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Abstract

Our aim is to formulate continuous-variable quantum secret sharing as a continuous-variable

ramp quantum secret sharing protocol, provide a certification procedure for it and explain the

criteria for the certification. Here we introduce a technique for certifying continuous-variable

ramp quantum secret-sharing schemes in the framework of quantum interactive-proof sys-

tems. We devise pseudocodes in order to represent the sequence of steps taken to solve

the certification problem. Furthermore, we derive the expression for quantum mutual infor-

mation between the quantum secret extracted by any multi-player structure and the share

held by the referee corresponding to the Tyc-Rowe-Sanders continuous-variable quantum

secret-sharing scheme. We solve by converting the Tyc-Rowe-Sanders position representa-

tion for the state into a Wigner function from which the covariance matrix can be found,

then insert the covariance matrix into the standard formula for continuous-variable quantum

mutual information to obtain quantum mutual information in terms of squeezing. Our quan-

tum mutual information result quantifies the leakage of the ramp quantum secret-sharing

schemes.
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Preface

In this thesis, I employ ISO 4 standard for abbreviations and ISO 80000 standard for symbols.
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Chapter 1

Introduction

1.1 Background

This section provides the required context to tackle the problem that is solved in this thesis.

The aim of Subsec. 1.1.1 is to present the key notions of quantum mutual information, which

is the method for quantifying information security and defining quantum secret sharing, and

plays a starring role in this thesis. I begin by presenting salient facts about Shannon and

von Neumann entropies, which are the cornerstone of classical and quantum information

theories, respectively. Then I present requisite knowledge concerning classical and quantum

mutual information.

In Subsec. 1.1.2, I review the main results on the theory of classical secret sharing.

In Subsec. 1.1.2.2, I discuss the theory of discrete and continuous-variable quantum secret

sharing. In Subsec. 1.1.3, I explain ramp secret sharing protocol which has been proposed to

overcome the limitation that is naturally imposed on secret sharing protocols. In Sebsec. 1.2

I explain the aim, claim, novelty and importance of the problem, that has been solved in

this thesis. Finally, I discuss the organization of the thesis.

1.1.1 Classical and quantum mutual information

Here I review Shannon and von Neumann entropies as these notions of entropy underpin the

formulation of classical and quantum mutual information. Then I present the key notions of

mutual information, which is vital to evaluate security for secret sharing.

Shannon’s theory of information provides a mathematical definition of information, and

describes precisely how much information can be communicated between different elements

of a system [1]. The Shannon entropy is a measure of the uncertainty associated with a
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probablity distribution {pi}. Shannon entropy quantifies the average information content

gained when one learns the value of a random variable X described by the probability

distribution {pi}.

Shannon entropy demonstrates the smallest number of bits needed to represent a random

variable [1]. The fundamental definition of entropy has been proposed based upon a set of

axioms. Intuitively, entropy can be interpreted as the average amount of surprise associated

with the set of events [2]. The amount of surprise of an event is a function of the probability

of the event. The amount of surprise should be higher for low probability events and lower

for high probability events. The amount of surprise of two independent events should be the

sum of the amount of the surprise of each event. These three axioms imply that the amount

of surprise should be proportional to − log p(x) where p(x) is the probability of the event

x. By taking the average over all events respective to their probabilities, a mathematical

expression for entropy is given.

Various derived quantities can be defined in terms of the Shannon entropy. One such

quantity is the classical mutual information. Classical mutual information quantifies the

information shared between random variables X and Y : it quantifies how much information

from one of these variables lowers the uncertainty about the other [2]. For instance, in the

case where X and Y are independent, then knowing X does not provide any information

about Y and vice versa, thus their mutual information is zero. If X is a deterministic function

of Y , and Y is a deterministic function of X , it is concluded that the mutual information

has its maximum value: knowing X determines the value of Y and vice versa.

Another useful quantity is the conditional entropy [2]. The classical conditional entropy

of a random variable X relative to a random variable Y is interpreted as the amount of

information needed to describe the outcome of the random variable X given that the random

variable Y is known. Classical secrecy conditions of classical secret-sharing schemes are

expressed in terms of conditional entropy but equivalently can be expressed in terms of

2



mutual information.

The von Neumann entropy [3] is the quantum generalization of the Shannon entropy.

The relationship is strengthened by the fact that the von Neumann entropy reduces to the

Shannon entropy of the probability distribution over measurement outcomes for the case of

density matrices that are diagonal, i.e. the classical states. Unlike the Shannon entropy

that only grasps the classical uncertainty, von Neumann entropy captures both classical and

quantum uncertainty in a quantum state. Quantum information theory is largly concerned

with the interpretation and uses of von Neumann entropy, much as classical information

theory is largly concerned with the interpretation and uses of Shannon entropy.

The standard informational measure of correlations in the classical regime is the classical

mutual information, which is translated as the quantum mutual information into the quan-

tum regime [2]. Quantum mutual information is nonnegative because of the subadditivity of

Von Neumann entropy, and zero only for a product state. Unlike classical mutual informa-

tion that only accounts for the classical correlation, quantum mutual information measures

both classical and quantum correlations [2].

The quantum conditional entropy is the quantum generalization of the classical condi-

tional entropy. The interpretation of quantum conditional entropy is less straightforward

because unlike classical conditional entropy, it can be negative. This property is understood

based on the operational interpretation of the quantum conditional entropy [4]. Thus far,

we have the necessary background to evaluate the security of classical and quantum secret-

sharing schemes. In the next section I review the basic results on secret-sharing protocols.

1.1.2 Secret sharing

In this subsubsection, I explain classical and quantum secret-sharing protocols. I begin

by establishing the agents of the protocol namely dealer and players and the structures

corresponding to the set of players. Afterwards, I explain classical secret-sharing schemes.

Then I define quantum secret sharing and provide the main results corresponding to it.
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Secret sharing comprises n+1 agents, namely one dealer D and n players. The role of the

dealer is to encode the secret message S ∈ {0, 1}∗ classically [5] or ρs ∈ S (H ) quantumly [6],

into n shares and distribute them among players in such a way that specific subsets of players

form the authorized structure to retrieve the secret message, whereas the remaining subsets

are denied any information about the secret whatsoever.

The sets of players that are denied any information are known as the forbidden sets. The

set of forbidden sets is called forbidden structure, denoted by F . The subset of players who

are able to fully reconstruct the secret are authorized sets. The set of authorized sets is

called authorized structure, denoted by A. Quantumly, the no-cloning theorem implies that

the existence of two disjoint authorized sets is forbidden [7].

Based on the type of the secret and the channel over which the secret is distributed,

there exist three kinds of secret-sharing protocols [8]. The secret might be either a bit

string or a qubit string and the channel can be public or private. Unlike a public channel,

which is susceptible to eavesdropping, a private channel is secured from it. All the existing

secret-sharing protocols are classified into three categories: sharing classical information

with classical cryptography [5, 9], or quantum cryptography [10, 11], and sharing quantum

information using quantum cryptography [6]. The third category is called quantum secret

sharing, and the two others are referred as to classical secret sharing.

The second category proposes public channels into secret-sharing protocols. Contrary to

private channels, a public channel is vulnerable to eavesdropping. Therefore, to defeat the

eavesdroppers, quantum cryptography can be employed. An example of this category, is a

(2,2) threshold protocol in which Greenberger-Horne-Zeilinger states are used by the dealer in

order to check whether an eavesdropper has been active during a process [10]. A generalized

version of this protocol, which is a (n, n) threshold protocol has been proposed [12] and

experimentally realized [13].
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1.1.2.1 Classical secret sharing

The first classical secret-sharing scheme was proposed by Shamir and Blakley [5, 9], inde-

pendently. Both of these schemes are in the special class of (k, n) threshold protocols for

which any k out of n shares can decrypt the secret, whereas any k−1 or fewer shares cannot

obtain any information about the secret whatsoever.

Classical secret-sharing protocols are designed based on monotone span programs [14,15]

in which the secret and shares are random variables chosen from a finite field (Galois field).

These protocols take advantage of the properties of vector spaces and matrices over finite

fields. Both the encoding and decoding of the secret is achieved using linear functions over

a finite field F and requires relatively little computational power.

The simplest example of a DV classical secret-sharing protocol is a (2,2) threshold classical

secret-sharing protocol in which the secret is a bit string s. The aim of the dealer is to encode

the secret into two shares in such a way that each share contains no information about the

secret, but both players can fully reconstruct the secret by collaboration. For example, the

dealer can choose a random bit string with the same size as the secret as one of the shares,

and determine the other share by adding the secret to the random bit string; i.e., s (secret)

⊕ r (random bit string) where ⊕ stands for adding bitwise module 2. In this way, each player

can not obtain any information about the secret individually, but two players can retrieve

the secret by adding their shares together.

1.1.2.2 Quantum secret sharing

Quantum secret sharing is a generalization of classical secret sharing to the framework of

quantum information. The secret in a quantum secret-sharing protocol is an unknown quan-

tum state which can be a pure or mixed state. Initially, the dealer, who holds the quantum

secret in the form of a quantum state of a given system, encodes the quantum state into

an n mode entangled state and distributes these shares among players. The encoding is such

that for any authorized group of players there exists a unitary operation that the players
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can apply to their shares and in this way the state of one of the shares become the same as

the original secret. Also, the density matrix of the unauthorized group of players should be

independent of the secret. Thus, they can not obtain any information about the quantum

secret no matter what operations they apply on their shares.

The ((k, n)) threshold QSS schemes (the use of double parentheses distinguishes it from

a classical scheme) are a class of QSS in which any group of k or more players can together

reconstruct the secret but no group of fewer than k players can. The ((k, n)) quantum

threshold schemes exist provided the no-cloning theorem is satisfied [7]. Any QSS scheme

can be reduced to ((k, 2k − 1)) threshold schemes [7]. In QSS schemes, the size of shares

allocated to each player must be at least as large as the size of the secret [7, 16].

QSS can be implemented by employing quantum systems described by both CV [17, 18]

and DV [6, 7, 15]. DV quantum secret sharing employs qudits as the carriers of quantum

secrets and shares. In DV QSS protocols, the encoding is designed using the properties of

matrices over finite number fields. In the CV quantum secret-sharing protocols, the secret

is realized as the quadrature of a quantized light field instead of binary quantities such as

the polarization state of a single photon.

CV QSS was proposed by Tyc and Sanders [18]. In their protocol, the quantum infor-

mation is to be shared locally and only sufficiently large (but arbitrary) subgroups of all the

participants can have access to the secret quantum information. The multi-mode entangled

states used in the protocol of Tyc and Sanders are producible with squeezed light and beam

splitters. Tyc, Row and Sanders (TRS03) characterized the quality of secret extraction of

the protocol by calculating the fidelity in terms of the squeezing parameter between the

original and the extracted secret, for an arbitrary coherent state as the secret [17]. Their

result shows that in the case of finite squeezing, the players in the access structure are not

able to fully reconstruct the secret and the extracted secret will be degraded increasingly
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with decreasing amount of squeezing used by the dealer.

Another way of looking at a quantum secret-sharing protocol is to view it as an error

correcting code that corrects erasure errors. A code that corrects erasure errors reconstructs

the original qubit even if certain number of qubits are lost from the encoding. Similarly,

in a QSS protocol, the secret can be reconstructed by excluding a certain number of secret

shares. For instance, a [[2k− 1, 1, k]] stabilizer code is considered as a ((k, 2k− 1)) threshold

QSS protocol [6]. DV quantum error correction has been extended to CV the realm as a

direct generalization of the qubit redundancy codes [19,20].

1.1.3 Ramp secret sharing

As an extension of (k, n)–threshold SS schemes, ramp secret-sharing (RSS) schemes were

proposed by Blakley-Meadows [9] and Yamamoto [21]. In RSS schemes, the dimension of

each share is reduced than that of the original system by the sacrifice of security admitting

the intermediate property for some sets of shares, which are denoted as intermediate sets.

The adversary structure of a RSS scheme is divided into a forbidden and an intermediate

structure. The intermediate structure I is defined as the collection of unauthorized sets that

can gain some information about the secret, but are not able to fully reconstruct it. The

forbidden structure F is characterized as a collection of unauthorized sets that are denied

any information of the secret whatsoever.

In a (k, L, n) threshold RSS scheme, any k or more players are able to fully reconstruct

the secret s, whereas any k − L or less players are denied to obtain any information about

it. Furthermore, from arbitrary k − j shares for j = 1, . . . , L − 1, some information about

the secret leaks out with the amount of j
L

in HSh (s).

As an extension of ((k, L, n))–threshold RSS schemes, quantum ramp secret-sharing

(QRSS) schemes have been proposed. In a ((k, L, n)) RQSS scheme, the dealer encodes

the secret message ρs ∈ S (H ), into n shares and distributes them among players in such a

way that any k or more players are able to fully reconstruct the secret ρs, whereas any k−L
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or less players are denied to obtain any information about it. Furthermore, any arbitrary

k − j shares for j = 1, . . . , L− 1, has some information about the quantum secret.

A measurement on an intermediate set of shares can affect the quantum state of another

intermediate set through the property of the entanglement. For this reason, it is a challenging

problem to classify intermediate sets in RQSS schemes [16]. In this thesis I describe my

study of security conditions for RQSS schemes and the development of tools to quantify the

information that an intermediate set of shares has.

1.2 CV ramp quantum secret-sharing protocol with Gaussian states and

operations

Secret-sharing is an information theoretically secure cryptographic protocol that is applicable

to online auctions, electronic voting, shared electronic banking and cooperative activation in

the classical domain [22], and distributed quantum computing in the quantum regime [23].

Ramp classical [9,21] and quantum [16] secret-sharing protocols were proposed to reduce the

communication complexity by the sacrifice of security conditions. CV QSS [17,18,24,25] has

been formulated in the framework of DV QSS protocols [6], which does not accommodate the

quantum-information leakage inherent in continuous representations of quantum information.

My aim is to formulate CV QSS as a CV ramp quantum secret-sharing (CV RQSS) protocol

and introduce a technique to certify the protocol.

In order to reach my aims, I introduce four advances in my work. I develop the quantum

mutual information approach to the CV regime to evaluate the security of CV QSS proto-

cols. I derive quantum mutual information between referee and any multi-player structure

corresponding to the TRS03 [17]. Furthermore, I introduce a certification technique for CV

QSS in the framework of quantum interactive proofs [26,27] and accounting for the necessity

of it being the RQSS protocol. Also, I give an upper-bound for the failure probability in

terms of the number of experimental runs from which the referee knows how many rounds
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are required to have sufficient information.

I focus on the “quantum-quantum” (QQ) secret-sharing protocols [6] in which the secret

is a quantum state and communication occurs over quantum channels. The QQ case was

extended to CV regime by Tyc and Sanders [18] and has been realized experimentally for

three players, any two of which are authorized to extract the secret state [24,28]. Importantly,

TRS03 later showed that the CV quantum state sharing could be extended to a (k, n)

threshold protocol (a class of QSS protocols in which the authorized structure consists of all

groups of k or more players while there are n players in total [6]), without a corresponding

scale up in quantum resources.

Whereas conditional entropy is employed to evaluate the security of CC protocols, quan-

tum mutual information is needed for the quantum case [29]. Quantum mutual information

has been used as a means to evaluate the secrecy condition of Cleve-Gottesman-Lo QSS in

the (2, 3) case [29]. TRS03 characterized the quality of secret extraction of their protocol

by calculating the fidelity in terms of squeezing parameter between the original and the

extracted secret for an arbitrary coherent state as the secret. Here I develop a quantum

mutual information approach for evaluating the CV QSS security. Restricting to Gaussian

states and operations allows all the calculations to be performed within the convenient frame-

work of the semidirect product of the symplectic group Sp (2n,R) with the Heisenberg-Weyl

group HW(2n,R) for n the number of modes [30], which makes the calculations tractable

but ignores the potentially powerful tools of non-gaussian operations [31].

1.3 Overview of chapters

This thesis is written in five chapters. In this chapter I have presented an overview of

the problem, the methods I used to tackle the problem, and my research achievements in

investigating the problem. The problem of interest is to formulate CV quantum secret-

sharing as a CV ramp quantum secret-sharing protocol, provide a certification procedure for
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it and explain the criteria for the certification.

In Chapter 2 I provide the necessary background to understand the result of this thesis.

I begin in Sec. 2.1, by introducing Gaussian states. In Subsec. 2.1.1.1, I explain Gaussian-

preserving maps, which preserve the Gaussian property of quantum states. Finally, I discuss

von Neumann entropy (quantum version of Shannon entropy), mutual information and the

entropy of Gaussian states in Sec. 2.1.2.

In Chapter 3, I review the main results on secret-sharing protocols. In Sec. 3.1, I begin by

establishing the agents of the protocol, namely dealer and players. Afterwards, I introduce

the structures corresponding to the set of players. In Sec. 3.2, I introduce classical secret

sharing. In Sec. 3.3, I discuss the information-theoretic description of classical secret-sharing

protocols. In Sec. 3.4, I explain classical ramp secret sharing, which reduces the size of shares

with the price of leakage of information to unauthorized players. In Sec. 3.6, I explain ramp

quantum secret-sharing protocols. Then I discuss the information-theoretic description of

quantum secret-sharing protocols, which has a crucial role in defining and evaluating secret-

sharing protocols. In Sec. 3.10, I introduce the TRS03. Finally, in Sec. 3.11, I explain the

quantum error correcting codes and their relationship with quantum secret-sharing protocols.

In Chapter 4, I begin by elaborating on the approach I use to introduce the CV ramp

quantum secret sharing protocol and its corresponding certification test. In Sec. 4.1, I

introduce a CV RQSS protocol and how to certify it. I discuss the success criterion of

the certification protocol. Furthermore, I specify what the parties need to do to complete

the certification. In Sec. 4.2 I present my main results. My first result is a CV version of

quantum mutual information. This CV quantum mutual information is then used to quantify

quantum-information leakage for Gaussian states and operations. Based on this leakage

characterization, I introduce a certification test, in the framework of quantum-interactive

proofs, and provide a practical test to implement it.

Chapter 5 concludes this thesis, where I provide a discussion of the results, and the

10



impact and consequences of this work. Finally, I summarize the research accomplished and

provide suggestions for future work.
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Chapter 2

Background on CV quantum information

The aim of this chapter is to provide the necessary background to understand the result of

this thesis. I begin in Sec. 2.1, by introducing Gaussian states. In Sec. 2.1.1.1, I explain

Gaussian-preserving maps, which preserve the Gaussian property of quantum states. Finally,

I discuss von Neumann entropy (quantum version of Shannon entropy), mutual information

and the entropy of Gaussian states in Sec. 2.1.2.

2.1 Continuous-variable quantum information with Gaussian states and Gaus-

sian operations

In this subsection, we begin by introducing Gaussian states [32] and some of their important

properties. Then we explain the Gaussian preserving maps, which preserve the Gaussian

property of quantum states.

2.1.1 Gaussian states

A continuous-variable quantum state is an continuously parameterized element of Hilbert

space described by observables with continuous eigenspectra. Typically, a continuous-variable

quantum state is described by N bosonic modes, associated with a tensor-product Hilbert

space

H ⊗N =
k=N⊗

k=1

Hk ∼ L2
(
RN
)
, (2.1)

i.e., square integrable complex-valued functions over RN and a vector of quadrature operators

x̂ := (q̂1, p̂1, ..., q̂n, p̂n)T. (2.2)
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The vector x̂ satisfies the commutation relation

[x̂i, x̂j] = Ωij, Ω =
n⊕

k=1




0 1

−1 0


 , (2.3)

known as the symplectic form.

An arbitrary continuous-variable quantum state is characterized by a density operator

ρ ∈ S(H ), (2.4)

where S(H ) is the set of positive semidefinite trace-class operators, which can be represented

by the Wigner function [33]

W (x) =
1

(2π)2n

∫

R2n

d2nξ exp
(
−ixTξ

)
χ (ξ) (2.5)

for

χ(ξ) := tr
[
ρD̂(ξ)

]
, (2.6)

being the the Wigner characteristic function and

D̂ (ξ) := exp
(
ixTξ

)
, ξ ∈ R2n (2.7)

being the Weyl operator. Wigner functions are particularly useful for calculating expectation

values of symmetrically ordered functions q̂ and p̂ denoted by S (q̂np̂m) with expectation value

tr [ρS (q̂np̂m)] =

∫
dqdpW (x) qnpm. (2.8)

Thus far, we have the Wigner representation for any state; now we restrict to Gaussian

states.

A Gaussian state is defined to be a state whose Wigner representation is Gaussian.

A Gaussian state can be completely characterized by its first moment x̄ = tr
(
x̂ρ
)

and

covariance matrix V . The covariance matrix entries are

Vij :=
1

2
tr [{∆x̂i,∆x̂j}] , ∆x̂i := x̂i − tr (x̂iρ) (2.9)
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with {, } the anticommutator.

The symplectic manipulation of a Gaussian state’s covariance matrix can be used to

express its fundamental properties. By definition, a matrix S is called symplectic if it

preserves the symplectic form of Eq. (2.2); i.e.,

SΩST = Ω. (2.10)

According to the Williamson theorem [34], each covariance matrix V has a corresponding

symplectic transformation S satisfying

V = S

[
n⊕

k=1

νkIk

]
ST, (2.11)

with symplectic spectrum defined by the vector

ν := (ν1, . . . , νn) , (2.12)

unique to each V and satisfying
n∏

k=1

ν2k = detV . (2.13)

As an example, a two-mode Gaussian state has covariance matrix

V =



A C

CT B


 ; A = AT,B = BT,C ∈ R2×2. (2.14)

The symplectic spectrum is [35]

ν± =

√
∆±

√
∆2 − 4 detV

2
, (2.15)

where

∆ := detA+ detB + 2 detC. (2.16)

As Gaussian states are easy to describe mathematically, a large class of transformations

acting on such states are easy to characterize as well. In the next section, we discuss this

class of transformations called Gaussian preserving maps.
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2.1.1.1 Gaussian-preserving maps

Gaussian (linear) unitary Bogoliubov transformations are interactions that preserve the

Gaussian character of a quantum state. In terms of the quadrature operators, a Gaussian

map is described by the affine map

(S,d) : Sx̂+ d, d ∈ R2n, (2.17)

where S (2.9) is the matrix representation of the symplectic group. The most general form

of a Gaussian map in terms of its action on the statistical moments x̄ and V is

x̄ 7→ Sx̄+ d, V 7→ SV ST. (2.18)

For single-mode squeezing we have the infinite-dimensional unitary representation [36]

S1 = e
1
2(ζ?â2−ζâ†2), (2.19)

and for two-mode squeezing we have the infinite-dimensional unitary representation

S2 = e
1
2(ζ?â1â2−ζâ†1â

†
2), (2.20)

where

âk =
q̂k + ip̂k√

2
, â†k =

q̂k − ip̂k√
2

, ζ = seiθ, s ∈ R+. (2.21)

A two-mode squeezed vacuum (TMSV) state is mathematically represented as [36]

|ζ〉TMSV := S2 (ζ) |0〉 , ζ ∈ C. (2.22)

In the next section, I review Shannon and von Neumann entropy as these notions of entropy

underpin the formulation of classical and quantum mutual information.

2.1.2 Mutual information

Here we review the key notions of mutual information, which is the method for quantifying

information security and defining quantum secret sharing. We begin by presenting salient
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facts about Shannon and von Neumann entropy followed by requisite knowledge concerning

classical and quantum mutual information. Finally, in this subsection, we discuss the security

for discrete quantum secret sharing as our aim is to analyze security for continuous-variable

quantum secret sharing.

2.1.2.1 Shannon and von Neumann entropy

Here we review Shannon and von Neumann entropy as these notions of entropy underpin

the formulation of classical and quantum mutual information. This subsubsection also helps

to elucidate the compact notation we use throughout this paper.

Shannon entropy. Let Z be a statistical ensemble defined by a classical random variable z

and its associated probability distribution {pj} = {p1, . . . , pn}, which can be expressed as a

probability vector p = (p1, . . . , pn)>. The logarithm of this vector (always using base 2 here)

is

logp := (logpj). (2.23)

Using the Hadamard (elementwise) product a ◦ b := (aibi) [37] for vectors and the sum of

such elements a� b :=
∑

i aibi, the Shannon entropy is

HSh(p) = −p� logp = −p · log p. (2.24)

Thus, HSh yields the number of bits per letter needed to completely specify Z in the asymp-

totic limit of infinitely long strings [1]. Shannon entropy is thus a measure for the uncertainty

of z or it indicates how much information each letter in the string that uses the alphabet Z

carries.

Von Neumann entropy In the same vein, the information content of a quantum state ρ (2.4)

can be quantified by determining how many qubits are needed to represent state ρ in the

asymptotic limit of an infinite ensemble of physical systems. This quantum-information

content, known as the von Neumann entropy [3], amounts to computing a classical Shannon
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entropy (2.24)

HvN(ρ) = − tr (ρ log2 ρ) = HSh (specρ) , (2.25)

for specρ a vector comprising eigenvalues of the state ρ.

Continuous-variable quantum entropy. For continuous-variable Gaussian states, we define

the vectors

ν± :=
ν ± 1

2
(2.26)

with ν the symplectic spectrum (2.12) and 1 the vector with all entries being unity. Thus,

the von Neumann entropy is [38]

HvN(ρ) = ν+ � log ν+ + ν− � log ν−. (2.27)

These entropy expressions are used in the formulæ for mutual information.

Convenient notation for states in entropy formulæ A convenient notation for entropy, which

is independent of being classical or quantum, uses a label for the classical or quantum

state. Rather than specify the state as p classically or ρ quantumly, we label the state by a

capital letter such as A and B, with these labels commensurate with the usual Alice-and-Bob

nomenclature in cryptology [39].

Conditional entropy. Labelling the joint state held by A and B as AB, the conditional

entropy is abstractly expressed as

H (A|B) := H (AB)−H (B) (2.28)

for any valid formula for entropy, whether classical (2.24) or quantum (2.25).

Classical conditional entropy. The classical conditional entropy [40] is obtained from Eq. (2.28)

by replacing

H(A) 7→ HSh (pA) (2.29)
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for pA the distribution held by A. Similarly, we replace

H(B) 7→ HSh (pB) (2.30)

and

H(AB) 7→ HSh (pAB) . (2.31)

H (A|B) quantifies the correlation between A and B as the reduction of the number of bits

per letter needed to specify A given B is known.

Quantum conditional entropy. The quantum conditional entropy [2] is obtained from Eq. (2.28)

by replacing

H(A) 7→ HvN (ρA) (2.32)

for ρA the quantum state held by A. Similarly, we replace

H(B) 7→ HvN (ρB) (2.33)

and

H(AB) 7→ HvN (ρAB) . (2.34)

Although classical conditional entropy is always positive, for evaluatingquantum conditional

entropy can be negative [4].

2.1.2.2 Classical and quantum mutual information

We explain classical mutual information [40] and quantum mutual information [2], first as

an abstract concept regardless of whether classical or quantum information is chosen. Then

we explain each of classical and quantum mutual information. Quantum mutual information

is vital for evaluating security for secret sharing.

Mutual information. Labelling the joint state held by A and B as AB, mutual information

is abstractly expressed as

I (A; B) := H (A) +H (B)−H (AB) (2.35)
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for any valid formula for entropy, whether classical (2.24) or quantum (2.25). Classical

mutual information [2] is obtained from Eq. (2.35) by replacing

H(X) 7→ HSh (pX) (2.36)

with X ∈ {A,B} for pX and

H(AB) 7→ HSh (pAB) (2.37)

as discussed in ¶2.1.2.1. Classical mutual information quantifies the correlation between two

statistical ensembles A and B as the reduction of the number of bits per letter needed to

specify one of the variables given the other variable is known.

Quantum mutual information. The quantum mutual information [2] is obtained from Eq. (2.35)

by replacing

H(A) 7→ HvN (ρA) (2.38)

for ρA the quantum state held by A. Similarly, we replace

H(B) 7→ HvN (ρB) (2.39)

and

H(AB) 7→ HvN (ρAB) . (2.40)

Quantum mutual information is always positive and quantifies the total correlations con-

tained in the bipartite state ρAB. Quantum mutual information is employed to define and

evaluate the security of quantum secret-sharing schemes (QSS).

Relation between conditional entropy and mutual information. The relation between con-

ditional entropy and mutual information is

I (A; B) = H (A)−H (A|B) = H (B)−H (B|A) (2.41)

for any valid formula for entropy, whether classical (2.24) or quantum (2.25). The rela-

tion between classical mutual information and classical conditional entropy is obtained from
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Eq. (2.41) by replacing

H(X) 7→ HSh (pX) (2.42)

with X ∈ {A,B} and

H(X|Y) 7→ HSh (pXY)−HSh (pY) (2.43)

with (X,Y) ∈ {(A,B) , (B,A)} as discussed in ¶2.1.2.1.

The relation between quantum mutual information and quantum conditional entropy is

obtained from Eq. (2.41) by replacing

H(X) 7→ HvN (ρX) (2.44)

with X ∈ {A,B} and

H(X|Y) 7→ HvN (ρXY)−HvN (ρY) (2.45)

with (X,Y) ∈ {(A,B) , (B,A)} as discussed in ¶2.1.2.1.

In this chapter, I introduced the Gaussian states along with the Gaussian preserving

maps, which preserve the Gaussian property of quantum states. Furthermore, I discussed

the von Neumann entropy (quantum version of Shannon entropy), mutual information and

the entropy of Gaussian states.
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Chapter 3

Secret sharing

In this chapter, I review the main results on secret-sharing protocols. In Sec. 3.1, I begin by

establishing the agents of the protocol namely dealer and players. Afterwards, I introduce

the structures corresponding to the set of players. In Sec. 3.2, I introduce classical secret

sharing. In Sec. 3.3, I describe the information-theoretic description of classical secret-

sharing protocols. In Sec. 3.4, I outline classical ramp secret sharing, which reduces the size

of shares at the cost of leaking information to unauthorized players. In Sec. 3.6, I introduce

ramp quantum secret-sharing protocols, and discuss the information-theoretic description of

quantum secret-sharing protocols, which is crucial in defining and evaluating secret-sharing

protocols. In Sec. 3.10, I introduce the TRS03. Finally, in Sec. 3.11, I describe quantum

error correcting codes, and their relationship to quantum secret-sharing protocols.

3.1 Secret-sharing protocol

In this section, I explain secret-sharing protocols. I begin by establishing the agents of the

protocol namely dealer and players. Afterwards, I introduce the structures corresponding to

the set of players namely authorized and forbidden structures.

Dealer and players. We establish the agents of the protocol and the structures corresponding

to sets of players, who are one kind of agent. Specifically, secret sharing comprises n + 1

agents namely one dealer D and n players labelled

P = {P1, P2, . . . , Pn}. (3.1)

The power set of players is 2P , which is the set of all subsets of the set of players (3.1).

The role of the dealer is to encode the secret message S ∈ {0, 1}∗ classically or ρs ∈ S (H )
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(2.4) quantumly, into n shares and distribute them among players in such a way that specific

elements of 2P form the authorized structure denoted by A to retrieve the secret message,

while other elements are denied any information about the secret whatsoever. The set of

elements that are denied any information is known as the forbidden structure, and is denoted

by F .

Access structure. Let

F , A ⊆ 2P , F ,A 6= ∅, F ∩A = ∅, (3.2)

where F is monotonically decreasing, and A is monotonically increasing. Formally, an

authorized structure A is monotonically increasing if

(γ ∈ A and γ ⊆ γ′)⇒ γ′ ∈ A. (3.3)

Furthermore, a forbidden structure F is monotonically decreasing if

(γ′ ∈ F and γ ⊆ γ′)⇒ γ ∈ F . (3.4)

Then the set

Γ = {F ,A}, (3.5)

is called an access structure on P . Quantumly, the no-cloning theorem implies that the

existence of two disjoint authorized groups is forbidden [7].

3.2 Classical secret-sharing protocol

In this section we explain classical secret-sharing protocols. Let

V = {ν1, ν2, . . . , νn}, (3.6)

be the shares of the secret s to be encoded. I suppose the secret and each share νi are

elements of finite fields FS and FVi , respectively. A secret-sharing scheme Π is a randomized
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mapping from F to n-tuples

Π : F×R→ FV1 × FV2 × · · · × FVn , (3.7)

where

R ∈ {{r1, . . . , rn−1}|ri ∈ F}, (3.8)

is a set of random inputs. The dealer encrypts s ∈ F into n shares according to Π by

sampling a vector of shares (v1, v2, . . . , vn) from Π (s). Then the dealer privately sends each

share νi to the party Pi (for simplicity, and without loss of generality, we assume that each

player holds one share). Let

B = {Pi1 , Pi2 , . . . , Pi|B|} ∈ 2P , (3.9)

be a subset of players. For each B ∈ 2P , let 〈B〉 be the finite set of shares given to B.

Then Π realizes an access structure Γ if there exists a reconstruction function denoted by

Rec which satisfies the following requirements

1. ∀B ∈ A

∃RecB : Fi1 × Fi2 × · · · × Fi|B| → F, (3.10)

such that ∀s ∈ F

pr [RecB (Π (s))B = s] = 1. (3.11)

2. ∀B /∈ A, and ∀a, b ∈ S, and for every possible shares 〈B〉

pr [Π (a)B = 〈B〉] = pr [Π (b)B = 〈B〉] . (3.12)

The first protocol for classical secret sharing was created by Shamir [5] and Blakley [9]

independently. Both of these protocols are in the class of (k, n) threshold protocols, which

means any k out of n shares can decrypt the secret, but any k − 1 or fewer shares can

not obtain any information about the secret. Formally, in a (k, n) threshold secret-sharing

protocol the authorized structure is

A = {γ ⊆ P | |γ| ≥ k}, (3.13)
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and the adversary structure is

F = {γ ⊆ P | |γ| ≤ k − 1}. (3.14)

Here we provide an example of classical threshold schemes [5]. Consider a finite field Fq

where q is a prime number satisfying

0 < k ≤ n < q. (3.15)

Let the secret s be uniformly distributed on Fq, i.e., H (s) = log |Fq|. Let r1, r2, . . . , rk−1 be

independent uniform random numbers on Fq. Then the ith share νi is constructed by νi =

f (i), where f (x) is the following polynomial of degree k − 1 on Fq

f (x) = s+ r1x+ r2x
2 + . . .+ rk−1x

k−1 mod q. (3.16)

The dealer then distributes shares between players such that each player Pi receives (i, f (i))

as his/her share of the secret.

Reconstruct the secret. The goal for any set of players with k or more players is to retrieve

the secret which is the leading coefficient of f (x). According to Lagrange theorem, given

m distinct points (x1, y1) , (x2, y2) , . . . , (xm, ym), there is a unique polynomial p of degree

less than m for which p (xi) = yi. Now to reconstruct the secret, a set of players who

hold (i1, f(i1)) , (i2, f(i2)) , . . . , (im, f (im)) as their shares for which m ≥ k, can construct a

polynomial p (x) from any of their k secret shares

(ij1 , f(ij1)) , (ij2 , f(ij2)) , . . . , (ijk , f (ijk)) {j1, j2, . . . , jk} ⊂ {1, 2, . . . ,m}, (3.17)

as

p (x) =
k∑

u=1

f (iju)
k∏

t=1
t6=u

x− ijt
iju − ijt

. (3.18)

Hence s is obtained by s = p (0), i.e.,

s =
k∑

u=1

f (iju)
k∏

t=1
t6=u

ijt
ijt − iju

. (3.19)
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On the other hand, for a set of players with fewer than k shares, the secret is totally random

over Fq, hence these players do not obtain any information about the secret whatsoever.

Example 3.2.1. Let us consider a (3, 4)-threshold SS scheme over F17 with s = 10. If r1 = 5

and r2 = 7, the polynomial of degree 2 becomes

f (x) = 10 + 5x+ 7x2. (3.20)

Then the shares are ν1 = 5, ν2 = 14, ν3 = 3 and, ν4 = 6. As an example, from ν1, ν2, and, ν4,

we can calculate secret s as follows

s = 5
2

2− 1

4

4− 1
+ 14

1

1− 2

4

4− 2
+ 6

1

1− 4

2

2− 4
= 2 + 6 + 2 = 10. (3.21)

In the next section, I discuss the information-theoretic description of classical secret shar-

ing, which plays a crucial role in defining and evaluating classical secret-sharing protocols.

3.3 Classical secrecy and recoverability conditions

Classical secrecy is expressed in terms of conditional entropy, but can be equivalently ex-

pressed in terms of mutual information. Strictly speaking, conditional entropy is between

shares. However, for simplicity, in the literature, there is a tendency to refer to conditional

entropy between players. Π is a perfect SS scheme on Γ if [41]

• ∀B ∈ A H (s|B) = 0,

• ∀B /∈ AH (s|B) = H (s).

Also the size of each share should be at least as the same as the secret, namely

HSh (νi) ≥ HSh (s) , (3.22)

where 1 ≤ i ≤ n [42] [43] [44]. It is desirable to reduce the size of the shares in a secret-

sharing protocol because it reduces the communication complexity. In the next section I

introduce ramp secret sharing in which the size of shares is reduced at the cost of leaking

information to the intermediate structure.
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3.4 Ramp secret sharing

As an extension of (k, n) threshold secret-sharing protocols, ramp secret-sharing (RSS) proto-

cols were proposed by Blakley-Meadows [9] and Yamamoto [21]. In secret-sharing protocols,

the size of shares allocated to each player must be at least as large as the size of the secret.

In RSS protocols, the dimension of each share is reduced to less than that of the original sys-

tem by the sacrifice of security admitting the intermediate property for some sets of shares,

which are denoted as intermediate sets. In a (k, L, n) threshold RSS protocol, any k or

more players are able to fully reconstruct the secret s, whereas any k − L or less players

are denied to obtain any information about it. Furthermore, from arbitrary k − j shares

for j = 1, . . . , L − 1, some information of the secret will leak out with the amount of j
L

in

HSh (s).

(k, L, n) ramp classical secret sharing. A (k, L, n) ramp scheme was first proposed as an

extension of the Shamir’s threshold scheme [9]. Consider a finite field Fq were q is a prime

number. Let the secret be s = (s0, s1, . . . , sL−1) where si ∈ Fq. The dealer picks k − L

elements βL, βL+1, . . . , βk−1 in Fq randomly, and hides the secret in the polynomial below as

follows

f (x) = s0 + s1x+ · · ·+ sL−1x
L−1 + βLx

L + . . .+ βk−1x
k−1 mod q. (3.23)

Then the ith share νi is constructed by νi = f (i). The function f can be reconstructed by

any k or more shares via Lagrange theorem. Furthermore, for any set of shares with k − L

or fewer elements, the L elements of the secret are totally random over Fq. However, a set

of shares γ where k − L < |γ| < k can narrow down the range of the secret which means

that some information about the secret is leaked to γ.

In a ramp secret-sharing protocol, the subset of players that can obtain some information

about the secret but are not able to fully reconstruct it are called the intermediate sets. The

collection of all intermediate sets is defined as the intermediate structure. A classical ramp
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secret-sharing protocol can be described by conditional entropy similar to classical threshold

protocol. [44]. Let us define I as intermediate structure. A RSS protocol then satisfies the

following requirements

1. ∀γ ∈ A, H(s|γ) = 0,

2. ∀γ ∈ I, 0 < H(s|γ) < H(s),

3. ∀γ ∈ F , H(s|γ) = H(s).

In this description, the leaked information is classical and the amount of it can be determined

using conditional entropy H(s|γ). In the next section, I discuss the notion of reversibility of

quantum operations as these notions underpin the formulation of quantum secret sharing.

3.5 Reversibility of quantum operations

Before I discuss quantum secret-sharing schemes, I explain the notion of reversibility, from

which my definition of quantum secret-sharing protocols and their secrecy requirements is

based on.

Let H and K be Hilbert spaces, and let S (H ) and S (K ) be the set of density operators

on H and K , respectively. A quantum operation

W : S (H )→ S (K ) , (3.24)

is reversible with respect to a subset S ⊂ S (H ) of density operators if there exists a

quantum operation

R : S (K )→ S (H ) , (3.25)

such that ∀ρ ∈ S, R ·W (ρ) = ρ [16]. W is vanishing with respect to S if there exists a

density operator ρ0 ∈ S (K ) such that ∀ρ ∈ S, W (ρ) = ρ0 [16]. Next we define quantum

secret sharing.
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3.6 Quantum secret-sharing protocols

Let H be a Hilbert space and let S(H ) be the set of all density operators on H . In a

quantum secret-sharing scheme, the dealer’s task is to encrypt a quantum secret ρs ∈ S (H )

into a composite system of Hilbert spaces

H1,H2, . . . ,Hn, (3.26)

each of which is called a share labled by S1, S2, . . . , Sn. Let

N := {S1, S2, . . . , Sn}, (3.27)

be the entire set of shares and

HN :=
⊗

Si∈N

HSi , (3.28)

be the corresponding Hilbert space. For a subset A ⊆ N of shares let

HA :=
⊗

Si∈A

HSi . (3.29)

QSS encoding is

WN : S(H )→ S(HN), (3.30)

which is a completely positive and trace preserving map [16].

The composition map of the encoder WN for a subset X ⊆ N and the partial trace of

the complement N \X is

WX := TrN\X ·WN . (3.31)

A QSS scheme is then defined by the quantum operation WN (3.30) that is reversible with re-

spect to S(H ). The set N is divided into two mutually disjoint subsets known as authorized

(or qualified) and forbidden structures.

1. A set X ⊆ N is called authorized if WX is reversible with respect to S(H ) [16].
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2. A set X ⊆ N is called forbidden if WX is vanishing with respect to S(H ) [16].

Before we provide an example for threshold quantum secret-sharing schemes, we introduce

two theorems which are useful for our later discussions.

Theorem 3.6.1. ((k;n)) scheme implies ((k;n − 1)) scheme when k < n (here the use of

double parentheses distinguishes the quantum schemes from the classical schemes).

Proof. For proof of the theorem, refer to Fig.3.1. For any ((k, n)) threshold scheme, only k

shares are needed at any time to reconstruct the secret. Erasing shares would not affect the

scheme until total number of shares is at least k.

n

1

k s

Figure 3.1: Existence of ((k, n− 1)) scheme if ((k, n)) scheme exists.

Theorem 3.6.2. If the secret is a quantum state, then no ((k, n)) scheme exists for n ≥

2k. [7].

Proof. The proof of the theorem is provided as Fig. 3.2. Cloning an arbitrary quantum state

is impossible according to quantum no-cloning theorem. Let n ≥ 2k. The independent sets

of k shares can be used to reconstruct the secret. Two copies of the same secret means the

no-cloning theorem is violated. hence, n < 2k.

Next, I shall prove the existence of ((k, n)) quantum threshold schemes where n ≤ 2k−1.
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n

k

k

|s〉

|s〉

Figure 3.2: Violation of no-cloning if n ≥ 2k.

3.7 Construction of threshold QSS schemes

A ((k, n)) threshold scheme is constructed based on quantum polynomial codes [6]. Quantum

polynomial codes are quantum version of classical Reed Solomon codes. Reed Solomon codes

are used in error correction where k symbols are instructed to correct n− k erasure errors.

Let s be the dimension of the secret quantum state |ψ〉 to be encoded. The goal is to

encode |ψ〉 into n shares such that the data that is encoded can always be recovered from

any k shares.

3.7.0.1 Encoding

Here I explain the encoding procedure. A prime number q is chosen such that q ≥ max (s, n).

This is because, I would correspond each basis vector of the quantum state to a unique

element of Fq. For

c = (c0, . . . , ck−1) ∈ Fkq , (3.32)

define the polynomial

pc (t) = c0 + c1t+ . . .+ ck−1t
k−1. (3.33)

The dealer then chooses x1, . . . , xn ∈ Fq (xi 6= xj) which are publicly revealed constants and

encode a q-ary quantum state by the linear mapping which is defined on basis states {|i〉}i∈Fq
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as

|i〉 7→
∑

c∈Fkq , ck−1=i

|pc (x0) pc (x1) · · · pc (xn−1)〉 . (3.34)

The secret is thus encoded as the coefficient of the highest degree element in the polynomial.

Hence, an arbitrary quantum state would be encoded as

|ψ〉 =
∑

i

αi |i〉 7→
∑

i

αi
∑

c∈Fkq , ck−1=i

|pc (x0) pc (x1) · · · pc (xn−1)〉 . (3.35)

Each component of the tensor is then a share of the secret.

3.7.0.2 Decoding

It now suffices to show that, given an encoding (3.35) of a quantum state, the state can

be retrieved by any k coordinates. One way to show this is by employing theory of CSS

codes. To make the treatment comprehensive, I provide an explicit decoding procedure for

the special case of n = 2k − 1 scheme.

The decoding procedure takes advantageous of the properties of the Vandermonde ma-

trix Vd. The Vandermonde matrix Vd is a square matrix of dimension d× d defined as

Vd [x0, x1, x2, . . . , xn]ij = xij, xi ∈ F. (3.36)

Vd is invertible when xi = xj iff i = j. Observe that

(c0, c1, . . . , ck−1)Vk (x0, x1, . . . , xk−1) = (pc(x0), pc(x1), . . . , pc(xk−1)) . (3.37)

Therefore,

(c0, c1, . . . , ck−1) = (pc(x0), pc(x1), . . . , pc(xk−1))Vk (x0, x1, . . . , xk−1)
−1 . (3.38)

This means, by picking k polynomial evaluations of pc(x) and applying corresponding inverse

Vandermonde matrix, one can construct the polynomial p(x) again. However, in quantum

secret sharing the secret state is encoded in a superposition of polynomials. Also, secret

state itself can be a simple basis vector or a linear combination of basis vectors. The below

are the steps to recover the secret from the encoded quantum state.
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Given the first k registers as (pc(x0), pc(x1), . . . , pc(xk−1)), the tensor product of these

shares is

|pc〉 = |pc(x0), pc(x1) . . . pc(xk−1)〉 . (3.39)

The steps to recover the secret are listed below.

1. Multiply |pc〉 by V −1k

|pc〉
2k−1⊗

j=k+1

|pc (xj)〉
(
V −1k ⊗ I

)
=

k−1⊗

j=0

|cj〉
2k−2⊗

j=k+1

|pc (xj)〉 . (3.40)

2. Cyclically right shift the first k states of the resultant state (3.40) by one

position. The resultant state is

|ck−1〉
k−2⊗

j=0

|cj〉
2k−2⊗

i=k+1

|pc (xj)〉 . (3.41)

If the secret |ψ〉 is a basis state |i〉, then the secret can be recovered from the

first component of the tensor product state directly because ck−1 = i. However,

if |ψ〉 is not a basis state, then steps 3 and 4 below must be performed to recover

the secret. In such a case, the first component of the tensor product state will

be entangled with the rest of the components.

3. Multiply the resultant state (3.41) from the previous step by I1⊗Vk−1 (xk, xk+1, . . . , x2k−2)⊗

Ik−1. The resultant state is

|ψ〉 ⊗
∑

c∈Fk,ck−1=i

[
2k−2⊗

i=k+1

|pc (xj)〉
2k−2⊗

i=k+1

|pc (xj)〉
]
. (3.42)

4. ∀i ∈ {1, . . . k − 1}, add first component multiplied by (xk+i−1)
(k−1) of the

tensor product state to every ith component.

In order to gain intuition about this QSS protocol, the encoding and reconstruction procedure

for the special case of (2, 3) QSS are discussed in the next section.
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3.7.1 (2,3) QSS

Consider the case where secret is a state |ψ〉 = α |1〉 + β |1〉 + γ |3〉. Let |ψ〉e be the n-ary

encoded state of the secret. Let n = 3, q = 3, k = 2, s = 3. Then F3 = {0, 1, 2}. Let

x0 = 0, x1 = 1, x2 = 2. Then

F2
3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}. (3.43)

Construct the encoded state (3.34). Hence,

W2,3 : |ψ〉 7→ |ψ〉e =α (|000〉+ |111〉+ |222〉)

+ β (|012〉+ |120〉+ |201〉)

+ γ (|021〉+ |102〉+ |210〉) . (3.44)

The goal is to retrieve the secret from the first two shares. The reconstruction procedure is

given below

V2(x0 = 0, x1 = 1) =




1 1

0 1


 , (3.45)

V −12 (x0 = 0, x1 = 1) =




1 2

0 1


 . (3.46)
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Thus,

(0, 0) · V −12 (x0 = 0, x1 = 1) = (0, 0) , (3.47)

(1, 1) · V −12 (x0 = 0, x1 = 1) = (1, 0) , (3.48)

(2, 2) · V −12 (x0 = 0, x1 = 1) = (2, 0) , (3.49)

(0, 1) · V −12 (x0 = 0, x1 = 1) = (0, 1) , (3.50)

(1, 2) · V −12 (x0 = 0, x1 = 1) = (1, 1) , (3.51)

(2, 0) · V −12 (x0 = 0, x1 = 1) = (2, 1) , (3.52)

(0, 2) · V −12 (x0 = 0, x1 = 1) = (0, 2) , (3.53)

(1, 0) · V −12 (x0 = 0, x1 = 1) = (1, 2) , (3.54)

(2, 1) · V −12 (x0 = 0, x1 = 1) = (2, 2) . (3.55)

Therefore,

(
V −12 ⊗ I

)
|ψ〉 =α (|000〉+ |101〉+ |202〉)

+ β (|012〉+ |110〉+ |211〉)

+ γ (|021〉+ |122〉+ |220〉) . (3.56)

Now, I cyclically shift the first two registers by one to the right. The resultant state is

α (|000〉+ |011〉+ |022〉) + β (|102〉+ |110〉+ |121〉) + γ (|201〉+ |212〉+ |220〉) .

Then I apply V0 (x1) = 1 to first register. The resultant state is

α (|000〉+ |011〉+ |022〉) + β (|102〉+ |110〉+ |121〉) + γ (|201〉+ |212〉+ |220〉) .

After performing the last step, the secret state is recovered as follows

α (|000〉+ |011〉+ |022〉) + β (|122〉+ |100〉+ |111〉)

+ γ (|201〉+ |222〉+ |210〉) = (α |0〉+ β |1〉+ γ |2〉) (|00〉+ |11〉+ |22〉) . (3.57)

In the next section I discuss information-theoretic description of QSS protocols which is used

to define and evaluate QSS protocols.
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3.8 Information-theoretic description of quantum secret-sharing protocols

The information-theoretic description of secret sharing has played a crucial role in defining

and evaluating secret-sharing protocols [16,42,44,45]. In this section, I give the information

theoretical description of QSS protocols [45].

Quantum mutual information is employed to define and evaluate the security of QSS

protocols [29]. In a QSS protocol, a dealer D shares a quantum state ρS ∈ S(HS) between a

set of players P , such that specific subsets of players form the authorized structure (denoted

by A) to retrieve the message, whereas the other subsets (i.e., the adversarial structure

denoted by F), are denied any information about the secret whatsoever. I might imagine,

however, that the system ρS is part of a larger system and that this compound system, is

initially in a pure state |ψRS〉. Therefore

ρS = trR
(
|ψRS〉 〈ψRS|

)
. (3.58)

In a QSS, if a subset X ⊆ Γ satisfies

I
(
ρR : ρX

)
= 0 (secrecy condition), (3.59)

then ρX does not contain any information about ρS, which means that X is an element of

forbidden structure [29]. On the other hand, if a subset X satisfies

I
(
ρR : ρX

)
= I

(
ρR : ρS

)
(recoverability condition), (3.60)

then ρX contains full information about ρS [29]. In the next subsection, I discuss the relation

between recoverability and secrecy requirements, and the reversibility of quantum operations.

3.8.1 Relation between the reversibility of quantum operations and secrecy requirements

In this subsection, I state a theorem that show the recoverability requirement discussed

in §3.8 implies the existence of a reversible quantum operation [29], as discussed in §3.6.
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Theorem 3.8.1. Let WN be a QSS with authorized structure A. Then the recoverability

condition (3.60) holds iff a quantum operator R exists such that

R
(
ρX
)

= ρS. (3.61)

Furthermore, for quantum secret sharing schemes where the unauthorized sets are the comple-

ments of the authorized sets, the recoverability requirement implies the secrecy requirement.

To give an example, I show that the scheme W2,3 (3.44) satisfies the recoverability and

secrecy requirements [29]. Suppose the quantum secret is

ρS =
1

3

3∑

i=1

|i〉 〈i| ; (3.62)

therefore, the purification of ρS is

|RS〉 :=
1√
3

(|00〉+ |11〉+ |22〉) . (3.63)

The system corresponding to the shares and the reference system can then be described as

(I⊗W2,3) ρ
RS =

1

3

(
|0000〉+ |0111〉+ |0222〉+ |1012〉+ |1120〉

+ |1201〉+ |2021〉+ |2102〉+ |2210〉
)
. (3.64)

Then I
(
ρR : ρS

)
= 2 log 3. In the case of X = {1, 2},

HvN (RX) = log 3, (3.65)

HvN (X) = 2 log 3, (3.66)

hold; hence,

I
(
ρR : ρX

)
= 2 log 3. (3.67)

Therefore the recoverability requirement is satisfied. On the other hand, if X = {1},

then I
(
ρR : ρX

)
= 0. Hence, the secrecy requirement is satisfied. Next I discuss ramp

quantum secret-sharing protocols.
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3.9 Ramp quantum secret-sharing scheme

As an extension of (k, n)–threshold SS schemes discussed in ¶3.4, ramp secret-sharing (RSS)

schemes were proposed by Blakley-Meadows [9] and Yamamoto [21]. In RSS schemes, the

dimension of each share is reduced to less than that of the original system by sacrificing

security, admitting the intermediate property for some sets of shares, which are called inter-

mediate sets.

A QSS scheme WN is called perfect if any set X ⊆ N is either authorized or forbidden.

Otherwise, WN is a RQSS scheme. The access structure of a RQSS scheme is the list of the

forbidden, intermediate, and authorized sets. A set X ⊆ N is called intermediate if WX is

neither vanishing nor reversible with respect to S(H ) [16]. Formally, the access structure

of the set N is defined by a map

f : 2P → {0, 1, 2}, (3.68)

where 0, 1 and 2 represent F , I and A , respectively. Next I discuss a particular scheme for

constructing threshold RQSS protocols.

3.9.1 Construction of RQSS schemes

In this subsection, I introduce a method to construct ((k, L, n))-threshold RQSS schemes [16].

The encoding and decoding used here are extensions of the scheme discussed in §3.7.

Let Fq be a finite field where q ≥ n. Furthermore, let

Kj (j = 1, . . . , L) and Hi i ∈ N = {1, . . . , n} (3.69)

be Hilbert spaces with dimension dim Hj = dim Ki = q and an orthonormal basis {|s〉}s∈F.

Here I construct a pure state RQSS scheme WN , which maps the state on H := ⊗Lj=1Kj

into the system of shares HN := ⊗i∈NHi. The basis

|sL〉 = |s1〉 ⊗ · · · ⊗ |sL〉 , sL = (s1, . . . , sL) ∈ FL, (3.70)
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on H is then encoded by utilizing the linear mapping

|sL〉 7→
1√
C

∑

c∈D(sL)

|pc (x1) , . . . , pc (xn)〉 , (3.71)

where x1, . . . , xn ∈ F (xi 6= xj) are publicly revealed constants and D
(
sL
)

is

D
(
sL
)

:= {(c1, . . . ck) ∈ Fk|ci = si (i = 1, . . . , L)}, (3.72)

for which pc is defined in Eq. (3.33). For future convenience, let us introduce the following

notations for X ∈ {i1, . . . , im} ⊆ N

Ma
b (X) :=




xai1 . . . xaim

xa+1
i1

. . . xa+1
im

...
...

xbi1 . . . xbim



,

pc (X) := (pc (xi1) , . . . , pc (xim)) . (3.73)

It follows that pc (X) = (c1, . . . , ck)M
0
k−1 (X), and the following proposition is useful for our

later discussion.

Proposition 1. For each sL ∈ FL, the map c ∈ D
(
sL
)
7→ pc (X) is injective if |X| ≥ k−L.

Importantly, it is one to one if |X| = k − L. In the same vein, the map c ∈ Fk 7→ pc (X) is

injective if |X| ≥ k and it is one-to-one if |X| = k.

From Proposition 1, the terms in the right hand side of Eq. (3.71) are orthogonal to

each other; therefore, the normalization constant C is qk−L. Next I prove that the linear

mapping (3.71) realizes a (k, L, n)-threshold RQSS scheme [16].

Authorized sets. In order to prove that X is authorized in the case of |X| ≥ k , it is

enough to prove that X is authorized for X = {1, . . . , k}. This is because of the symmetric

way to construct WN , and the monotonicity of quantum access structure. Here I give an

explicit decoding for the case of interest, where X = {1, . . . , k}. Suppose that the first k
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registers are given. Perform the unitary transformation on the first k registers corresponding

to pc (X)M0
k−1 (X)−1, which maps the summation (3.71) into

∑

c∈D(sL)

|c1, . . . , ck, pc (xk+1) , . . . , pc (xn)〉 . (3.74)

Then perform the unitary transformation on first k registers corresponding to the linear

transformation

(c1, . . . , ck)



I M0

L−1 (N\X)

0 ML
k−1 (N\X)


 .

Equation. (3.74) then turns into

|sL〉
∑

c∈D(sL)

|pc (N\X)〉 |pc (N\X)〉 , (3.75)

which, according to Prop. 1, can be equivalently expressed as

|sL〉
∑

yk−L∈Fk−L
|yk−L〉 |yk−L〉 . (3.76)

Thus, |sL〉 is recovered from the first k registers via local operations.

Forbidden sets. In the case of |X| ≤ k − L, N\X is authorized as |N\X| ≥ k. Therefore,

because of the no-clonning theorem, any set of players X where |X| ≤ k − L is a forbidden

set.

Intermediate sets. In the case of |X| = k− l (0 < l < L), I prove that X is an intermediate

set [16]. In order to do so, I follow the approach introduced in §3.8 and prove that WX

is neither vanishing nor reversible in the case of |X| = k − l (0 < l < L). Suppose the

quantum secret is

ρS =
∑

sL∈FL
psL |sL〉 〈sL| . (3.77)

For simplicity and without loss of generality I consider the case where {psL} is uniformly

random, hence

ρS =
∑

sL∈FL

1

qL
|sL〉 〈sL| . (3.78)
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Let S be a Hilbert space with orthonormal basis {|j〉} j ∈ {1, . . . , qL}. Then the purification

of ρS is

|RS〉 :=
∑

sL∈FL,j∈F
qL

√
1

qL
|j〉 |sL〉 ∈ S ⊗H . (3.79)

|RS〉 is pure; hence,

HvN

(
ρS
)

= HvN

(
ρR
)

=
∑

sL∈FL

1

qL
log

(
1

qL

)
= L log q. (3.80)

Therefore,

I (R; X) = 2L log q. (3.81)

Next we calculate

WX

(
ρS
)

=
∑

sL∈FL

1

qL
WX

(
|sL〉 〈sL|

)

=
1

C

∑

sL∈FL

1

qL

∑

c,d∈D(sL)

〈pd (N\X) |pc (N\X)〉 |pc (X)〉 〈pd (X)|

=
1

C

∑

sL∈FL

1

qL

∑

c∈D(sL)

|pc (X)〉 〈pc (X)| . (3.82)

As |X| = k − l > k − L and because of Prop. (1), the set {|pc (X)〉} in Eq. (3.82) comprises

orthogonal states. Hence,

HvN

(
WX

(
ρS
))

= HvN

(
I

qk−l

)
= (k − l) log q. (3.83)

In order to calculate HvN ((I ⊗WX) (|RS〉 〈RS|)), note that the von Neuman entropy is 0 for

a pure state. Also, if a pure state is divided in two subsystems, the von Neuman entropies

of the subsystems are equal. Therefore

HvN ((I ⊗WX) (|RS〉 〈RS|)) = HvN

(
WN\X

(
ρS
))

= (n− k + l) log q. (3.84)

Consequently,

I
(
R;WX

(
ρS
))

=HvN

(
WX

(
ρS
))

+HvN

(
ρR
)
−HvN ((I ⊗WX) (|RS〉 〈RS|))

= (k − l) log q + L log q − (n− k + l) log q

= (2k + L− n− 2l) log q = 2 (L− l) log q, (3.85)
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holds; therefore,

0 < I
(
R;WX

(
ρS
))
< I (R; X) . (3.86)

In the next section I review the main results for CV QSS protocols.

3.10 CV QSS protocol

In this section, I explain the TRS03 protocol. In a ((k, n)) threshold scheme, Theorem 3.6.2

states the maximum value possible for n is 2k − 1. In addition, Theorem 3.6.1 states that

any ((k, n)) scheme can be constructed by removing shares from a ((k, 2k − 1)) scheme.

Furthermore, any quantum secret sharing scheme can be reduced to ((k, 2k − 1)) threshold

schemes [7]. Therefore, without loss of generality, in this section I restrict my discussion

to ((k, 2k − 1))-threshold schemes

In a ((k, 2k − 1))-threshold scheme, the dealer holds a pure secret state |ψ〉 ∈ H and

encode the quantum secret into an entangled state of 2k − 1 modes of the electromagnetic

field by combining it with 2k − 2 ancillary states. The dealer then distributes them among

the n players, each of which receive one share, and at least k players must combine their

shares in an active interferometer to extract the secret state.

Let H (2k−1) be the tensor product of 2k − 1 copies of H (1), and suppose each player

owns one of these copies. Let me define F2k−1 as the real linear space of coordinate functions

for R2k−1. Then a system of Euclidean coordinates

x = (x1, x2, . . . , x2k−1)
T ∈ R2k−1 (3.87)

is equivalent to picking an orthonormal basis (f1, f2, . . . , f2k−1) for F2k−1 such that

fi (x) = xi, (3.88)

where

fi · fj = δij, (3.89)
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for coordinate x given by Eq. (3.87).

Initially, the dealer starts with a tensor product

|Ψ〉 = |ψ〉 ⊗ |φa〉 · · · |φa〉︸ ︷︷ ︸
k−1

⊗ |φ1/a〉 · · · |φ1/a〉︸ ︷︷ ︸
k−1

, (3.90)

where |ψ〉 is the secret state and

φa (x) = 〈x|φa〉 =
(
πa2
)−1/4

e−x
2/2a2 . (3.91)

This state (3.121) can be written as

|Ψ〉 =

∫
dnxΨ(x) |x1〉 ⊗ · · · ⊗ |xn〉

=

∫
dnx Ψ (x) |f1(x)〉 ⊗ · · · ⊗ |fn(x)〉 , (3.92)

where

Ψ (x) = ψ (x1)
k∏

i=2

φa (xi)
n∏

i=k+1

φ1/a (xi) . (3.93)

Encoding. The dealer then performs the encoding using a linear canonical point transfor-

mation

fj 7→ gi =
∑

j

gijfj. (3.94)

The corresponding unitary transformation then maps the state |Ψ〉 to

|det g|1/2
∫

dxnΨ (x) |g1(x)〉 ⊗ · · · ⊗ |gn(x)〉 . (3.95)

The dealer, however, has to choose {gi} such that any k players are able to disentangle the

secret state but that any lesser number is unable to do so. Let ιi be the orthogonal projection

of each vector gi into the space spanned by the vectors {f1, . . . , fn}. The vectors {gi} then

must be chosen such that any k vectors from the set {f1, ι1, . . . , ιn} are linearly independent.

This linearly independence condition guarantees that any k players are able to extract the

secret in the case of infinitely large amount of a.
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For convenience, let us express F2k−1 ∈ R2k−1 as a direct sum of three mutually orthogonal

subspaces

Fn = X⊕ Y⊕ Z, (3.96)

where X is the one-dimensional space spanned by f1 and, Y and Z are k − 1-dimensional

spaces spanned by {f2, . . . , fk} and {fk+1, . . . , fn} respectively. Now, let us relabel {xi}

coordinates as (x, yi, zi) coordinates with

x =x1, yi = xi+1, zi = xk+i, (3.97)

where i = 1, . . . , k − 1. The wave-function Ψ is then

Ψ (x) = ψ (x)
k−1∏

i=1

φa (yi)φ1/a(zi). (3.98)

Without loss of generality, let us assume the first k players collaborate to retrieve the

quantum secret. The players perform the linear coordinate transformation

gi 7→ ξi =
∑

j

ξijfj, (3.99)

assuming ξi = gi for all i > k.

For convenience, let us define a decomposition for every vector ξi as a sum of three

mutually orthogonal vectors, each of which belongs to subspaces X, Y and Z

ξi = αi + βi + γi. (3.100)

Equivalently, I write Eq. (3.100) as

ξi (x) = αix+
∑

j

βijyj +
∑

j

γijzj. (3.101)

In the case that the vectors gi are chosen in such a way that any k vectors from the set

{f1, ι1, . . . , ιn} are linearly independent, the players can design the transformation gi 7→ ξi

such that

α1 =1, β1 = 0,

αi+1 =αk+i, βi+1 = βk+i, (3.102)
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where i = 1, . . . , k − 1. The transformation (3.102) extracts the secret for sufficiently large

values of parameter a. Another way of looking at a quantum secret-sharing protocol is to

view it as an error correcting code that corrects erasure errors. In the next section, I provide

the basic results of quantum error correction codes.

3.10.1 Example: the (2,3) threshold scheme

In this section I explain TRS03 protocol using an example of the ((2, 3)) threshold scheme in

which there are three players in total and any two of them can fully reconstruct the quantum

secret.

The initial state of dealer |φ〉0 contains the quantum secret and two quadrature states,

one infinitely squeezed in quadrature p̂ and the other one infinitely squeezed in quadrature

q̂; hence

|φ〉0 =

∫

R2

dx1dx2ψ (x1) |x1〉1 |x2〉2 |0〉3 . (3.103)

Then the dealer chooses a linear transformation g that satisfies the condition discussed

in ¶3.10 as

g =




1√
2

1
2

1
2

1√
2
−1

2
−1

2

0 − 1√
2
− 1√

2



. (3.104)

By performing the linear transformation g on |φ〉0, the dealer encodes |φ〉0 into

|φ〉 =

∫

R2

dx1dx2ψ (x1) |
x1√

2
+
x2
2
〉
1

| x1√
2
− x2

2
〉
2

| x2√
2
〉
3

. (3.105)

After encoding, the dealer distribute the shares to the players, each of whom receives one

share.

If the first and second players collaborate to extract the secret, they can use a 1:1 beam

splitter in order to combine their shares and extract the quantum secret. Particularly, players
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Figure 3.3: The encoding transformation corresponding to (2, 3) CV QSS.

1 and 2 perform the passive transformation

1√
2




1 1

1 −1


 . (3.106)

After performing the transformation (3.106), the resultant state |φ12〉 contains the quantum

secret in mode 1, namely

|φ12〉 =

∫

R2

dx1dx2ψ (x1) |x1〉1 |
x2√

2
〉
2

| x2√
2
〉
3

. (3.107)

Players 1 and 3 employ the active transformation


√

2 −1

1 −
√

2


 (3.108)

in order to extract the quantum secret. The resultant state after performing the transfor-

mation (3.108) is

|φ13〉 =

∫

R2

dx1dx2ψ (x1) |x1〉1 |
x1√

2
− x2

2
〉
2

| x1√
2
− x2

2
〉
3

. (3.109)

Therefore, the quantum secret is reconstructed in mode 1. The reconstruction of quantum

secret using players 2 and 3 is similar to the extraction of quantum secret by players 1 and

3. In the next section I describe quantum error correcting codes, and their relationship to

quantum secret-sharing protocols.

3.11 Quantum error correcting codes

In this section, I provide the basic results of quantum error correction [46–48]. The aim of

error correction is to protect information that is sent over unreliable communication channels.
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Quantum information is susceptible to errors due to interaction with an environment or

eavesdropper, as well as imperfect physical devices. In error correction, the information is

encoded into a codeword, which is used to detect and correct errors. The set of codewords

is defined as a code.

The simplest example of a noisy classical channel is a bit flip channel [2]. This channel

flips the data with probability p and transfer it correctly with probability 1−p. Suppose Alice

wants to send 1 bit at a time through this noisy channel, but Alice does not want Bob receive

the wrong message due to errors. In this case, Bob and Alice can use an error correcting

code to decrease the probability of error. The simplest example of an error correcting code

is the 3 bit repetition code. The encoding is simply to repeat the bit three times; i.e.,

0 7→ 000, 1 7→ 111, (3.110)

and decoding is by taking the most frequent bit, which is the same as computing the majority

function. If 0 or 1 of the bits are flipped during transmission, Bob is able to recover the

original bit sent by Alice. The probability of error changes from p to 3p2 − 2p3. This is a

reduction in error when p < 1/2. If p = 1/2 then the channel is useless for transmitting the

information and if p > 1/2 Bob can flip every bit before decoding that converts p to 1−p [2].

This method however, can not be applied for quantum error correction as the no-cloning [49]

theorem prevents the copy of an arbitrary quantum state.

A quantum error correcting code can be designed by utilizing an unitary operation that

maps a quantum state into a subspace, which is called coding space denoted by C, of a

larger-dimensional Hilbert space. For instance, consider the following unitary operation that

encodes an arbitrary qubit with two ancillary states in the codeword of three qubits

Uenc : (α |0〉+ β |1〉) |0〉 |0〉 7→ α |000〉+ β |111〉 . (3.111)

This unitary operation implements a three-qubit code. The coding space corresponding to

this encoding operation is the two-dimensional subspace of a larger 23-dimensional Hilbert
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space. This encoding operation does not have any conflict with no cloning theorem as there

is no m such that (α |0〉+ β |1〉)⊗m = α |000〉+ β |111〉.

This code can correct a bit flip error if it takes place on a single qubit. If one of the qubits

flip, I am able to know on which qubit the error takes place by comparing the state of the

first qubit by second qubit and the state of second qubit by third qubit via measurements.

I measure the differences between two states in order to not collapse the superpositions.

Another possible error is the phase-flip error. The phase flip acts the same as a bit-flip

error but in the {|+〉 , |−〉} basis. The three-qubit code can correct a phase-flip error if I

apply the encoding operation in the |+〉 and |−〉 basis; i.e.,

Uenc : (α |0〉+ β |1〉) |0〉 |0〉 7→ α |+ + +〉+ β |− − −〉 . (3.112)

In this basis, the effect of phase-flip error is the same as bit-flip error in the |0〉 and |1〉 basis;

therefore, it can be corrected using the same method.

To correct both bit-flip and phase-flip errors, I can use both encoding procedures (3.111)

and (3.112) at once, which is called Shor’s 9-qubit code. The state of a qubit can be encoded

by

|0〉 7→ |0̄〉 =
1

2
√

2
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉), (3.113)

|1〉 7→ |1̄〉 =
1

2
√

2
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉). (3.114)

In the next section, I discuss the necessary and sufficient condition that a QECC should

satisfy in order to be able to correct errors successfully.

3.11.1 Necessary and sufficient condition for QECC

A code that encodes k qubits into n qubits has 2k basis codewords. Each of these basis

codewords corresponds to one of the bases of original states. Because of linearity (if a

quantum code can correct errors F and E, it can also correct any linear combination of
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them) feature of quantum error correcting codes, I only need to check whether a code can

correct a basis of errors. One appropriate basis is the set of tensor products of σx, σy, σz, I.

In this section, I explain the necessary and sufficient conditions for successful error cor-

rection of a coding space C [46–48]. Consider two errors Ea and Eb act on two different basis

codewords |ψi〉 and |ψj〉, respectively. I should always be able to distinguish Ea |ψi〉 from

Eb |ψj〉 , as otherwise, I might confuse them. Therefore

〈ψi|E†aEb |ψj〉 = 0, (3.115)

when i 6= j for correctable errors Ea.

However, the condition (3.115) is necessary but not sufficient. The measurement that is

performed to learn about the error should not exhibit any information about the actual state

of the code as such a measurement will disturb superpositions of the basis states. I learn

about the error by measuring 〈ψi|E†aEb |ψi〉 for all possible errors Ea and Eb. Therefore, this

quantity should be the same for all the basis codewords. Hence

〈ψi|E†aEb |ψi〉 = 〈ψj|E†aEb |ψj〉 . (3.116)

Eqs. (3.115) and (3.116) can be combined into a single equation as

〈ψi|E†aEb |ψj〉 = Cabδij, (3.117)

where |ψi〉 and |ψj〉 are all possible basis codewords. Also, Ea and Eb are all possible errors.

The distance d of a QECC is the minimum weight of pauli operator E such that Eq. (3.117)

does not hold. A quantum code with distance equal to 2t+ 1 can correct maximum t errors

no matter where the location of errors are. A code that encodes k qubits in n qubits is

depicted by [[n, k, d]].

Sometimes I know where the location of errors are, perhaps I know some qubits are more

likely to be damaged by errors. An erasure error is a general error on a known coordinate.

Let C be a subspace of a Hilbert space H . Then C corrects erasure errors on a set K of
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coordinates iff

〈ψ|E |ψ〉 = c (E) , (3.118)

for all E acting on K. A code with distance d can correct d− 1 erasure errors.

Quantum secret sharing as a quantum error correcting code. Another way of looking at

a quantum secret-sharing protocol is to view it as an error correcting code that corrects

erasure errors. A code that corrects erasure errors reconstructs the original qubit even if

certain number of qubits are lost from the encoding. Similarly, in a quantum secret-sharing

protocol, the secret can be reconstructed by excluding certain number of secret shares. For

instance, a [[2k − 1, 1, k]] stabilizer code is considered as a ((k, 2k − 1)) threshold quantum

secret-sharing protocol. In the next section, I explain continuous-variable quantum error

correcting codes.

3.12 Continuous-variable quantum error correction with linear optics

In the final section of this chapter, I consider the extension of DV quantum error correction

to the CV realm as a direct generalization of the qubit redundancy codes [19, 20, 50]. Par-

ticularly, I describe a CV error correction code that protect a quantum state from arbitrary

displacements in phase space. Remarkably, this code is realizable using ony linear-optical

elements, such as squeezing.

I consider a 9-wave-packet code introduced by Braunstein [19,20], which is the continuous-

variable extension of Shore’s original 9-qubit code. This code is a concatenation of majority

codes for position errors and momentum errors. These codes rely on the fact that a single

non-zero mode x can be distributed over three modes according to

|x, 0, 0〉 → | x√
3
,
x√
3
,
x√
3
〉 . (3.119)

The distribution (3.119) can be implemented with a three-mode beam splitter, called a
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tritter T . The T acts on the three quadrature operators according to

T =
1√
3




1 1 1

1 e
2iπ
3 e

4iπ
3

1 e
4iπ
3 e

8iπ
3



. (3.120)

In order to obtain an intuition about the 9-wavepacket code, let us show how this 3-

𝓣

|𝑥⟩

|0⟩

|0⟩

𝓣

𝓣

𝓣

|0⟩
|0⟩

|0⟩
|0⟩

|0⟩
|0⟩

Figure 3.4: The optical implementation of a nine-wavepacket encoder.

wavepacket code can correct displacement errors. Consider an encoded state

| x√
3
,
x√
3
,
x√
3
〉 . (3.121)

As

1 + e
2iπ
3 + e

4iπ
3 = 1 + e

4iπ
3 + e

8iπ
3 = 0, (3.122)

performing the inverse tritter T † to the encoded state (3.121) reconstruct the input state |x, 0, 0〉.

Now, assume one of the modes in the encoded state (3.121) undergoes a displacement er-

ror δ√
3

in the position quadrature. Without loss of generality, let us consider the case where
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Figure 3.5: The complete realization of the 9-wavepacket code. The corrective displacement
operator depends on the syndrome provided by the measurement outcomes of the eight
homodyne detections.

second mode experiences the error. Then the state after decoding is

T | x√
3
,
x+ δ√

3
,
x√
3
〉 =




x+ δ
3

e
2iπδ
3

δ
3

e
4iπδ
3

δ
3



. (3.123)

As e
2iπδ
3 and e

4iπδ
3 are pure phases, the ideal measurement outcomes in second and third

modes are δ
3
. According to these outcomes, I then displace the position quadrature of the

undetected mode by an amount of −δ√
3
.

This code does not protect the encoded state against displacements in the momentum

quadrature; therefore, I concatenate this code with a similar code for momentum. In order

to do so, I apply the Fourier transform

F |x〉 =
1√
2π~

∫ +∞

−∞
dq e

i
~xq |q〉 , (3.124)

on the three output of the tritter. I then couple each mode to two modes in the position

eigenstates with eigenvalue zero, again using the tritter (3.120). The total encoding operation
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is

T789T456T123F7F4F1T147, (3.125)

and the decoding operation is the adjoint. The state after encoding procedure is

|xenc〉 =
1√

(2π~)3

∫
dx1dx2dx3e

i
~ (x1+x2+x3)x |x1

3
,
x1
3
,
x1
3
,
x2
3
,
x2
3
,
x2
3
,
x3
3
,
x3
3
,
x3
3
〉 . (3.126)

In the 9-wavepacket code, I perform eight position-quadrature measurements on the eight

auxiliary modes from which I obtain a list of real numbers that constitute the syndrome.

The entire quantum error correction code is shown in Fig. 3.5 . As the Fourier transform

can be implemented with a simple phase shift, the entire encoder can be implemented using

passive linear optics acting on highly squeezed states in the position quadrature. Similarly,

the decoding can be implemented with passive linear optics and homodyne detection.

I have to take into account the fact that any optical implementation can achieve only

finite squeezing in the auxiliary modes. Clearly, the amount of squeezing in the auxiliary

modes must be such that the error in the undetected output mode is smaller than the error

that would have been accumulated without error correction. In the next chapter I develop

a method for quantifying quantum information leakage due to the limitation of squeezing.

The method can be used to analyze the effect of finite squeezing in the auxiliary modes on

the performance of CV QSS and CV QECC that rely on linear optics.

3.13 Summary

In chapter three, I reviewed the main results of secret-sharing protocols. I began by in-

troducing classical secret sharing. I then discussed the information theoretic description of

classical secret-sharing protocols along with classical ramp secret sharing, which reduces the

size of the shares at the cost of leakage of information to unauthorized players. Then I ex-

plained ramp quantum secret-sharing protocols. Subsequently, I introduced discrete-variable

quantum secret sharing. Then I discussed the information-theoretic description of quantum
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secret-sharing protocols, which has a crucial role in defining and evaluating secret-sharing

protocols. Then I explained the TRS03 protocol. Afterwards, I described the aforementioned

protocol in the Heisenberg picture, which is useful for analysing the effect of finite squeezing

in the dealers encoding process. Finally, I explained the quantum error correcting codes and

their relationship with quantum secret-sharing protocols.
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Chapter 4

Continuous-variable ramp quantum secret sharing

In this chapter, I begin by elaborating on the approach I use to introduce CV ramp quantum

secret sharing protocol and its corresponding certification test. In Sec. 4.1, I introduce a CV

RQSS protocol and how to certify. I discuss the success criterion of the certification protocol.

Furthermore, we specify what the parties need to do to complete the certification. In Sec. 4.2

I present our main results. Our first result is a CV version of quantum mutual information.

This CV quantum mutual information is then used to quantify quantum-information leakage

for Gaussian states and operations. Based on this leakage characterization, we introduce a

certification test, in the framework of quantum-interactive proofs, and provide a practical

test to implement this test.

4.1 Approach

In this section, we introduce a CV RQSS protocol and how to certify. We discuss the success

criterion of the certification protocol. Furthermore, we specify what the parties need to do

to complete the certification.

4.1.1 Continuous-variable ramp quantum secret-sharing protocol with Gaussian states and

operations

Here we modify the discrete-variable RQSS protocol discussed in §3.9 into a continuous-

variable counterpart. We choose Gaussian states and operations, which are convenient

mathematically due to the elegance of techniques based on the semidirect product of the

symplectic group and the Heisenberg-Weyl group [30]. However, the price paid for this

convenient is discarding potentially powerful universal operations [31]. Whereas in the dis-
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crete case specification of number of players and threshold condition L suffices to determine

the cardinality of the three structures, the CV case is more complicated due to squeezing

limitations.

4.1.1.1 Quantum-optical resources

The optical realization comprises displacers that generate Heisenberg-Weyl group elements

and single-mode squeezers, passive beam-splitters and phase-shifters that generate the semidi-

rect product of the symplectic group [30]. The inputs are vacuum states of light. For the

closed disk

Ds :=
{
ζ ∈ C : |ζ| ≤ s2

}
, s ∈ R+, (4.1)

the dealer’s and players’ single-mode squeezers (2.19) have limited squeezing capability cor-

responding to ζ ∈ Ds, with s = sDmax for the dealer and s = sPmax for the player.

4.1.1.2 Dealer’s task

Here we specify the dealer’s task in the RQSS protocol. Dealer’s tasks include preparing a

quantum secret, choosing an access structure, encoding the quantum secret and distributing

shares.

Two-mode squeezed-vacuum source. The dealer prepares a TMSV state (2.22) drawn ran-

domly from

QD :=
{
|ζ〉TMSV ; ζ ∈ DsDmax

}
. (4.2)

The dealer’s task is to encode one mode of this quantum state into an n-mode entangled

state by mixing it with n−1 ancillary states in an n-mode active interferometer. The dealer

then sends one share to each of the players in such a way that the elements of power set

of players are divided into three predetermined mutually disjoint sets known as authorized,

intermediate and forbidden structures.

In order for dealer to prepare the TMSV randomly, first, he needs to decide the complex

two-mode squeezing parameter ζ = seiθ (2.21), where s is bounded by sDmax. The dealer
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generates two random numbers a, b ∈ [0, 1]. Then the dealer assigns

s←
√

2asDmax, θ ← 2πb. (4.3)

Choosing a useful, feasible access structure. The dealer chooses an access structure Γ based

on the desired application. The dealer then runs an algorithm that accepts Γ, covariance

matrix of TMSV state V , sDmax and sPmax as input and yields the encoding transformation

or null as output. The dealer then performs the encoding transformation and distributes the

shares among players.

4.1.1.3 Players’ task

The players’ task in any authorized set is to reconstruct the quantum secret. One player is

assigned to hold the secret after reconstruction. The aforementioned player forms a structure

with other players in the authorized set and perform a Gaussian unitary operation on their

shares such that the state of the share belongs to assigned player become the same as the

original secret state. The players in any intermediate set are allowed to partially reconstruct

the secret state. Furthermore, the players in a forbidden structure should not gain any

information about the quantum secret whatsoever.

4.1.2 Certification protocol

In this subsection we introduce a certification protocol that ascertains whether the RQSS

protocol succeeds. The success criterion is discussed in this subsection. We specify what the

parties need to do to complete the certification.

4.1.2.1 Agents and resources

In this subsection, we establish the agents of the certification protocol, namely, the dealer,

the players and the referee who is a skeptical certifier. Furthermore, we specify available

resources for each party.
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The dealer and players share trusted error-free classical and quantum communication

channels between each other, and the referee also shares trusted error-free classical and

quantum communication channels with each player and with the dealer. In our continuous-

variable setting, the referee possesses single-mode homodyne detectors [32]. Henceforth, we

only refer explicitly to homodyne measurement, without loss of generality.

The dealer holds a classical computer to choose the access structure Γ discussed in

¶4.1.1.2, and the referee possesses a classical computer to run the certification algorithm.

4.1.2.2 Dealer’s encoding and announcement

The dealer chooses an access structure Γ discussed in ¶4.1.1.2 and announces Γ to the players

and to the referee. The dealer encodes shares based on the choice of Γ and the quantum

secret, such as a randomly chosen state in the parameter disk (4.2) and announces this

encoding to the players.

4.1.2.3 Rounds

In this subsubsection, we define ‘rounds’, which are repetitions of the protocol between the

dealer, player and referees. First the dealer prepare a suitable two-mode Gaussian state,

which is the same two-mode Gaussian state for all rounds, and sends one mode to the referee

and the other mode into an encoder, which is also unchanging over all rounds. This encoder

creates shares that are sent to each player.

After the shares are received by players, the referee requests a subset of players, which

can be authorized, forbidden or intermediate, to try to reconstruct the quantum secret and

then send their shares to the referee. The referee then performs single-mode homodyne

measurements and save the measurement results. Rounds continue until the referee lets the

dealer and players stop.
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Figure 4.1: Two-mode entangled state with one share, or mode, sent directly to the referee
and the other share encoded for the players. The referee requests a subset of players to decode
their shares and send this result to the referee who decides whether they have succeeded or
not.

4.1.2.4 Referee’s certification strategy

The referee’s task is to certify the protocol by ascertaining the dealer’s announcement that

the access structure is the announced Γ. The referee conducts the test by requiring many

rounds per instance, with each instance corresponding to testing whether a fixed subset of

players is in the authorized, intermediate or forbidden structures determined by Γ. Due

to the statistical nature of the test, the referee cannot be 100% sure that the inference is

correct; rather the referee makes a decision if the probability of being correct is above some

threshold value, itself strictly greater than 1/2.

Sufficiency condition. When a sufficiency condition is met to ascertain whether the subset

of players are determined to be in a structure compatible with the dealer’s announced Γ, the

referee tells the players to stop. If that instance passes the test, the referee announces a new

subset of players to test and the rounds repeat until the referee has enough data to pass the

sufficiency test. If the instance results in the dealer and players failing, the procedure stops

as the team of dealer and players has failed the test. The dealer and players pass only if

every instance passes.
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4.1.3 Summary of approach

Here we modified the discrete-variable RQSS protocol as the CV counterpart in the case of

Gaussian states and operations. Furthermore, we introduced a certification protocol that

ascertains whether the RQSS protocol succeeds. Also we discussed the success criterion and

we specified what the parties need to do to complete the certification.

4.2 Results

In this section we present our main results. Our first result is a CV version of quantum mu-

tual information. This CV quantum mutual information is then used to quantify quantum-

information leakage for Gaussian states and operations. Based on this leakage characteriza-

tion, we introduce a certification test, in the framework of quantum-interactive proofs, and

provide a practical test to implement this test.

4.2.1 CV quantum mutual information

In this subsection, we develop the quantum mutual information for the CV RQSS quantum

access structures and employ it to quantify quantum-information leakage for Gaussian states

and operations. We define the intermediate structure corresponding to CV RQSS protocols

based on quantum mutual information.

Let |ψ〉RS be a pure two-mode Gaussian state and let the quantum secret be ρs (3.58).

Then the intermediate structure is

I := {X ; 0 < I (R; X) < I (R; S)} , (4.4)

and the authorized and forbidden structures are obtained by

A :=
{
Y ∈ 2P ; I(R; S) = I(R; X)

}
, (4.5)

and

F :=
{
X ∈ 2P ; I(R; X) = 0

}
. (4.6)
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We now calculate mutual information between the referee and any multiplayer structure

for TRS03. We consider a two-mode entangled state (4.1) such that one mode is used for the

secret and the other mode is used for the reference system. We choose this system because

that way the referee can do a sensitive entanglement check to verify that the reconstructed

state is entangled with a reference system as it should be. To keep matters simple, while

maintaining the generality of the method, we investigate in particular a TMSV with one

mode being the quantum secret and the other mode being the reference system.

We solve the quantum mutual information between an extracted secret obtained by any

player structure with k elements and the reference system. In order to do so, by using

Eq. (2.4), we transform the density function of the reference system and the extracted se-

cret (A.4) into a Gaussian Wigner function represented by a mean vector and a covariance

matrix from which the symplectic eigenvalues (2.12) are calculated.

The symplectic eigenvalues (2.12) are inserted into Eq. (2.27) in order to calculate the

local and global von Neumann entropy of the extracted secret and reference system from

which the quantum mutual information is solved (2.35). Figure 4.2 shows the resultant

quantum mutual information versus squeezing parameter in the case of |ζ| = 2. In §4.2.2 we

employ the CV quantum mutual-information approach to introduce a certification technique

for CV RQSS schemes.

4.2.2 Certification test for RQSS protocols

In this subsection, we establish our model for certification tests. Specifically, we introduce

certification tests for A, F and I, respectively.

RQSS certification for authorized structure. Let IAT be a threshold quantum mutual infor-

mation chosen by the referee. This quantum mutual information quantifies the minimum

knowledge that players in an access structure are able to obtain about the secret. Also let

β > 0 be a maximal failure probability. A test, which receives as input copies of some X,
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Figure 4.2: Mutual information versus the squeezing parameter ln a for one mode of a two
mode squeezed vacuum state.

and yields accept or reject, is a test for certifying whether X ∈ A , if, with probability at

least 1− β, it both rejects every ρX for which

I (X; R) < IAT (4.7)

and accepts if

I (X; R) ≥ IAT + δ. (4.8)

These conditions correspond to soundness (4.7) and completeness (4.8)

RQSS certification for forbidden structure. Let IFT be a threshold quantum mutual infor-

mation chosen by the referee, which quantifies the maximum knowledge that players in the

forbidden structure can obtain about the secret. A test, which receives as input copies of

some ρX , and yields accept or reject, is a certification test for certifying whether X ∈ F , if,
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with probability at least 1− β, it both accepts every X for which

I (X; R) ≤ IFT − δ, (4.9)

and rejects a different ρX for

I (X; R) > IFT . (4.10)

These conditions are completeness (4.9) and soundness (4.10).

RQSS certification for intermediate structure. A test that receives as input copies of some X

and yields accept or reject is a test for certifying whether X ∈ I if for a least probability

given by 1− β, it both rejects every X for

I (X; R) ≤ IFT − δ, (4.11)

or

I (X; R) ≥ IAT + δ. (4.12)

and accepts if

IFT < I (X; R) < IAT . (4.13)

Conditions (4.11) and (4.12) are soundness and condition (4.13) is completeness. In the next

subsection we employ our certification model to propose a practical test to ascertain RQSS

protocols.

4.2.3 Practical realization of the certification test

In this subsection, we propose a practical algorithm, for determining if X is in A, I or F .

We prove propositions that the algorithm is both sound and complete. Furthermore, we

provide a sufficiency test for the referee to know how many runs are required for her to have

sufficient information to check if a particular element is in A, I or F .
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4.2.3.1 Steps for certification

Below we provide the steps for certifying RQSS. Before commencing certification, the referee

numerically labels each element of the power set and proceeds to test each labelled element

of the power set in order according to this labelling. For simplicity, and without loss of

generality, we assume that each player holds one share; thus, the number n of modes equals

one more than the number of players, hence shares, in the given subset. This extra mode

allows a single-mode reference field in addition to the modes held by the players.

The referee conducts a test that requires many rounds (4.1.2.3) for each power-set ele-

ment. The test evaluates whether a fixed subset of players is in A, I or F . In order to do

so, the referee estimates the quantum mutual information Ie (R, Se) between the reference

state ρR and the extracted secret state ρSe such that

Ie (R; Se) ∈ [I (R; Se)− ε, I (R; Se) + ε] , (4.14)

with a failure probability β < 1/2. Algorithm 4 accepts Ie (R, Se) as input and determines

the structure of the power-set element. If the test result is consistent with the dealer’s

announcement that the access structure is the announced Γ, the referee announces a new

subset of players to test; otherwise the procedure halts as the team of dealer and players has

failed the certification test.

To estimate Ie (R; Se), the referee estimates the expectation values corresponding to each

element of the matrices

G =




2x̂2
1

(x̂1+x̂2)
2

2
x̂1x̂3 + x̂3x̂1 x̂1x̂4 + x̂4x̂1

(x̂1+x̂2)
2

2
2x̂2

2 x̂2x̂3 + x̂3x̂2 x̂2x̂4 + x̂4x̂2

x̂1x̂3 + x̂3x̂1 x̂2x̂3 + x̂3x̂2 2x̂2
3

(x̂3+x̂4)
2

2

x̂1x̂4 + x̂4x̂1 x̂3x̂4 + x̂4x̂3
(x̂3+x̂4)

2

2
2x̂2

4



, (4.15)

and

C =

(
x̂1 x̂2 x̂3 x̂4

)
, (4.16)
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with x̂ defined in Eq. (2.2). The first and second modes hold reference and reconstructed

secret states, respectively. The referee’s result is then used to estimate the covariance ma-

trix (2.9) of ρRSe according to [51]

V RSe
ij = 〈Gij〉 − 〈Ci〉〈Cj〉, ij /∈ {12, 21, 34, 43}, (4.17)

V RSe
ij = 2〈Gij〉 − 〈Gii〉/2− 〈Gjj〉/2− 〈Ci〉〈Cj〉, ij ∈ {12, 21, 34, 43}. (4.18)

This covariance matrix is used to calculate the entropies of ρSe , ρR and ρRSe using Algorithm 1.

The resultant entropies are then inserted into the standard formula for quantum mutual

information (2.41).

The expectation value of each element of (4.15) and (4.16) is calculated by performing

multiple homodyne measurements on identical and independent copies of ρRSe and taking the

average of the measurement results. Using Chebyshev’s inequality [51], the referee calculates

an upper-bound for the estimation error of each expectation value as a function of number

of rounds and β. Subsequently, this estimation error is then used to calculate the maximum

expectation values’ estimation error εmax of covariance-matrix entries via the standard for-

mula for error propagation. Afterwards she calculates the bound on the estimation error of

entropies following Algorithm 2. The estimation error of Ie (R; Se) is bounded by summation

of the entropies estimation errors. The rounds continue until the estimation error of Ie (R; Se)

is below a prespecified acceptable ε error. acceptable ε error.
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Algorithm 1 Continuous-variable quantum entropy (HvN).

Input:

n ∈ N . Number of modes

V ∈ R2n × R2n . Covariance matrix

Ω ∈ Z2n × Z2n (2.3)

Output:

HvN ∈ R+ . von Neumann entropy

function vonNeumannH(V )

ν← Eigenvalues+ (iΩV ). . Calculates positive eigenvalues.

ν± ← ν±1
2

.

return HvN ← ν+ · log ν+ + ν− · log ν−.

end function

Algorithm 2 Upper bound of HvN estimation error.

Input:
n ∈ N . Number of modes
V ∈ R2n × R2n . Covariance matrix
εmax . Maximum estimation error of covariance matrix elements

Output:
Hupper

vN,error ∈ R+ . Upper bound of QMI estimation error
function Hupper

vN,error(V , εmax)
σmax ← maximal singular value of V .
σmin ← minimal singular value of V .

return Hupper
vN,error← κ (1 + log (2nσmax)) 2nεmax. . κ = σmax

σmin
is always finite.

end function
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Algorithm 3 Estimation of QMI.

Input:
T ∈ N . Number of trials
ρ⊗T ∈ B

(
L2(R2T )

)
. T copies of the joint state ρ for the reference and players’

reconstructed state
ε ∈ R+ . Error tolerance for estimated QMI
Tol ∈ (0,1/2) . Failure probability tolerance
σ ∈ R+ . A uniform upper bound on the standard deviations of measurement results
HomMeas[ρ, x,Mode, θ] . Homodyne measurement on mode Mode∈ {0, 1} with
respect to local-oscillator phase θ; replaces ρ by some |x〉 〈x| with probability 〈x| ρ |x〉

Output:
EstQMI ∈ R+ . Estimated QMI
procedure EstimateQMI(ε,Tol,T, ρ⊗T , σ,HomMeas[ρ, x,Mode, θ])

for i from 1 to 2 do
for j from 1 to 2 do

CovRecon [ij]← 0 . Initialize covariance matrix for the players’
reconstructed state including position-position, position-momentum, momentum-position
and momentum-momentum

CovRef [ij]← 0 . Initialize covariance matrix for the
reference state including position-position, position-momentum, momentum-position and
momentum-momentum

end for
end for
for i from 1 to 4 do

HomResult [i]← 0 . Initialize vector comprising sums of in-phase and
out-of-phase homodyne measurements of modes 0 and 1

for j from 1 to 4 do
CovRecRef [ij]← 0 . Initialize joint reconstructed-reference

covariance matrix including position-position, position-momentum, momentum-position
and momentum-momentum

SecondMom[ij]← 0 . Second-moment matrix defined in Eq. (4.15)
end for

end for

ε←
⌈
σ
√

1

l(1−(1−Tol)1/14)

⌉
. Maximum estimation error of measurement results

expectation values with a least probability Tol
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l← 0 . Number of times that the referee performs the sufficiency test
Rho← ρ . Initialize Rho to the first of input ρ⊗T

εQMI ← 2ε . Initialize to any value greater than ε
for r from 1 to T do

while εQMI > ε do
l← l + 1 . Increment the sufficiency-test counter
if 14l > T then . Referee measures 14 copies before ascertaining sufficiency

return Fail
Exit . Abort procedure if fewer than 14 copies remain

end if
if r − 1 mod 14=0 then . Measure one of T copies of ρ

Call HomMeas(Rho, x, 0, 0) . In-phase homodyne measurement of the
reconstructed state

HomResult[1]← HomResult[1] + x . Sum detection outcomes
else if r − 2 mod 14=0 then . Measure one of T copies of ρ

Call HomMeas(Rho, x, 0, π
2
) . Out-of-phase homodyne measurement of

the reconstructed state
HomResult[2]← HomResult[2] + x . Sum detection outcomes

else if r − 3 mod 14=0 then . Measure one of T copies of ρ
Call HomMeas(Rho, x, 1, 0) . In-phase homodyne measurement of the

reference state
HomResult[3]← HomResult[3] + x . Sum detection outcomes

else if r − 4 mod 14=0 then . Measure one of T copies of ρ
Call HomMeas(Rho, x, 1, π

2
) . Out-of-phase homodyne measurement of

the reference state
HomResult[4]← HomResult[4] + x . Sum detection outcomes

else if r − 5 mod 14=0 then . Measure one of T copies of ρ
Call HomMeas(Rho, x, 0, 0) . In-phase homodyne measurement of the

reconstructed state
SecondMom[11]← SecondMom[11] + 2x2

else if r − 6 mod 14=0 then . Measure one of T copies of ρ
Call HomMeas(Rho, x, 0, 0) . In-phase homodyne measurement of the

reconstructed state
y ← x
Call HomMeas(Rho, x, 1, 0) . In-phase homodyne measurement of the

reference state
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SecondMom[13]← SecondMom[13] + 2xy
SecondMom[31]← SecondMom[13]

else if r − 7 mod 14=0 then . Measure one of T copies of ρ
Call HomMeas(Rho, x, 0, 0) . In-phase homodyne measurement of the

reconstructed state
y ← x
Call HomMeas(Rho, x, 1, π

2
) . Out-of-phase homodyne measurement of

the reference state
SecondMom[14]← SecondMom[14] + 2xy
SecondMom[41]← SecondMom[14]

else if r − 8 mod 14=0 then . Measure one of T copies of ρ
Call HomMeas(Rho, x, 0, π

2
) . Out-of-phase homodyne measurement of

the reconstructed state
SecondMom[22]← SecondMom[22] + 2x2

else if r − 9 mod 14=0 then . Measure one of T copies of ρ
Call HomMeas(Rho, x, 0, π

2
) . Out-of-phase homodyne measurement of

the reconstructed state
y ← x
Call HomMeas(Rho, x, 1, 0) . In-phase homodyne measurement of the

reference state
SecondMom[23]← SecondMom[23] + 2xy
SecondMom[32]← SecondMom[23]

else if r − 10 mod 14=0 then . Measure one of T copies of ρ
Call HomMeas(Rho, x, 0, π

2
) . Out-of-phase homodyne measurement of

the reconstructed state
y ← x
Call HomMeas(Rho, x, 1, π

2
) . Out-of-phase homodyne measurement of

the reference state
SecondMom[24]← SecondMom[24] + 2xy
SecondMom[42]← SecondMom[24]

else if r − 11 mod 14=0 then . Measure one of T copies of ρ
Call HomMeas(Rho, x, 1, 0) . In-phase homodyne measurement of the

reference state
SecondMom[33]← SecondMom[33] + 2x2

else if r − 12 mod 14=0 then . Measure one of T copies of ρ
Call HomMeas(Rho, x, 1, π

2
) . Out-of-phase homodyne measurement of

the reference state
SecondMom[44]← SecondMom[44] + 2x2

else if r − 13 mod 14=0 then . Measure one of T copies of ρ
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Call HomMeas(Rho, x, 0, π
4
) . Homodyne measurement of the

reconstructed state with respect to local-oscillator phase π
4

SecondMom[12] = 2x2 − SecondMom[11]2 − SecondMom[22]2

SecondMom[21]← SecondMom[12]
elser − 14 mod 14=0 . Measure one of T copies of ρ

Call HomMeas(Rho, x, 1, π
4
) . Homodyne measurement of the reference

state with respect to local-oscillator phase π
4

SecondMom[34] = 2x2 − SecondMom[33]2 − SecondMom[44]2

SecondMom[43]← SecondMom[34]
end if
for i from 1 to 4 do

for j from i to 4 do
CovRecRef [ij]← 1

l
(SecondMom[ij]−HomResult[i]HomResult[j])

CovRecRef [ij]← CovRecRef [ji]
end for

end for
for i from 1 to 2 do

for j from 1 to 2 do
CovRecon [ij]← CovRecon [ij]
CovRef [ij]← CovRecon [i+ 2j + 2]

end for
end for

εmax ←
ε

l
maxij

√
1 + (HomResult [i])2 + (HomResult [j])2 (4.19)

εmax ←max

{
εmax,

ε

l

√
4 + (HomResult [1])2 + (HomResult [2])2, (4.20)

ε

l

√
4 + (HomResult [3])2 + (HomResult [4])2

}
(4.21)

. Via standard error propagation method
εQMI ←

∑
Q=Rp,p,R Hupper

vN,error

(
Ve,Q,εmax

)
. See Algorithm 2

end while
end forreturn EstQMI←∑

Q=R,p vonNeumannH(Ve,Q)− vonNeumannH(Ve,Rp) .
see Algorithm 1
end procedure
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Algorithm 4 Certification of RQSS protocols.

Input:

T ∈ N . Number of trials for each instance

IFT ∈ R+ . Threshold quantum mutual information for the forbidden structure

IAT ∈ R+ . Threshold quantum mutual information for all authorized structures

ε ∈ R+ . Estimation error bound of estimated QMI

Tol ∈ (0,1/2) . Maximum failure probability

P ∈ N . Cardinality of the set of players

F [J ] ∈ {0, 1, 2} . Returns J th power set of players structure claimed by the dealer (3.68)

⊗2P−1
J=1 ρ⊗TJ ∈ B

(
L2(R2PT )

)
. ρJ is the joint state for the reference and players’

reconstructed state for J th subset of players

σ ∈ R+ . A uniform upper bound on the standard deviations of measurement results

HomMeas[ρ, x,Mode, θ] . Homodyne measurement on mode Mode∈ {0, 1} with

respect to local-oscillator phase θ; replaces ρ by some |x〉 〈x| with probability 〈x| ρ |x〉

Output:

b ∈ {0, 1} . Certify (b = 1) or not certify (b = 0)

procedure Certification(IFT , I
A
T , ε, P,

⊗2P−1
J=1 ρ⊗TJ ,F[J ], σ,Tol,HomMeas[ρ, x,Mode, θ])

c← F [1]. initialize the structure of power-set elements based on referees’ test to F [1]

pass← 0 . initialize the number of power-set elements that pass the test

for J from 1 to 2P − 1 do

EstQMI← EstimateQMI
(
ε,Tol, T, ρ⊗TJ , σ,HomMeas[ρ, x,Mode, θ]

)
. see

Algorithm 3.

if

EstQMI > IAT + ε, (4.22)

then
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c← 2
else if

IFT − ε < EstQMI < IAT + ε, (4.23)

then
c← 1

else
c← 0

end if
if c = f[J ] then pass← pass + 1
else

Exit . Halt
end if

end for
if pass = 2P then

b← 1.
else

b← 0.
end if
return b

end procedure

Proposition 2. Algorithm 3 ensures

pr [|Ie (X;R)− I (X;R)| ≤ εQMI] ≥ 1− β, (4.24)

and

εQMI ∈ O
(

1√
N

)
(4.25)

for N the number of rounds.

Proof. Using Chebyshev’s inequality [51],

pr
[∣∣Ḡij − E (Gij)

∣∣ ≥ ε
]
≤σ

2

ε2l
, (4.26)

pr
[∣∣C̄i − E (Ci)

∣∣ ≥ ε
]
≤σ

2

ε2l
. (4.27)

Equations (4.26) and (4.27) equivalently are

pr
[∣∣Ḡij − E (Gij)

∣∣ ≤ ε
]
≥1− σ2

ε2l
, (4.28)

pr
[∣∣C̄i − E (Ci)

∣∣ ≤ ε
]
≥1− σ2

ε2l
. (4.29)
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Assigning

ε←




σ√
l
(

1− (1− β)
1
14

)




(4.30)

and assuming an independent identically distributed (iid) protocol delivers

pr
[
∀i, j :

∣∣C̄i − E (Ci)
∣∣ ∧
∣∣Ḡij − E (Gij)

∣∣ ≤ ε
]
≥ 1− β. (4.31)

Let εmax be the maximum estimation error of estimated covariance matrix, which is calculated

in terms of ε (4.30) via standard error propagation methods. In the following we give an

upper bound on the estimation error of quantum mutual information in terms of εmax. In

order to do so, we introduce some helpful notation and theorems used in our proofs.

For any two Gaussian states with corresponding covariance matrices VA and VB, the

entropy difference is bounded by [52]

|HvN (VA)−HvN (VB)| ≤ κ (VA)K‖VA − VB‖1, (4.32)

for

K := 1 + log

[
max

(
‖VA‖∞,

1

2

(
‖V −1A ‖−1∞ − 1

))]
. (4.33)

Also
∥∥A−1

∥∥−1
∞ ≤ ‖A‖∞ , (4.34)

holds for any covariance matrix A [53]. Hence,

1

2

(∥∥A−1
∥∥−1
∞ − 1

)
≤ ‖A‖∞ . (4.35)

By substituting Eq. (4.35) into Eq. (4.33), we obtain the perturbation bound

|HvN (VA)−HvN (VB)| ≤ κ (VA) ‖VA − VB‖1 (1 + log (‖VA‖∞)) . (4.36)

For any Q ∈ {R,P,RP}, let V e,Q and V Q be the estimated and real covariance matrices,

respectively. Then

∥∥V e,Q
∥∥
∞ ≤ ‖U‖∞ ‖Σ‖∞ ‖V ‖∞ ≤ σmax,e,Q dimV e,Q. (4.37)
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Also
∥∥V Q − V e,Q

∥∥
1
≤ εmax dimV e,Q. (4.38)

Furthermore, let us define

∆HvN (Q) := HvN

(
V Q
)
−HvN

(
V e,Q

)
, (4.39)

and

∆I (X) = I (X;R)− Ie (X;R) . (4.40)

Thus,

∆I (X) = ∆HvN (X) + ∆HvN (R)−∆HvN (RX) (4.41)

Due to the triangle inequality,

|∆I (X)| ≤ |∆HvN (X)|+ |∆HvN (R)|+ |∆HvN (RX)| . (4.42)

Each of the terms in the right-hand side of Eq. (4.42) is suitably achieved by using Eq. (4.36).

Substituting Eqs. (4.38) and (4.39) into the resultant equation delivers Eq. (4.24).

Now we show that εQMI scales properly with respect to number of rounds. Using the

Weyl [54] perturbation bound for singular value decomposition, we conclude

κ
(
V e,Q

)
, σmax,e,Q ∈ O(1), εmax ∈ O

(
1√
N

)
. (4.43)

Therefore, the error bound scales inversely with square root of the number of rounds. Next

we prove the algorithm 4 is both sound and complete.

Proposition 3. • If X ∈ A, then Algorithm 4 passes with probability at least

1− β and

• if X /∈ A then the algorithm fails with probability at least 1− β.

Proof. We show cases (i) and (ii) in sequence.

Case (i): We first recall that

X ∈ A =⇒ I (X;R) ≥ IAT + δ. (4.44)
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Also

pr [|I (X;R)− Ie (X;R)| ≤ ε] ≥ 1− β. (4.45)

Therefore,

pr
[
IAT + δ − ε ≤ Ie (X;R)

]
≥ 1− β. (4.46)

As δ − ε ≥ ε, we conclude

pr
[
IAT + ε ≤ Ie (X;R)

]
≥ 1− β. (4.47)

Thus, Algorithm 4 accepts with probability at least 1− β if X ∈ A.

Case (ii): We note that

pr [Ie (X;R)− ε ≤ I (X;R)] ≥ 1− β (4.48)

Therefore, substituting Eq. (4.7) into Eq. (4.48) delivers

pr
[
Ie (X;R) < IAT + ε

]
≥ 1− β. (4.49)

Thus, Algorithm 4 rejects with probability at least 1− β if X /∈ A.

Proposition 4. • If X ∈ F , then Algorithm 4 accepts with probability at least

1− β and

• if X /∈ F then Algorithm 4 rejects with probability at least 1− β.

Proof. We show cases (i) and (ii) in sequence.

Case (i):

X ∈ F =⇒ I (X;R) ≤ IFT − δ. (4.50)

Also

pr [|I (X;R)− Ie (X;R)| ≤ ε] ≥ 1− β. (4.51)

Therefore,

pr [Ie (X;R) ≤ I (X;R) + ε] ≥ 1− β. (4.52)
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Substituting Eq. (4.50) in Eq. (4.52) delivers

pr
[
Ie (X;R) ≤ IFT − δ + ε

]
≥ 1− β. (4.53)

As δ − ε ≥ ε, we conclude

pr
[
Ie (X;R) ≤ IFT − ε

]
≥ 1− β. (4.54)

Thus, Algorithm 4 accepts with probability at least 1− β if X ∈ F .

Case (ii):

pr [I (X;R)− ε ≤ Ie (X;R)] ≥ 1− β. (4.55)

Substituting Eq. (4.10) into Eq. (4.52) delivers

pr
[
IFT − ε ≤ Ie (X;R)

]
≥ 1− β. (4.56)

Thus, Algorithm 4 rejects with probability at least 1− β if X /∈ F .

Proposition 5. • If X ∈ I, then Algorithm 4 accepts with probability at least

1− β and

• X /∈ I then Algorithm 4 rejects with probability at least 1− β.

Proof. We show cases (i) and (ii) in sequence.

Case (i):

X ∈ I =⇒ IFT < I (X;R) < IAT . (4.57)

Also

pr [|I (X;R)− Ie (X;R)| ≤ ε] ≥ 1− β. (4.58)

Therefore,

pr [I (X; R)− ε ≤ Ie (X; R) ≤ I (X; R) + ε] ≥ 1− β. (4.59)

Substituting Eq. (4.57) into Eq. (4.59) delivers

pr
[
IFT − ε ≤ Ie (X;R) ≤ IAT + ε

]
≥ 1− β. (4.60)
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Thus, Algorithm 4 accepts with probability at least 1− β if X ∈ I.

Case (ii):

pr [Ie (X;R)− ε ≤ I (X;R)] ≥ 1− β, (4.61)

and

pr [I (X;R) ≤ Ie (X;R) + ε] ≥ 1− β. (4.62)

Substituting Eq. (4.11) and Eq. (4.12) into Eq. (4.61) and Eq. (4.62), respectively, delivers

pr
[
Ie (X;R) ≤ IFT − δ + ε

]
≥ 1− β, (4.63)

and

pr
[
IAT ≤ Ie (X;R)− δ + ε

]
≥ 1− β. (4.64)

As δ − ε ≥ ε, we conclude

pr
[
Ie (X;R) ≤ IFT − ε

]
≥ 1− β, (4.65)

and

pr
[
IAT + ε ≤ Ie (X;R)

]
≥ 1− β. (4.66)

Thus, Algorithm 4 rejects with probability at least 1− β if X /∈ I.

4.3 Summary

In this section I elaborated on the approach I used to introduce the CV ramp quantum

secret-sharing protocol and its corresponding certification test. Furthermore, I introduced

the certification protocol. Subsequently, I developed the discrete-variable quantum mutual

information to the CV regime and utilize this approach to quantify the leakage of quantum

information in the case of Gaussian states and operations. Furthermore, I introduced a

certification test in the framework of quantum interactive proofs and I provided a practical

test to implement it.
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Chapter 5

Discussion and Conclusions

5.1 Discussion

In this section we discuss our results. We have two main results. The first result is a security

analysis, which assigns subsets of players to each of the three structures, namely, authorized,

intermediate, and forbidden structures. The second result is certification, which is performed

by a referee. In our security analysis, we not only determine structures for subset of players,

but we also quantify information leakage. For certification we introduce a referee who has

limited resources such as finite local oscillator field. We now discuss these two results.

We base our approach on TRS03, which divides subsets of players into authorized and

forbidden structures. TRS03 do not consider the intermediate structure because their secu-

rity analysis is based on assuming infinite squeezing, but finite squeezing is responsible for

information leakage, which leads us to introduce the intermediate structure based on ramp

secret sharing concepts. Ramp quantum secret sharing has been considered before in two

cases: discrete-variable threshold ramp quantum secret sharing [16] and entanglement shar-

ing [55]. These analysis did not treat the continuous-variable case, however. In our case, for

any amount of finite squeezing, we construct encoding and decoding procedures and thereby

assign each subset to the correct structure.

Now we describe our result for certification. In our protocol, the dealer supplies the

players with the encoded state, and in fact the state would be entangled with another

share that goes directly to the referee. The referee identifies which subset of players are to

transmit the decoded state to the referee, and the referee can combine this state with any

shares that did not go through the players and then performs homodyne detection [51, 56].

The referee performs homodyne measurement, and, if the local oscillator strength is infinite,
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then standard homodyne theory suffices to describe the statistics. We study the particular

case of the referee performing tests based on Gaussian states and repeated measurements to

allow the referee to estimate accurately the mean and covariance of the resultant state. The

referee’s procedure is valid even in the case of limited local-oscillator strength.

As our procedure is rather complicated and involves multiple parties, we have augmented

our analysis by including pseudocode to explain step-by-step instructions on how to complete

the procedure. Our pseudocode analysis makes clear exactly what is required of each party

in the procedure. This pseudocode description could be a useful approach for describing

future continuous-variable quantum-information protocols.

5.2 Conclusion

We have developed continuous-variable quantum mutual information with an external ref-

erence system in order to quantify the leakage of information and evaluate the security of

continuous-variable quantum secret sharing protocols. Furthermore, we prove that informa-

tion leakage arising in the TRS03 scheme monotonically decreases with reduced squeezing. In

addition, we introduce a certification process for continuous-variable quantum secret sharing

in the framework of quantum-interactive proofs and ramp quantum secret sharing schemes.

Pseudocodes have been introduced in order to represent clearly the sequence of steps

taken to solve the certification problem. Subsequently, we provide a practical realization

of the certification test using homodyne detection, including a sufficiency condition on the

number of experimental runs the referee has to perform. We prove that the statistical error

in the referee’s estimated quantum mutual information scales with the inverse square root

of number of rounds.

Our certification procedure assumes the extracted secret states are iid. In reality, this

iid property does not hold due to the environmental noises. Furthermore, in quantum secret

sharing schemes, malicious parties might generate highly complicated entanglement among
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samples to fool the referee. As a future line of research, it is important to extend our certifi-

cation procedure to the case of samples that are not independent and identically distributed.

Another useful avenue of research would be to analyze the effect of systematic errors in

the referee’s measurement procedure. As a final remark, we emphasize that our certification

approach is applicable to certifying other quantum-information protocols such as summon-

ing of quantum information in space time, quantum error correcting codes and quantum

teleportation in the framework of quantum-interactive proof systems.

79



Appendix A

Calculation of quantum mutual information

The total density operator ρ̂T of all shares and the reference system after the extraction

procedure is

ρ̂T =
1

π

∫

R2n+2

dnxdnx′ dydy′ ρ (y, x1, y
′, x′1) |y〉 〈y′| ⊗

n⊗

i=1

|ξi〉 〈ξ′i|

× exp

{
−

k−1∑

i=1

[
y2i + y′2i

2a2
+
a2 (z2i + z′2i )

2

]}
, (A.1)

where

ρ (y, x1, y
′, x′1) = exp

[
− e−2|ζ| (x1 + y)2

4
− e2|ζ| (y − x1)2

4
− e−2|ζ| (x′1 + y′)2

4

− e2|ζ| (y′ − x′1)2
4

]
. (A.2)

The joint density operator

ρ′ = 〈ω′η′| ρ̂ |ωη〉 , (A.3)
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of the extracted secret and the reference system is obtained by tracing ρ̂T over shares

{2, 3, . . . n}. The resultant density matrix is

ρ′ (ω, η, ω′, η′) =
a

π

√
1

a2 + 1
2

(e2|ζ| + e−2|ζ|) v2

× exp

{(
−e−2|ζ|

4
− e2|ζ|

4
+

(
−4e−2|ζ| + 4e2|ζ|

)2

4a2 + e2|ζ|

2
+ e−2|ζ|

2
v2

)
(
ω2 + ω′2

)

+

(
e−4|ζ| + e4|ζ| + 2

16a2 + 8 (e2|ζ| + e−2|ζ|) v2
− e−2|ζ|

4
− e2|ζ|

4

)(
η2 + η′2

)

+

( (
e2|ζ| + e−2|ζ|

)

2a2 + 2 (e2|ζ| + e−2|ζ|) v2
− e−2|ζ|

2
− e2|ζ|

2

)
(ωη + ω′η′)

+

( (
e2|ζ| + e−2|ζ|

)

2a2 + 2 (e2|ζ| + e−2|ζ|) v2

)
(ηω′ + η′ω)

+

(
e−4|ζ|

(
e4|ζ| − 1

)2

8a2 + 4 (e2|ζ| + e−2|ζ|) v2

)
ωω′

+

(
e−4|ζ| + e4|ζ| + 2

16a2 + 8 (e2|ζ| + e−2|ζ|) v2

)
ηη′

}
, (A.4)

where v2 = γ1 � γ1 for which γ1 = (γ11, γ12, . . . , γ1k−1) (3.101). Also, u2 = u � u where

{ui} are the coefficients of the expansion αj =
∑k−1

i=2 uiβij for which j = 2, ..., k − 1. Then,

by employing Eqs. (2.5),(2.6), and (2.7), we transform this density matrix into a Wigner
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function representation (2.5), namely

W (q1, p1, q2, p2) =
2a

π2

√
e2|ζ|

2a2e2|ζ| + e4|ζ| + 1

√
a2e2|ζ|

2a2e2|ζ| + u2 (e4|ζ| + 1)
︸ ︷︷ ︸

N

× exp

{(
−a

2
(
e4|ζ| + 1

)
+ 2e2|ζ|

2a2e2|ζ| + e4|ζ| + 1

)

︸ ︷︷ ︸
β1

q21

+

(
− a2

(
e4|ζ| + 1

)

2a2e2|ζ| + e4|ζ| + 1

)

︸ ︷︷ ︸
β2

q22 +

(
2a2
(
e4|ζ| − 1

)

2a2e2|ζ| + e4|ζ| + 1

)

︸ ︷︷ ︸
β3

q1q2

+

(
−a

2
(
e4|ζ| + 1

)
+ 2u2e2|ζ|

2a2e2|ζ| + u2 (e4|ζ| + 1)

)

︸ ︷︷ ︸
γ1

p21

+

(
− a2

(
e4|ζ| + 1

)

2a2e2|ζ| + u2 (e4|ζ| + 1)

)

︸ ︷︷ ︸
γ2

p22

+

(
− 2a2

(
e4|ζ| − 1

)

2a2e2|ζ| + u2 (e4|ζ| + 1)

)

︸ ︷︷ ︸
γ3

p1p2

}
. (A.5)

By using Eq. (2.8), this Wigner function is employed to derive the generic elements of the

covariance matrix V corresponding to the joint reference and extracted-secret state. The
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elements of V are

V12 = V21 = V14 = V41 = V23 = V32 = V34 = V43 = 0, (A.6a)

V11 = N
2π2

β
1/2
2

(
β1 − β2

3

4β2

)3/2 (
γ1γ2 − γ23

4

)1/2 , (A.6b)

V13 = N
π2β3

2
(
β1β2 − β2

3

4

)3/2 (
γ1γ2 − γ23

4

)1/2 = V31, (A.6c)

V22 = N
2π2

γ
1/2
2

(
γ1 − γ23

4γ2

)3/2 (
β1β2 − β2

3

4

)1/2 , (A.6d)

V24 = N
π2γ3

2
(
γ1γ2 − γ23

4

)3/2 (
β1β2 − β2

3

4

)1/2 = V42, (A.6e)

V33 = N
2π2

β
1/2
1

(
β2 − β2

3

4β1

)3/2 (
γ1γ2 − γ23

4

)1/2 , (A.6f)

V44 = N
2π2

γ
1/2
1

(
γ2 − γ23

4γ1

)3/2 (
β1β2 − β2

3

4

)1/2 . (A.6g)

(A.6h)

The covariance matrix of the extracted secret and reference system denoted by VS and VR

are

VS =



V11 V12

V21 V22


 , VR =



V33 V34

V43 V44


 . (A.7)

Also the joint covariance matrix of the extracted secret and reference system is

VρRS =

(
Vij

)
. (A.8)

For convenience, let us also define

C :=



V13 V14

V23 V24


 . (A.9)

Using Eq. (2.13), symplectic eigenvalues of VS and VR denoted by νS and νR are

νR =
√

detVR, νS =
√

detVS, (A.10)
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for which VS and VR are defined in Eq. (A.7). Symplectic eigenvalues of VρRS denoted by ν±

is calculated using Eq. (2.15), therefore,

ν± =

√
∆±

√
∆2 − 4 detVρRS

2
, (A.11)

where ∆ = detVS + detVR + 2 detC.
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