between the particles in component
B. The fourth term is small when @, > @, and can be ignored. This result gives a very good
approximation as demonstrated in Fig. #.4c.

Similarly, differentiating the chemical potential yields the second order term 1, in Eq. (4.15):

1| 2pa0N) (U, 3V, 1 20U N
Ay (N) = = 2 HaoN) D o(N) =222 g, ) — — 2 ab Haol )+Ub,,(\/§sb)—3 4.22)
215 N Usa 4 Uga @y N 50U, N 22
8Na Ha (N,O) aNh u:r(N70) 8Na [J;,r(N,O) aNb He (NO)

The first three derivatives are smaller than the last term when @, > @, and N — oo. Therefore, at

high @y, the last term dominates 1, (N), yielding

U, 12U W\ 3/2
I (N) ~ =22 (V2s) 7 = 2 (%) . (4.23)

As shown in Fig. 4.4p, Eq. (4.23) gives an order of magnitude estimation of 1(N). Note that we
can also get the dominant term as calculated above by assuming component A to have a constant
density distribution |y(r)|* = tao/(NaUsa), at @y >> @,. A better approximation should take into

account the change in density p, as shown in Fig. 4.5

4.11 Appendix C: Effects of higher-order nonlinearities

Cat states can be distorted by higher order nonlinearities. Thus we need to find out to what extent

the cat states are distorted and whether the distortion is tolerable. Another practical problem is to
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Figure 4.6: The maximum of the Q function, Qmax(f), as a function of the relative time #/7.
The “best” real cat time 7 is defined as the time in which there are the two highest peaks in
the Q-function. The leftmost peak corresponds to the initial coherent spin state (CSS), with a
value QOmax = 1/7. The peak at T /7, =~ 1.06 corresponds to the spin cat state (CAT). The time at
which the CAT state is observed is shifted with respect to the ideal case 7,/ /7. = 1 because of the
higher-order nonlinearities. The highest peak at 7 /7. &~ 2.12 corresponds to the CSS at the revival
time. Note that all fitting orders are included for determining 7;. The CAT state at 7 and CSS at
27 are plotted in Figs. 3a and 3b in the main text. The other parameters used are the same as in

Fig. 4.4

figure out the optimal time to observe a cat state in real experiments. We define the “best” cat time
7 as the time with the two highest peaks in Q function. This definition is based on the feature of
the cat states that two separated peaks in the Q function should be distinguished clearly.

This method is illustrated by Fig. 4.6] with the highest peak value Q4 plotted over time. It is
clear that the peak for the cat state is located near 7 /7. = 1 as expected. In practice, we search
around the nearby region, say 7 /1. € [0.8, 1.6], for the highest peak. The resulting 7, corresponds
to the best cat time. We further manually check that there are indeed only two opposite peaks in
phase space. The resulting shift in the cat time is plotted in Fig. 4#.4d. Note that the 7 depends on
i1, see also Fig. 4.4F.

In the scheme, the output light is of the form |x(r)); = ¥, cpe MWV ), with the initial
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Figure 4.7: Plot of Q(B, 1) for different cat sizes 71. (a) i = 9. The third order nonlinearity 13 is
weak, so the Q function looks like a perfect circle. (b) 7 = 49. The effects of 13 begin to appear
and the cat state is distorted slightly. (c) 7 = 400. Both 13 and 74 are significant. The two peaks are
distorted and not symmetric. Note that T is not quite well defined in this case. The case 77 = 100
is plotted in Fig. 3a in the main text with w, = 2w500Hz and 7, = 0.646s. The other parameters
used are the same as in Fig.

condition |x(0)), = |a), and o = v/7i. Hence, the Q-function without loss is

Z ((as)n eas) efineefin(N,n)t

~ n!

2

0(s,0.1) = %ewsf (4.24)

where the phase space is defined by B = se’®. This equation is numerically evaluated to obtain the
Q-function for given 1y, which are obtained by fitting the solutions of the GPE Eq. (4.6). A few
more figures corresponding to Fig. 3a in main text are plotted in Fig. for different cat sizes 7.

One can see that the higher order effects (k > 3) are weak for small 77, but significant for larger 7.

4.12 Appendix D: Phase separated regime and non-phase separated regime

The scheme should also work in the non-phase separated regime “51; < agqapp. Fig. shows
the coefficients 1y, M3, M4 for different values of the inter-species scattering length a,;,, with
agq = 2.8nm and ap, = 3.4nm. The plots suggest that the Kerr effect is also strong in the non-
phase separated regime, but the higher order terms might limit the resulting cat size 7i. The main
qualitative difference is that there are no zero-crossing points for 1 in the non-phase separated
regime. These results further suggest that the weakly phase separated regime is advantageous

because the higher-order terms are very small around @, /27 ~ 400Hz.
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Figure 4.8: Effects of the cross-scattering length a,;, on (a) 17, (b) 13, (¢) N4, with a,, = 2.8nm
and app, = 3.4nm (q;; is the self-scattering length of component i). Both a,;, = 0 and a,;, = 2.5nm
are in the non-phase separated regime agb < Quqapp, While a,p = 3.4nm and a,, = 4.0nm are in
the phase separated regime agb > agqapp. When agp, 1s turned on gradually, the magnitude of
all nonlinear coefficients 7, decreases at first because the effective scattering length for the two
components decreases. All coefficients show a qualitative change, with a zero-crossing point in the
phase separated regime. Compared with the non-phase separated regime, say, a,;, = 0, the phase
separated regime can have a relatively weak higher-order effect even for high trapping frequencies,
e.g. the small 13 at @, /27w = 500Hz which is used in Fig. 3 of the main text. Note that the y axis
is rescaled by factors of 100 from left to right for easy comparison. The parameters used are the
same as in Fig. .4] except agp.

4.13 Appendix E: Atom loss rates

The atom loss rate for component i is given by [69, 178, 179]:

dN; _
dtl = _Ti’gl =— LLi/dS”pi‘f’ Z L27ij/d3rpipj+ Z Z L3,ijk/d3rpipjpk (4.25)

Jj=ab j=a,bk=a,b

where Ly ;, L, ;j, L3 ; jx are the one, two and three particle collision loss rates. Note that the density
p: = N;|w;|? in the equation also depends on the numbers of particles N; which decrease over time.
As discussed in the main text, the individual times to lose one particle through an m-body process
with particle combination ¢ are defined as 71 ; = (Ll’ifd3rp,-)_1, T.ij = (Laj fd3rp,-pj))_1 and

T3,ijk = (L3 jjk fd3rp,~pjpk)’1, where L3 ; = L1 and L3 ; jx = L3 are used as an approximation. These
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Figure 4.9: Cat time 7, and one-atom loss time 7, for Rubidium with 77 =10, N = 10° and non-zero
two-body loss rate L; ;;. It is clear that the time to lose one atom through the two-body loss within

the same component, 7, ;,, dominates at high @,, which has a similar scaling as the cat time

T~ a)b_ 3/ 2. This limits the maximum 7 to around 10 atoms. Parameters: Rubidium atoms 8’Rb

with scattering length a,, = 100.44rp, ap, = 95.47rp, a,, = 88.28rp, where rp is the Bohr radius.
The atom loss rates are Ly = 0.01/s, L 4 = 0, Ly p, = 119 x 102 s, Ly ap =78 X 10~2'm?/s,
L3 = 6 x 10~**m%/s [179], and ®, /27 = 20Hz.
time scales can be evaluated using numerical integration for the ground state density distribution
obtained from solving Eq. (#.6). Here, we further show the results for Rubidium atoms with non-
zero two-body loss rate in Fig. 4.9 The loss due to two-body effects is significantly larger than
that due to three-body effects in this case, which limits the maximum cat size to 7 = 10 atoms, as
compared to a few hundred atoms for the sodium example used in the main text. Note that this
is only one possible choice of states for Rubidium. Large cats may still be possible if appropriate
internal states and other conditions can be found such that two-body loss is suppressed.

For cat state creation, the maximum loss of atoms in the component B cannot be larger than

one atom. Therefore, we are trying to give a conservative estimation. Since |y, (7)|> < |wa0(0)|? =

Ua/(NaUgq) in the TFA, we can use the maximum |y,0(0)| for the main BEC, and the Gaussian
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Figure 4.10: Comparison of the numerical and approximation results for all loss processes corre-
sponding to Fig. 2a in the main text. The solid curves show the numerical solutions of the time to
lose one atom 7, . through an m-body process with particle combination ¢, while the approxima-
tions are shown as dotted or dashed curves with the same color. The time to lose one atom through
all processes is calculated by 7, = (‘L'l_ ; + 13, bl wa ™t T, lib o T, ;bb)_l. Note that the approximations
here are essentially lower bounds for the numerical solutions, as shown in this figure. See text for

details.

®po(r) for component B in Eq. (4.9):

= n

Q

/Papbd37’ ~ <
/pgd3r ~~
/PaP§d3r ~ (

/pgpbd3r ~ (

Ha0
Usa

Hao
Uaa

Ha0
Uaa

)n-

/d3r|¢b0|6n3 = 373/25, 63

/013’”|<sz0|4 2= (V2sy)

152/571:1/5 N2/5
3 az/sséz/sn

152/571/5  N2/5
>/d3r|¢b0\4 2= j 3/5 12/5 3
> 2 154/5702/5  N4/S
n= n
6/5 24
64 aaéSSQ /5

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

The estimations for three body loss are shown in Fig. which suggests they are good lower
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bounds for 73 and the time to lose one atom through all loss channels 7, = (”L’f l} + 13, l}aa +
T, ilb a1 T, gbb)_l. The estimation is better at small @, since the density of component A is not

repelled away so that the approximation |y (0)|? = |W,0(0)|? is good.

4.14 Appendix F: Readout loss

The readout loss from spin states to light is treated using the beam splitter model with a given

loss rate t2.

The state passing through the beam splitter is |Xou); = Yi_oBnk |n —k,k); with
B = " *t*n!/(k!(n —k)!), so the reduced density matrix p’ is
mm m, Vl
p'= Tra(p) = Z (1| Wour) 1. (Wour|1) Z Z BuBycn(t)Cr (1) In— k) (m — k| (4.32)
i

Hence, the resulting Q function with loss Qy,(s, 0,¢) and initial coherent state |a);, can be written

as:

1 ey N ) (WS)" “(bos)™ ™ 2 iatas) | —itnm)0 —i(n(n)—n(m))
Qloss(s797t)_7re Z( Z k)(m—k) e e e

m,n

(4.33)
The term inside the big bracket is the bivariate Poisson distribution so this summation is upper
bounded by 1. Therefore the resulting Q;,s(B) is confined to the annulus |s — tee| ~ 1. Hence, the
effect of photon loss is to move the peak of the Q-function toward the origin, as shown in Fig. 3c
and 3d in the main text. This form of the Q-function can be evaluated fairly efficiently with time
complexity of order &'(7 i/ 2), which allows us to evaluate it for cat sizes of order a few hundred

atoms.

4.15 Appendix G: Allowable uncertainty in atom number

Since all M;(N) depend on the total atom number N, the statistical fluctuations in N can cause
dephasing (equivalent to angular spreading in phase space for the Q-function studied here), which

can wash out all observable features of cat states (consider for example the N-dependent rotation
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Figure 4.11:  Allowable range of atom number uncertainty with N = 10° and 7 = 100. (a) 1
is basically constant over a large range of w,. (b) 1} decreases with @y. (c) Total dephasing
A@ = ¢'AN, where ¢' = (n/21m,) (X k" ~'n]) includes up to fourth order terms from the GPE.
A@ needs to be smaller than 1 to have two distinguishable peaks of cat states, see Fig 3¢ and 3d
in main text for the Q-function for the case of Ap = 0.5 at @,/27w = 500Hz. (d) The gray region
indicates the allowable uncertainty in atom number AN /N. It shows that the uncertainty in N can
be very large around @, /27 = 600, and about 10% for high ®,. The other parameters used are the
same as in Fig. .4
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e~ M) caused by 1;(N)). The dephasing is small if the derivatives of the coefficients with
respect to N, 1{(N) = dymMi(N), are small. These quantities are plotted in Fig. and [4.11p.
Note that the constancy of 1 in Fig. ) can be understood from Eq. because 1] =
(Uap/Uaa — 1)1, is independent of @,. Also, the dephasing is linear in time, hence, a short cat
time 7. can significantly reduce the dephasing effects. Moreover the rotation generated by 1n;(N)
can be canceled by the opposite rotation generated by 1, (N), as we derive below.

First considering the expansion of n = 71 + An around 7 the relevant terms become

M (N)n+no(N)n* = (it + o) + (M1 + 20271) An + moAn® (4.34)

On the right hand side, the first term gives a global phase which can be neglected. The second term
leads to a rotation in phase space. Writing N = N + AN and expanding the coefficients around N

one has

Mk(N) = Me(N) +ni(N)AN (4.35)

where 1, (N) = dvMi(N). Note that Ang(N) = 1, (N)AN is the fluctuation in 7 due to the un-
certainty AN. Substituting these back into the second term in Eq. (4.34) yields the dephasing
term (1]AN + 2in5AN) An. This dephasing term is the source of a AN dependent rotation in the
B-plane, which is eliminated when the condition 1{ (N) +2iin}(N) = 0 is satisfied, see Fig. #.11k.
In particular, we want to find out the maximum allowable AN that still preserves an observable
spin cat state at the cat time 7. Therefore, we define Ap = ¢'AN = 1.(n| + 2in5)AN, and the

condition |A@| < 1 should be satisfied, or

1
AN S o (4.36)
The higher order terms 7 can also be included, yielding
ki~ (4.37)
2712 Z

Numerically, we find 1, (N) by taking the numerical derivative of 1;(N). The results in Fig. (4.11d

show that there is a large range of allowable uncertainty in atom number AN if ), is high enough.
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Figure 4.12: Q function of continuous atom loss for the standard Kerr effect with Hamiltonian
A = hmah?. (left column) At cat time t = 7. = 7/|215|, (right column) At revival time 7 = 27,..
Mean photon number 77 = 100 and 5000 samples.

Note that this range is an estimation since only the first order approximation of An = 1, (N)AN is
used. In contrast, the accuracy requirement AN /N at low trapping @, is even higher than the high

resolution of counting cold atoms of 1 in 1200 in a recent experiment [[184].

4.16 Appendix H: Atom loss

The continuous loss of atoms from the BEC can be described by the master equation:
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Figure 4.13: Q function of continuous atom loss for 7; calculated from GPE for the parameters
given in Fig. 2b in the main text (7 = 100, @, = 27500). (a) t = 7} = 1.067, = 0.68s, L; = 0.01/s
corresponding to about 0.68 atom loss, (b) t = 27, about 1.34 atom loss. No other effect is
included. 5000 samples.

s _Liyp oot _Latpo L atp
p=—71.pl+ Y (RipR; — SRiRip — S PR} R) (4.38)

[S—

1

where p is the density operator, A is the Hamiltonian of the system, R is the Lindblad operator
for the loss channel in question, and the summation is over the different loss channels. In the main
text, the 2-body loss is assumed to be zero and 3-body loss is much lower than the 1-body loss (see
Fig. 3) in the regime considered. Therefore, only 1-body loss will be considered below to simplify
the calculation. The loss atoms from the large component causes a change in N. The resulting
effects are similar to the fluctuations in N considered in the previous section. Here we therefore
focus on the small component. In this case one can effectively describe the system by the density
operator p = |x(¢)){(x(¢)|, with the initial state |x(r = 0)) = |&) = Y. c,|n). Only one Lindblad

operator R = /L4 is needed. The simplified master equation is:
I aoat _ Lata 1 i
p= —ﬁ[%ﬂ,p] +Li(apa" — d'ap —5pa a) (4.39)

with the Hamiltonian given by Eq. (4.8)). The method used to simulate the system is the Quantum

Jump Method [185, 186]]. The results are shown in Fig. For the standard Kerr effect without
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higher-order terms, it can be observed that the creation of spin cat state still results in two clear
peaks in the Q-function even when 2.5 atoms are lost on average. In fact, the cat state is still
visible even for an average loss of 5 atoms. However, for the detection scheme, the system is
required to evolve for 27,, which limits the loss rate to L; 7, < 0.025 as shown in the figure. For
the parameters used in Fig. 2b in the main text (including higher-order nonlinearities), the average
number of atoms lost is only 0.68 and the effect of the loss is small, see Fig. [4.13] The main effect

of the loss is a fairly uniform background ring in the Q function.

4.17 Appendix I: Comparison with photon-photon gate proposal

Ref. [160] utilizes a similar collision induced cross-Kerr nonlinearity in BEC to implement photon-
photon gates, while the current scheme uses a self-Kerr nonlinearity to create spin cat states. The
Kerr effect in the previous scheme is enhanced by increasing both scattering length (through a
Feshbach resonance) and the trapping frequency for both components. However, the Feshbach
resonance induced atom loss can be very large [69], which will limit the maximum cat size. Not
relying on a Feshbach resonance also makes it possible to use the magnetic field to further eliminate
atom loss. Also, both trapping frequencies should not be increased at the same time because it will
result in high atom loss through the collision with the main BEC. Instead, we suggest here to
increase only the trapping frequency of small component. This results in a similarly strong Kerr
effect, but with lower atom loss.

Moreover, the treatment in the previous paper, which used the quantized mean-field GPE with
TFA and first order perturbation theory, does not allow the study of higher order nonlinearities or
atom number fluctuations. Our present approach allows us to study both of these effects, and we
show that they can be significant. The assumption of equal trapping frequencies also limits the
previous treatment to the non-phase separated regime, which limits the choice of regimes with low
atom loss, such as the sodium atom example used here. Furthermore, the density of the stored

component in the previous scheme is much smaller (about four orders of magnitude) than the main
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component. This raises the concern of other possible dominant effects on the same scale, such
as quantum depletion [176]. As we have shown, these problem can be minimized in the current
scheme by using a high enough @, so that the small component is located at the center with high
density. Note that Eq. (4.23), which is obtained as a limiting case for high @), here, is basically

equivalent to the results of the treatment in Ref. [160].
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Chapter 5

Matter-wave mediated hopping in ultracold atoms: Chimera

patterns in conservative systems

5.1 Preface

Physical systems can often be well described by instantaneous nonlocal theories, such as gravita-
tional and Coulomb interactions, when the dynamics of the mediating field is orders of magnitude
faster. Based on the same principle, here, I propose a new mediating mechanism that can achieve
nonlocal spatial hopping for particles in systems with two inter-convertible states and very differ-
ent time scales. Adiabatically eliminating the fast component results in an effective hopping model
with independently adjustable nonlinearity, hopping strength and range. I show that the model can
be implemented in Bose-Einstein Condensates mediated by matter waves with current technology.
The results further show that the nonlocal hopping can result in non-trivial dynamical patterns
known as chimera states, characterized by coexisting regions of phase coherence and incoherence.
My analysis shows that chimera patterns can be observed in Bose-Einstein Condensates includ-
ing the mean-field limit, hence, presenting the first known evidence of conservative Hamiltonian
systems exhibiting chimera patterns.

This whole chapter contains my original work. I was attempting to find an analogue mecha-
nism of diffusive coupling in BECs, as well as the existence of chimera patterns in BECs. With
encouragement and guidance from both Prof. Simon and Prof. Davidsen, I was able to find the

answers to the question.
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5.2 Introduction

Locality is one of the basic principles of physics, which constrains the finite speed propagation of
all perturbations and information. Despite this fact, a wide range of physical systems can be accu-
rately and conveniently described by the instantaneous nonlocal coupling such as magnetic dipole
interaction [187]], Rydberg excitation [188]], cavity-mediated coupling [71]], and recent proposal for
tunable long-range interaction [189, [190] mediated by light. The picture of particle-field-particle
interaction can be reduced to an effective nonlocal particle-particle description when the mediating
field has a much faster time scale such that the state, motion, and separation of the particles can be
treated as constant.

Here, I introduce a new mediating mechanism to achieve the nonlocal spatial hopping, in
which particles can jump not only to its nearest neighbor sites, such as Bose-Hubbard model
[104, 190, [191]], but much further away directly. This is possible if the particles can be converted
into a mediating channel experiencing no energy barrier between the neighboring sites as shown
Fig. [5.1p. Mathematically, the channel can be eliminated adiabatically, resulting in the nonlocal
hopping model (NLHM) with independently adjustable on-site interaction, hopping strength, and
hopping range. The mechanism is inspired by the diffusive coupling [6], but all physical process
are required to be coherent. As far as we know, the mechanism and realization are not yet known.

The new length scale of hopping radius, as we show, can result in a non-trivial dynamical
pattern with the phase coherent and incoherent region coexisting in the same state, generally known
as chimera states [, [126]. This pattern can appear in laser arrays, chemical reactions, mechanical,
electronic, and neural networks. It is the result of the interplay between nonlinearity and nonlocal
couplings, with nonlocal Kuramoto model as the representative model. Only few chimera patterns
have been observed in experiments only recently [23, 21, 24], and they are less physical relevant.
Though the Hamiltonian of Kuramoto model is known recently [[192], no Hamiltonian showing
chimera patterns are known. Here, we show three such Hamiltonians exhibiting chimera patterns.

In particular, we show the existence of chimera core pattern composing incoherent cores near
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Figure 5.1: Illustration of nonlocal hopping. (a) Two-components model. Particles in traps are
confined so there are no spatial dynamics. Localized particles can be converted into the mediating
channel that can propagate freely. It is eventually converted back to the nearby sites. (b) Effective
model. If the time scale of the mediating state is much faster than trapped state, the mediating
component can be eliminated adiabatically and the hopping can be considered to be instantaneous
and nonlocal with range R. (c) Periodic lattice with spacing d and depth V. Trapped bosonic
particles can be described by the ground state wavefunction with width ¢ and energy & (with
energy gap & — €1). The hopping strength P and the hopping radius R can be controlled by the
Rabi frequency Q and detuning A = A — €.

Y

the spatial phase singularity in the coherent background [/, [18, 8], and properties unique to the
Hamiltonian system.

The physically realizable implementation we propose is based on the two components inter-
convertible Bose-Einstein Condensate (BEC) [9] in a spin-dependent trap [[193]], which is inspired
by Ref. [104] of the Bose-Hubbard model in cold atoms. In this setup, the atomic hopping process
is mediated by the matter wave itself in a way that the trapped component is isolated, while the
untrapped component is treated as the mediating channel, as illustrated in Fig. This spatial
hopping is originated from the spreading in Schrodinger equation. Implementation in BECs has the

advantage of studying both quantum and classical regimes, and high controllability of almost all
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parameters to a certain degree [85) 164]. For example, loss is important issue for general quantum
system [12] and limits the lifetime of system which turns out to limit the hopping range as we
show. It may be reduced by lowering the density and Feshbach resonance [69] which can change
both the nonlinear interaction and loss. We conclude that nonlocal hopping exists, and chimera

patterns may be observed within certain parameter regimes.

5.3 Nonlocal hopping
The Hamiltonian of the NLHM is
U 4 *
H =U+P = EZ]a,] —PZGijaiaj 5.1
i i,j

where a; = \/n_ieiei is a complex number representing the state of site i with the number of particle
n = ]a,-|2 and the phase 6;. 7% is the nonlinear energy with the on-site nonlinear interaction U,
and & is the hopping energy with the hopping strength P. G;; is the hopping kernel describing the
hopping from site r; to r;, with G;; = G j; and normalization }_; G;; = 1. In typical physical systems,
Gi; decreases as the distance |r; —r;| increases and may be characteristic by a hopping range R.
For sufficiently small R, the hopping effectively becomes nearest neighbor. This Hamiltonian
can also be expressed in the canonical coordinate and momentum {g;, p;}, as well as action and
angle variable {n;, 6;} (see Appendix). The later one should be more suitable for the study of phase
dynamics. Note that hopping is quadratic a;a; in the Hamiltonian which is different from the usual
quartic term of the particle-particle interaction n;n; for, say, Coulomb interaction. Therefore, the
corresponding dynamical equation contains the lowest order on-site nonlinearity and the nonlocal
linear term:

ihdl’ = U|a,~|2al~ - PZ Gijaj (52)
J

The nearest-neighbor variation of this equation is the discrete Gross-Pitaevskii equation [194] and

the non-spatial variation is the discrete self-trapping equation [[195]].

106



Table 5.1: Hopping kernel Gp(r) (to be normalized) with » = |r; —r;| in D dimension. Kj is the

modified Bessel function of the second kind.
D 1 2 3

Gp(r) e /R Ko(r/R) %e_r/R

5.4 Mediating mechanism

The simplest model captured the concepts of mediating channel in Fig. takes the following

form:

ihy (r,r) = Uly [y +hQu, (5.3)

ihjn(r,t) = —hkViy, +hQy +hAy, (5.4)

for the localized y; and mediating Y, component respectively. Eq. describes a localized
component with nonlinear interaction U and Rabi frequency Q for Rabi oscillation, which is a
coherent conversion that conserves the particle numbers. Eq. describes the mediating channel
with inverse mass kK = /i/(2m) and detuning A from the localized component. It is essentially
the Schrdinger equation with a coherent conversion, so the spatial propagation is originated from
the kinetic energy term. The additional detuning in the far-detuned regime |A| > |Q| ensures
the mediating idea is well-defined: Number of particles Ny = [ dr|y;|* in the mediating channel
N, < Nj = N can be neglected.

Suppose 1 evolves much slower than y,, then the adiabatic elimination can be used by set-
ting y» = 0 [196]. The solution of —xV?y» + Qi + Ay, = 0 in the unbounded isotropic space
with translation invariant [6] is given by the convolution y;(r,7) = —(Q/A)Gp(r) * y; (r,t) where
Gp(r) is the hopping kernels listed in Table with hopping radius R = \/m Note that A > 0
is required for the confined hopping kernels solution (see mediating state in Fig. [5.Tj, while A < 0
leads to a wave-like solution). Substituting this solution back to Eq. (5.3), we can get the contin-

uum NLHM where the summation is replaced by integral with hopping strength P = Q2 /A.
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5.5 Implementation in ultracold atomic systems

The kinetic energy term in Eq. (5.3]) cannot be ignored typically because coherent inter-convertible
particles usually have the same mass m. Instead, the effective mass can be increased by using a
periodic lattice. This can be done in ultracold atomic systems where the particles are forced to be

localized with a sufficiently deep trap, described by:

iy (r,1) = (=AY +Vi+gu|yil®) yi +1Qy, (5.5)

i (r,t) = (—hkVZ+1hAr) ya +hQuy, (5.6)

for the localized y; and mediating ¥, component respectively, where g;; (i, j = 1,2) are the two
particles collision constant. Here, we assume gy = g12 = 0. V; is the spin-dependent potential
(193], with V; periodic and V, = 0. Even though it is similar to Eq. (5.18)) with the extra kinetic
and potential energy term, solving it is not straightforward because adiabatic elimination fails to
work in the general form of Eq. (5.I8). It is because the high energy level €~ is not evolving
slowly comparing with the mediating component, and large A = A, — € can resonate with high
energy level. This can be solved by confining the system to the local ground state € and suitable

detuning & — & > A > |Q| as shown in Fig. lc. Under these constraints, we can show that Eq.

(5.18)) and (5.19) reduce to the exact form of Eq. (5.2) with P = hQ? /A, hopping kernel Gp(r) in

Table[5.1] and 5
d\? /x
R=Cp (ﬂ) y (5.7)

where Cp is a constant (see Appendix for the proof). Since the effective conversion region has a
characteristic length scale 2/ in a lattice units with length d, so scaling with 2¢/d is expected when
d > 2(. Indeed, we have the effective scaling A — A,rr = (2¢/d)PA. In this picture, a; is the
state variable of the localized wavepacket at site i. Hence, the kernel G;; describes the matter-wave
mediated hopping by annihilating a wavepacket at site j and creating a wavepacket at site i.

By further assuming the trapping potential to be sinusoidal V| (x) = V¥ sin? (kx) with wave-

length A, wavenumber k = 27 /A, lattice spacing d = A /2 and trap depth Vj. For sufficiently large
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Figure 5.2: Chimera patterns in Hamiltonian system of NLHM. (a) Initial phase distribution with
uniform density. (b) Phase 6;(t = 100) over the 2D lattice. (c) Number of particle n; = |a;|?
corresponds to (b). (d) Local phase space trajectory for x = —100 (blue) and x = —4 (red) at the
cut y = 0. (e) Average hopping (|4;|) and average angular (6;) over time at the cut y=0. Hopping
strength P/Ung = 0.4 with hopping radius R = 16d after time Ungpt = 100.

Vo, the local ground states around trap minima can be approximated by a Gaussian @g(xs) =
e/ (215) [Vl with {5 = \/7h/(m@s). In this setting, the nonlinearity is enhanced by the den-
sity as U = g11/Verr with effective volume V, rr = 23/ 2£x€yﬁz, and numerical fitting gives Cp ~ 1

(see Appendix).

5.6 Dynamics and chimera patterns

Here, we focus on the regime with simultaneous weak hopping P < Ung and long hopping range
R > d, where ny is the average number of particles per site. This introduces a new length scale R to
system which may show different dynamics [[7,6]. Starting from the initial condition (IC) of spiral
phase as shown in Fig. [5.2a with uniform n; = ng (see Appendix), the system evolves according

to Eq. (5.1)) into a state with phase incoherent near the center but coherent far away as shown in
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Fig. [5.2b and [5.2c (see Appendix). The same pattern also exist with different IC such as a vortex
with random phase near center (see Appendix). Also, when the hopping changes to the nearest
neighbor, this localized disturbance quickly spreads and interferes with each other (see Appendix).
It suggests the random core is a stable localized pattern. Moreover, the dynamics near the core are
significantly different from the coherent background which is clear in Fig. of the local phase
space trajectories (more in Appendix). a; is regular at the point far from the core, but is irregular
near the core. Furthermore, the system is also scale invariant with a given R/L and the random core
scales linear as R [134] (see Appendix). These results are similar to what is known about chimera
cores, which exists in system with on-site nonlinearity for self-sustaining oscillators and diffusive
coupling through nonlocal linear term [4, [7, |6, 134} 5]]. In contrast, the mean angular frequency
(6;) of undamped oscillators here are not regular, see . On the other hand, the hopping term
hi=Y, jGijaj is expected to have h; ~ 0 near the center because of the randomness. Moreover, A;
is smooth for the spiral initial condition.

As a conservative Hamiltonian system, NLHM describes a closed system with both energy and
the particle number N =Y ; n; conserved, and display chimera properties. Also, the system has time
reversal symmetry. These lead to persistent fluctuations or ripples as observed in[5.2) which would
damp away in dissipative system quickly. In addition, the results of the backward time evolution
of the core region is very delicate. With a small perturbation, the background can evolve back to
nearly the same states at t = 0, but the core remain incoherent, which again signify the difference
between two regions (see Appendix) In a realistic system, nonlinear loss can appear in a system
which can be modeled by U — U — iUj,s. As the simulation results suggest, chimera patterns can

still be observed even with Uy, /U = 0.02 at Ungt = 100.

5.7 Experimental settings

There are certain criteria that need to be satisfied by experiments in order to have a system de-

scribed by NLHM. To summarize, these include the far detuning regime A > Q for the small
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Figure 5.3: Chimera patterns in BEC. (a) Hopping radius R vs detuning A for 8’ Rb with hyperfine
states |F = 1,mp = —1), |F = 1,mp = 0), optical lattice with s = 40 and A = 790nm which gives
d = 395nm and ¢, =/, = 0.22d. (b) Number of atoms in both components starting with an initial
spiral (see Appendix). (c-f) State at t = 200ms. (c) Phase and (d) density of localized component.
(e) Phase and (f) density of mediating component. Loss is not included in the simulation and
the lifetime is 7 = 1.4s. Other parameters are n;(t = 0) = 10, A = 27 x 64Hz, Q = 27 X 16Hz,
g11/h = 50um’ls, £, = 50¢,, with predicted Ung/h =~ 27 x 24Hz, P = 27 x 16Hz and R ~ 5d.
No-flux condition.

111



number of particles in y», and A < & — £ to prevent excitation. A good adiabatic elimination
needs a slow varying time scale for the localized component #A >> Uny, P assuming all n; ~ ng. In
addition, R > d for the hopping to be considered nonlocal. All of Q,A,U can be adjusted easily in

experiments, so does P. Also, theoretically, R ~ A1/2

can be arbitrary large by having particles
staying in the mediating channel for long time. Therefore, the actual upper bound of R is set by
the experimental lifetime 7 and duration. Considering sufficiently deep optical dipole lattice with
s = 40 (expressing Vy = sEg in recoil energy Eg = fikk?) so that the direct hopping can be ignored
[104]], the range of mediated hopping radius R for Rubidium is shown in Fig. [5.3a. Note that the
lower bound of R is determined by the energy gap A < @ = 27 x 46kHz.

The regime with competitive P ~ Uny is the most interesting. However, a BEC in 3D optical
lattice is naturally in the very strong nonlinearity regime Ung > P, which is U /h = 27 x 2.23kHz
with g1 = 4xh’ay, /m and natural s-wave scattering length a;;. It can be reduced by the use of
both low density and Feshbach resonance, which can be adjusted by many orders of magnitude of
a1 in experiments [69]. The former method is preferable to be used before the latter one because
it can decrease both nonlinearity and two-particles collision loss at the same time. For a given
A, decreasing density cannot be done in 3D optical lattices. However, in a lower dimension, the
non-lattice dimension (z-axis in our setting) can be weakly trapped to reduce the density, resulting
in a lattice of cigarette shape wavefunction [92,197]. The dominant loss is the two-particle loss in
the localized component which gives an estimated Uj,gs = 1L11/Vesr and Tjo5s = Verr/L11 With a
Ly two-particles loss rate (see Appendix) [[12]], so increasing ¢, can improve lifetime 7,5 ~ ¢, in
2D.

The derivation of effective models implies that chimera patterns can also be observed in certain
parameter regimes for NLHM and the Egs. and (see Appendix). The problem is if
such parameter regimes can be achieved experimentally. One such experimentally feasible regime
has been identified as shown in Fig. [5.3] Nonlocal hopping induced chimera patterns can be

observed, which are the results of full simulation of realistic Egs. (5.18)-(5.19). With 10 atoms on
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average, each site can be well described by amplitude and phase. The initial state can be prepared
from a uniform BEC, with V; adiabatically turned on until the direct hopping is suppressed and
taken over by mediated hopping. A short light pulse induced energy shift can then be used to
create any desire initial phase, which is a spiral for Fig. [5.3] The system states and dynamics can
be detected by standard time of flight technique [78], matter wave interference [198] or optical
readout. As it is clear from simulations that random cores appear eventually. Similar patterns still
exist even when the experimental time is longer than the lifetime, suggesting that chimera patterns

should be observable in BEC.

5.8 Discussion and outlook

In brief, a new mediating mechanism of nonlocal spatial hopping is introduced, and the realization
details in BEC with the current technology is given. All calculations are based on classical Hamil-
tonians. Since all the physical mechanism chosen are coherent, and conserve energy and particles,
so the mediated hopping can happen in the quantum regime. Mathematically, all Hamiltonians
and dynamic equations can be quantized, and Eq. (5.1I) becomes Bose-Hubbard model with medi-
ated hopping. At the single particle level, the loss problem is less important so the hopping range
can be even larger and even global hopping when system size is less than R. Chimera patterns in
open quantum system have been studied recently [199]], and our results suggest the possibility that
chimera patterns may even exist in closed quantum systems, which requires a better understand-
ing of quantum synchronization [[124} 200} [125]. Nonetheless, the correctness of our mean-field
prediction of chimera patterns in ultracold atoms can be justified by the existence of slight loss,
which causes the system to follow the classical trajectory [43]. The experimental technique can
generalize the Bose-Hubbard model with tunable hopping from nearest-neighbor to infinite-range,
which opens the door for the exploration of the new exotic condensed matter states similar to other
long range effects [201]. We hope that the work here motivates further studies on the nonlocal

hopping both experimentally and theoretically.
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5.9 Appendix A: Hamiltonians

The Hamiltonian of the nonlocal hopping model (NLHM) is

U .
H:EZ\aiﬁ—PZGﬁaiaj (58)
L

1
which can be represented in few different canonical variables under different transformations (see

[192} 202]]). We can define the canonical coordinates and momenta to be ¢g; and p;:

ai = %(Qi +ipi) (5.9)
a = %(%‘ —ip;) (5.10)

Hence, in the canonical coordinate and momentum {g;, p;} system:
"= %Z(qiz_*—piz)z_%PZGi7J(‘]iQ.i+Pin) (5.11)

1 lv]

Similarly, we can define action n; and angle 6; such that a; = | /n;e'%, or

1
W= ) 1
0, = tan"!(pi/q;) (5.13)

Hence, in the action-angle {n;, 6;} coordinate system:
Uv 2
H= 52'%' —PY G, j\/mirjcos(6; — 6) (5.14)
i i

Note that action ny can be interpret as the number of particles. The conservation of the total number
of particles can be expressed as the constancy of the quantities ¥; |a;|?, ¥; (ql2 + plz) and Y ;n;. The
energy is conserved as there are no explicit time dependence. Lastly, the global phase is irrelevant
here, so the Hamiltonian is invariant under any global phase rotation a; — a;e'®%.

In the continuum limit, such as the result from the simplified two-components model in the

main text, the corresponding Hamiltonian can be obtained by replacing a; — y/(r), ¥; — [dr,
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Y., — J [drdr’ and G;; — G(r,r’). Explicitly, those Hamiltonians become:

H — % / dr|w ()] — P / / drdv'G(r,v) v () (r) (5.15)
H o= g [dr(aw?pa) =3P [ [ard i) ma!) +pop)) 610

H = %/drn(r)z—P//drdr'G(r,r')\/n(r)n(r’)cos(@(r’)—O(r)) (5.17)

5.10 Appendix B: Ultracold atom with periodic lattice
Starting from the equations describing the ultracold atomic system:

i (r,t) = (—hkV2+Vi+gn|wil?) vi +1Qy, (5.18)

ihn(r,t) = (—hkVZ+nhA) yo +1Qy, (5.19)

Note that the reference energy is arbitrary, but it is well known that the adiabatic elimination works
best when the first component evolves the slowest [[196]. No such choice exists in the general form
of Eq. (5.18), but it exists when we confine the dynamic to the ground state of individual traps.
There are no simultaneously good basis for both equation, though, the good basis for the local-
ized and mediating equation are the Wannier basis and Fourier basis respectively. For the resonance
dynamics, it is easier to understand in the Wannier basis [[104] which are the orthonormal basis
{Wun(r)} for the equation &, Wy, (r) = Ak VW, 4 Viw,,, with periodic potential Vy, where n is
the energy band index and m is the lattice site index. In this new basis, the wavefunctions are repre-
sented by W1 (r,1) = Y0 @mn (1) Win () and wo (r,2) = ¥, By (1 )Wimn (1) respectively. Substituting

back to Eq. (5.18) and (5.19)), we have

iy (1) = Emntmn +Ulamn|*amn + 1Qb (5.20)
ibyn(t) = 1Y Comkibrs + BAbypn ~+ Qi (5.21)
ki
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where

€ — /V dr (R Vs 2+ Vi W 2) (5.22)
U = g11/vdr|wmn|4 (5.23)
Conkl = K/VdrVw;n(r)Vwkl(r) (524)

In a periodic lattice Vi, the eigenenergy €,,1 = & is a constant in the lowest band n = 1 if the trap
are sufficiently deep or there are no overlap between the Wannier function of the nearest neighbor
site. Hence, we can shift the energy A, — A := A, — &) using the transformation a,,, — amne” 0,
If the energy gap is large &,> — &,1 > A, then we can ignore the resonance with the higher band
index n > 1. Furthermore, suppose initially there are no excited states, i.e. a;,(t =0) = 0 for
n > 1, then no excited states will be populated because there are no resonance with those states,

written explicitly:

ihm1 (1) = Ulam|*ami +hQby (5.25)

ihby1(t) = 1Y cmipbii + hAby1 4 hQap (5.26)
kl

ibyn(t) = 1Y cpmubi  forn>1 (5.27)

kl

In this form, all important dynamics are captured, and the localized component can be slow relative

to the mediating component.

5.11 Appendix C: Hopping Kernel

The adiabatic elimination of the mediating channel can be obtained by setting b,,, = 0. Therefore,

we can find the hopping kernel by solving b, in the following equation

0 = Y cumkibi + Qaam + Aby (5.28)
kl

0 = Zcmnklbkl forn > 1
kl

self-consistently by setting a,,; = 1 at the center. This draw a direct analogue of finding the con-

tinuum hopping kernel Gp(r) as described in the main text by setting Y (r) = 0(r). The effective
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conversion region have length scale 20 of the localized package, in each lattice unit with length
d. Therefore, it is expected that the only difference for the solution is with the effective scaling
A= Apr = (20/d)PA. So, the solution is b;; = %Gij * a1 and substituting back to first compo-
nent, we have the hopping strength

o2

P=h— 2
A (5.29)

and G;; takes the same form in the Table 1 in the main text with discrete normalization, and the

effective hopping radius as

D
d\? /x
R=Cp (%) X (5.30)

where D is the dimension and Cp is a constant.
The above result can be verified numerically. For the method to find to hopping kernel in an
optical lattice self-consistently, we solve the corresponding time dependent equation and find the

equilibrium solution. Hence, Eq. (5.28) with a time splitting method becomes

bmi(t) =— Qau1 — Aby (5.31)

. hq?
Un(q,t) =— %Wz (5.32)

for the conversion step and propagation step respectively. Both of them have exact solutions and
the basis change is preformed between each step. The hopping kernel G;; can be found by setting
am1 = 6, Where j is the source lattice site (chosen to be the center of the lattice), and obtained the
equilibrium solution b};, which gives G;; = b;;. The Gaussian is used to approximate the lowest
band Wannier function as

_ ‘r—l‘m‘z

Wl (r) =@(r—ry,) ~e 202 (5.33)

where ¢ defines a characteristic length of the Gaussian function. This describes the local ground
state that can be approximated by a harmonic oscillator, such as a deep sinusoidal trap. And the

transformation between the real space and the Wannier basis are given by

bt = (W () (1)) = /V Pro(r)ys(r) (534)
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Figure 5.4: Discrete hopping kernel G;;. (a) Comparing b; , ~ G,,; with exponential fitting in
ID. k = 100, Q = 10, A = 10. (b) Comparing b} ; with Ky fitting in 2D. (c) The scaling of the of
the hopping radius R ~ o~'/2 in 1D vs the width of the Gaussian &. (d) The scaling of the of the
hopping radius R ~ ¢~! in 2D vs the width of the Gaussian ©.

where V is the confined volume around the lattice minimum [—d/2,d/2]P with a finite cutoff of
lattice spacing d.
The numerical results fit perfectly for the kernel Gp(r) as shown in Fig. With sufficiently

narrow Gaussian ¢ < d, the predicted hopping radius R fits perfectly with Eq.

5.12 Appendix D: Chimera patterns

The dynamic equation of NLHM can be rewritten in the dimensionless form using the rescaling
a; = a;/\/no, T = (Ung/h)t, and P = P/(Ung) where ny is the average particle number per site.
The equation becomes, after dropping the tilde,

ia;al'(l‘) = |a,~|2a,-—PZG,~jaj (5-35)
J

which depends on the control parameters of rescaled hopping strength P and rescaled hopping

radius R = R/d. Without the hopping term, the system is decoupled and evolves locally as a;(t) =
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e~ ilai(0)’t a;(0). The dynamics may be clear if the rotation is eliminated by shifting the reference
energy as:

iatai(t) = —a;+ |a,~|2a,~ _PZGijaj (5.36)
J

which gives a solution a; (1) = e~ (40" =1 4,(0) with the extra global phase ¢/ when P = 0. If the
system is uniformly distributed |a;(0)|> = 1, then a;(¢) = a;(0). Hence, the oscillation dynamics can
be eliminated in this reference frame, which is used in all simulation for NLHM. The simulation
is done in the square lattice with size L with no-flux boundary condition. The numerical method
used is the 4-th order Runge-Kutta method.

For the spiral initial condition, uniform density a; = /ng is used and the state is given by
ai(t =0) = \/,Toei(ksr*tan’l(y/X)) (5.37)

with r = \/)ﬁy2 and spiral wavelength k;. The dynamics is shown in Fig. As shown in the
figure, the chimera core formed near the spatial phase singularity. This pattern is similar as the
system scaled up with R/L fixed as shown in Fig. with 4 times larger system. The dynamics
outside the core is the same as clear indicated by the ripple near the core, but the core now becomes
4 times larger with random phase. This chimera core pattern can exist with alternative initial
condition such as a vortex with a randomized core of size radius R, as shown in Fig. Note
that with large kg, a new pattern of chimera rings in 2D can be formed that surrounds the center
core as shown in Fig. [5.10]

The chimera core pattern depends on the nonlocal hopping range R > d, whose dynamics are
very different from R ~ d. The difference is very clear when the system starts from the random
core vortex with nearest neighbor hopping as shown in Fig. [5.9] The random phase near the core
is a highly localized disturbance that are eventually propagating outward and interferes with each
other. No localized chimera core pattern appears and the dynamic is different.

The inverse time propagation can go back to the initial condition by reversing the parameters.
Using the state in Fig. [5.5f as the initial condition, the system is propagated by the same amount of

the time 7. As shown in[5.1Th, it can perfectly go back to a spiral as expected. The chaotic nature
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of the core can be shown by adding a single shot phase noise to the system state in Fig. (5.5)f as a

perturbation before the inverting time propagation occurs, given by
0; — 6, + Xnoiseéi (5.38)

where the noise is Gaussian with (§;) = 0, (Re(&;)Re(&y)) = &; 7, and (Im(&;)Im(&y)) = 6; 7, with

amplitude Ypoise- As shown in Fig. [5.11p and [5.11k, the system cannot go back to the spiral

with noise as low as Ypise = 10~ This suggest that the core regions are very sensitive to the
initial condition. This is in stark contrast with the coherent background which has almost the same
values as the noiseless case. It indicates that the system behaves differently in the core region and
the non-core which is the important property of chimera states.

As shown above, the minimal two-component model can be reduced to the effective NLHM.
The accuracy of the parameters mapping is tested and shown in Figs. and for 1D and
2D system. The results are already very good for the short time scale. The accuracy can be further

increases by increasing the detuning A, and decreasing the spacing dx.

5.13 Appendix E: Numerical methods

For the full simulation of the BEC in an optical lattice, Eq. (5.18) and (5.19), we use the time-

split spectral method for the two components Gross-Pitaevskii equation [203], with a 4-th order
time splitting scheme. For the simulation of the effective NLHM, Eq. (5.2), we use the 4-th order

Runge-Kutta scheme with a convolution in the Fourier space.

5.13.1 Split method

A two step time split method for the differential equation of the form

A

¥ =(A+B)y, (5.39)
with operator A and B is given by

W(r,t +Ar) = ebMBoaiA | i MB MRy 4y (5.40)
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Figure 5.5: Time evolution of initial spiral with spiral wavelength ksd = 0.01 with length
L = 256d. Nonlocal hopping P/(Ung) = 0.4 and R = 16d in L = 256d.
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Figure 5.6: The local trajectory of a; for Fig. [5.5] at different sites at y = 0. Time between ¢ = 0
and ¢ = 100.
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Figure 5.7: Similar to Fig. [5.5]in a larger system P/(Ung) = 0.4 and R = 64d in L = 1024d at
t = 100.

t=0.0 i0ha; = —a; + |aiP’a; + 0.4 Gyya;, R =16 t = 200.0 i0a; = —a; + |a;*a; + 04 Gyja;, R=16

ai|?/no v ; ai|?/no .
24 18 24 18
16 16

16 16
14 14
0.8 12 08 12
0.0 10 0.0 fl’%ﬁ‘% 10
_o8 058 s 08
0.6 0.6
o 0.4 o 0.4
-24 0.2 24 0.2
—100 50 0 i T w0 W oo 5 0 i 100 50 0 30 100 00

x/d x/d x/d x/d

Figure 5.8: Time evolution of initial vortex with random core R,. = 16d with nonlocal hopping
P/(Unp) =0.4 and R = 16d in L = 256d.
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Figure 5.9: Time evolution of initial vortex with random core R,. = 8 with nearest neighbor
hopping, P/(Ung) = 0.4.
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(b) =100

(c) t=1220 (d) t+ =4000

Figure 5.10: Time evolution of NLHM with a spiral IC and wavenumber ks = 0.05. P/(Ung) = 0.1
and R = 40d in L = 400d . BC: no-flux, kernel: top-hat.
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Figure 5.11: Inverse the time simulation with initial condition given by Fig. [5.5f. (a) No noise,
(b) Xnoise = 1071, (¢) Xnoise = 10719, where a single shot noise is add at r = 0.

Table 5.2: Time splitting: First order coefficients
| stepi | a; | bi |
IR

where a;, b; are coefficients satisfied ) ;a; =Y ;b; = 1. The %A and ebsA1B ip the equation are the

formal solution to the differential equations

v = Ay, (5.41)

Yy = By, (5.42)

respectively. For the coefficients of the first order, the second order Strang splitting, and a fourth
order method, see the Table[5.2] [5.3]and [5.4] Note that the time split method with negative coeffi-

cients, such as the one in Table[5.4] requires the differential equation to be time reversed.

Table 5.3: Time splitting: Second order Strang splitting coefficients
’stepi\ a; \b,-‘

1 0511

2 05]0
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Figure 5.12: Comparison of NLHM and the minimal two-component model in 1D. Time evolution
of a initial Gaussian state with wide 20 for the minimal model (p; and p,) and the NLHM (p,).
Common parameter for both model: Ny, = 10, U = 1 with spatial discretization x = [—100, 100},
dx = 1. For minimal model, k = 4000, Q = 1, A = 10, resulting in effective hopping range
K/A=20,P=Q?/A=0.1.
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Table 5.4: Time splitting: Fourth order coefficients (Emb 4/3 BM PRK/A [204])

’ step i \ a; \ b; ‘

1 0.0792036964311954608 | 0.209515106613361891
2 0.353172906049773948 | -0.143851773179818077
3 -0.0420650803577191948 | 0.434336666566456186
4 0.219376955753499572 | 0.434336666566456186
5 -0.0420650803577191948 | -0.143851773179818077
6 0.353172906049773948 | 0.209515106613361891
7 0.0792036964311954608 0
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Figure 5.13: Comparison of NLHM and the minimal two-component model in 2D. The phases
at t = 100 are shown with the same initial spiral k; = 0.01. Parameters for NLHM are Ung = 1,
P=0.5,R =16, and size L = 256 with no-flux boundary condition. Parameters for minimal model
are A=8,Q=2,U =1, and x = 2048, with dx = 1.

5.13.2 Time split method for the one-component GPE

A one component GPE is given by

2

Y h
ihr(r,1) = —;nvzy/+v(r)q/+U|1/f|2w. (5.43)
The splitting used is chosen to be
hZ
iny(r,r) = ——Vy, (5.44)
ihg(r,t) = V(O)y+U|yly. (5.45)

The second equation is a pure local phase evolution without change in the local amplitude |y/(r,?)|

or, similarly, the local density |y(r,?)|?, because

ihp (r,t) = ih(Y y+y ) =0. (5.46)
Hence, the exact solution at the subsequent time ¢ starting from r = 0 is given by
v(r,t) = y(r, ())e—i(V(r)+U|W(LO)\z)t/h. (5.47)
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The first equation can also be solved exactly, by transforming it in the Fourier space:

which has an exact solution

2
L.

v(q,r) =e "' (q,0).

The real space solution can be obtained by the inverse Fourier transform.

5.13.3 Time split method for the two-component GPE

The two-component GPE considered is

2
(e 0) = — 2.

2m,~

VAV Vivi+ Y giil vl vi+ Qs+ hAiy,
J

(5.48)

(5.49)

(5.50)

with i = 1,2. Here, we only consider the equation without cross nonlinearity g1, = 0, as it is easier

to have an exact solution in the time split method. Otherwise, it can be solved by a three-step

time-split method in this case, or one can use a higher order numerical approximation for each

individual step. The following splits are considered

2

h

iy = ———Viy +hQuy,
2m1
hz

i, = ——V2y+hQuy,
2my

iy = Vi(o)yi+gnlvi Py +hA

i, = Va(r)ya+gn|w|?vs +hdys,

(5.51)

(5.52)

(5.53)

(5.54)

Similarly to the one component equation, the exact solutions to the second set of equations are

yi(r,1) = e VT8l Vile 0P st [y o ).

The first equation in the Fourier space takes the form

< A~

i¥(q,t) = MY,
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where M is a symmetric matrix given by

~ mq Q ~ N qvt
m=| " P(q,1) = i”l( . (5.57)
Q % WZ(qat)

which can be diagonalized. Hence the solution is

¥(q.1) = e~ MP(q,0). (5.58)

These solutions can then be used in the time split method.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, I have presented my studies on three nonlinear effects and attempted to propose
implementations using ultracold atoms. After studying chimera knot states in 3D and cat states in
Bose-Einstein Condensates, I intended to find an analogue for diffusive coupling in BECs. This
led to my discovery of a new matter-wave mediated nonlocal hopping mechanism.

In chapter 3, I have presented strong numerical evidence that stable knots and links can exist in
oscillatory systems and systems with nonlocal coupling. These include structures such as trefoils,
Hopf links, and more. The same conclusion holds in simple, complex and chaotic oscillatory
systems, if the coupling between the oscillators is neither too short-ranged nor too long-ranged. In
the case of complex oscillatory systems, I have also discerned a novel topological superstructure
combining knotted filaments and synchronization defect sheets.

In chapter 4, I proposed a method to create spin cat states, which are macroscopic superposi-
tions of coherent spin states, in BECs, using the Kerr nonlinearity due to atomic collisions. This
proposal includes an enhancement of the nonlinearity through the strong trapping of the small BEC
component, and an enhancement of the lifetime using a Feshbach resonance. Based on a detailed
study of atom loss, I concluded that cat sizes of hundreds of atoms should be realistic. The de-
tailed analysis I presented also includes the effects of higher-order nonlinearities, atom number
fluctuations, and limited readout efficiency.

In chapter 5, I proposed a new mediating mechanism that can achieve nonlocal spatial hopping
for particles in systems with two inter-convertible states and very different time scales. Adiabat-
ically eliminating the fast component results in an effective hopping model with independently

adjustable nonlinearity, hopping strength, and hopping range. I showed that this model can be im-
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plemented in BECs using current technology. My results further show that the nonlocal hopping

can lead to chimera states, which should be observable in BECs experimentally.

6.2 Future work

My results in Chapter 3 suggest that the nonlocal diffusive coupling can stabilize the knot structures
in oscillatory media, and, in Chapter 5, nonlocal hopping is an analogue to the nonlocal diffusive
coupling. Technically, the Gross-Pitaevskii equation can be considered as describing a special case
of oscillatory media with energy and particle conservation, so it is natural to speculate that chimera
knots can also exist in systems with nonlocal hopping. The simulations, however, will take much
longer, because of high accuracy requirements for conservative systems, and will require detailed
planning on how to use the available computational resources as efficiently as possible.

For the spin cat states in BEC studied in Chapter 4, it will be interesting to really see it imple-
mented in an experimental system. Since the paper was published, we have been in contact with
experimental groups to see if it is feasible with their experimental setups. We have learned that
not many groups have exactly the same setting used in my paper, but that there should be no real
obstacle from the experimental point of view. However, research groups will need time to adapt
their experimental systems.

The study of mediated nonlocal hopping and the proposed implementation in BEC brings up
many questions. There are two main future directions for the mediated hopping. The first direction
is the search for alternative experimental implementations. The scheme proposed in Chapter 5 is
only one of the promising implementations found during my research. For example, an alternative
proposal might replace hyperfine states with a double well potential, which has the same mathe-
matical description. However, it requires one spatial dimension for the double well control, so it
will be harder to control loss. Another example might be a adiabatically and periodically varying
trapping, which will likely require a longer experimental time, and whose side effects are harder to

analyze. There are two other promising setups that I would like to study. My preliminary analysis
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suggests that photon mediated nonlocal hopping with BEC in multiple traps should be possible.
This setup should have a faster time scale with no requirement of spin dependent traps, but it relies
on recently developing trapping technology [[189,190]. Another approach is a purely photonic sys-
tem using an optical-fiber based implementation, this is only possible if the nonlinearity is strong
enough compared with the loss.

Another direction is the study of the nonlocal hopping model itself. It is interesting to study the
dynamics of chimera states in conservative systems. Preliminary results show that there are more
spatial-temporal chimera patterns in BECs that have not been reported elsewhere, such as stable
chimera rings in 2D. There may be even more patterns in other parameter regimes that are yet to
be explored. The existence of chimera states in conservative systems also suggests a relation with
chaotic dynamics in conservative Hamiltonian systems [205, 206] confined to a spatial region.
The incoherent region shows some properties of superfluid turbulence. Further simulations also
suggest the existence of certain localization effects in systems with the nonlocal hopping. Further
work will be required to fully quantify these observations.

The effective model used in my analysis is the mean-field of the Bose-Hubbard model [13]]
with nonlocal hopping. This raises questions related to condensed matter physics. In the standard
Bose-Hubbard model with strong hopping, the system is in the superfluid state with particles freely
moving, and is described by a macroscopic wavefunction. My scheme further constrains the wave-
function to exhibit periodically localized structures. This order is generally known as the lattice
supersolid state [191, 207, [208]]. The current system in Chapter 5 is in the mean-field limit, so a
quantum treatment will be needed to quantify and prove the existence of the supersolid state.

For conservative Hamiltonian systems, eigenstates, and in particular the ground state, are well-
defined. This is generally not the case for chimera states in open systems. For the eigenstates, the
time evolution involves a time-dependent global phase with a spatial structure y(x). So it will be
interesting to study if such pure spatial chimera patterns can exist too, in addition to the typical

chimera states of spatio-temporal patterns.
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