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Abstract

Photons, the fundamental quanta of the electromagnetic field, travel at the fastest possible speed,

and interact relatively weakly with the environment. These features make them ideal for several

practical applications, particularly in the transport of both classical and quantum information. One

could also wonder whether nature itself realized the usefulness of these unique entities and through

evolution made living beings rely on them for some physiological functions. In my thesis, I cover

an example for each of these roles a photon can take.

As the first example, I describe our theoretical work pertaining to an important practical appli-

cation where photons can carry quantum information and mediate entanglement between distant

quantum computing nodes. We designed a novel quantum repeater architecture using supercon-

ducting processors and optical links, which we believe is the first concrete proposal towards this

goal. We compared our repeater’s performance with a few other promising approaches and showed

that ours could yield higher entanglement distribution rates with good fidelities in appropriate

regimes. Such an architecture could be pertinent to envision a quantum internet in the future,

something that would be analogous to, but much more secure and powerful in certain aspects than

today’s classical internet.

As the second example, I describe our theoretical work where we speculate on the potential role

of photons observed in mammalian brains. Could we be using these photons as information carriers

in addition to the well-known electrochemical signals? We show, based on detailed theoretical

modelling, that myelinated axons could serve as good optical waveguides in the brain, which can

answer this question in the affirmative. Ours is the first proposal identifying myelinated axons as

potential optical waveguides. There is indirect experimental evidence to support this hypothesis,

and we propose precise experiments to test the waveguide capabilities directly. Since these photons

can also in principle carry quantum information, we further speculate on the existence of quantum

networks in the brain. Our work could help develop a better understanding of some of the biggest
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unsolved problems in neuroscience, possibly including the generation of our subjective conscious

experience.
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Chapter 1

Introduction

1.1 Photons as information carriers

Photons are the fundamental quanta of the electromagnetic field. They are the fastest travelling

particles that can carry information. Moreover, they do not interact strongly with the environment.

These features make them ideal candidates for carrying both classical and quantum information.

Quantum information is distinct from classical information primarily with respect to the en-

coding. Classical information is encoded in classical states. A bit, which is the basis of classical

information, can assume one of two states, either 0 or 1, which can be physically implemented

by the on and off of a switch or by some other classical degree of freedom. Quantum informa-

tion, on the other hand, is encoded in quantum states. A quantum bit, also known as qubit, can

not only be in these separate classical states, but also in any arbitrary superposition, denoted by

|ψ〉 = α |0〉+ β |1〉. Here α and β are the coefficients of superposition of the orthogonal qubit

states |0〉 and |1〉, and they satisfy the relation |α|2 + |β |2 = 1 to conserve probability. The field of

quantum information processing deals with the preparation, manipulation and detection of these

quantum states for useful purposes.

1.2 Quantum networks

Today’s internet is a global network of several classical networks. Each classical network com-

prises of classical computing nodes of various sizes connected via classical channels. In an anal-

ogous way, a quantum network would be a network of quantum computing nodes interconnected

via quantum channels. A few applications of a quantum network includes secure communication

using quantum key distribution [1, 2, 3, 4], distributed quantum computing [5, 6, 7, 8], private

1



database queries [9], more precise timekeeping [10], more sensitive telescopes [11], and some fun-

damental tests of quantum non-locality and quantum gravity [12]. The grand long-term motivation

for a quantum network is towards designing the quantum internet, which would be similar in spirit

to today’s classical internet, but much more secure and powerful in some aspects [13, 14].

A classical network, as we saw, can broadly be broken down into two components. One is the

computational unit and the other is the communication unit. Similarly, a quantum network can be

broken down into a quantum computational unit and a quantum communication unit. In Sec. 1.2.1,

I shall focus on the quantum computation aspect of a quantum network and shall traverse to the

quantum communication aspect in Sec. 1.2.2.

1.2.1 Quantum computation

Computation deals with taking an input, performing some operations on that input, and then gener-

ating an output. Quantum computation follows the same spirit; it takes in quantum inputs, performs

quantum operations on these inputs, and then generates an output. Whether or not using these quan-

tum states and quantum operations can solve a particular problem more efficiently than a classical

computer determines the usefulness of quantum computers over their classical counterparts. The

history of quantum computation is relatively recent. Paul Benioff proposed a quantum model of

the Turing machine in 1980 [15]. Yuri Manin and Richard Feynman soon proposed the intuitive

idea of simulating quantum systems on a quantum machine [16, 17]. The major breakthrough how-

ever was likely the quantum algorithm developed in 1994 by Peter Shor [18]. He showed that a

quantum computer can run a quantum code to perform a useful operation, here, the factorization of

large integers to crack the popular encryption codes [19] efficiently, i.e. in polynomial time. This

is exponentially faster than that possible on a classical computer with known classical algorithms.

This saw a flurry of interest in the field, both in the hardware and software divisions.

In the long term and even in the medium term, one can imagine decent sized quantum com-

puters. And once we have these quantum computers, we would want to connect several such

2



computers together, for instance to enhance their computational power. This is the field of dis-

tributed quantum computing. If there is a network of k quantum computing nodes, each compris-

ing of n qubits, connected only by classical channels, then the dimension of the total Hilbert space

accessible for computation is k2n. Whereas if there are quantum channels connecting these quan-

tum computing nodes in an all-to-all fashion, then the dimension of the Hilbert space can be 2kn,

which is exponentially larger [13]. The field of distributed quantum computing is quite active, with

researchers pondering on questions such as determining optimal ways to connect the quantum pro-

cessors to solve a general computational task [5, 6, 7, 8]. It is also possible to envision a scenario

where a client does not possess a quantum computer themself but can still access distant quantum

servers for computations without those servers knowing the client’s inputs, outputs, or even what

they are trying to compute. This field is known as blind quantum computation [20, 21].

Currently, a number of quantum algorithms are being developed to expand the useful set of

problems that a quantum computer can efficiently solve [22]. And a number of different architec-

tures for the implementation of a quantum computer are being designed and tested, including those

relying on linear optics [23], ion-traps [24], superconducting circuits [25], quantum dots [26], and

defects in solid-state materials [27]. Quantum computation based on superconducting circuits is

one of the leading architectures and we discuss it next.

Superconducting quantum circuits

Quantum computation based on superconducting quantum circuits (SQCs) has seen tremendous

success in recent years, making them one of the most promising architectures for the first genera-

tion of quantum computers [28, 29, 30, 31, 32, 33]. Possibly their most impressive accomplishment

has been the recent experiment in 2019 where Sycamore (a quantum processor owned by Google

and based on SQCs) solved a specially designed problem in 200 seconds that would have taken

one of the most powerful classical supercomputers approximately 10,000 years [33].

To start with, I discuss the basics of these circuits. An electrical circuit can be thought to

be comprising of three basic elements, a resistor (R), a capacitor (C) and an inductor (L). Super-

3
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Figure 1.1: Schematic diagram of three broad categories of superconducting qubits (SQs) and their
potential energy diagrams. (a) Charge qubit, (b) Flux qubit, and (c) Phase qubit. Cg is the gate
capacitance, Vg is the gate voltage, n is the number of excess Cooper pairs on the superconducting
island, Φe is the external magnetic flux through the superconducting loop, φ is the phase difference
between the superconducting electrodes, and Ib is the bias current. Reprinted from ref. [31] under
the Creative Commons Attribution 4.0 licence.

conductivity is a phenomenon where certain materials when cooled below a critical temperature,

undergo a phase transition to make the resistance equal to zero. A simple circuit made up of super-

conducting elements, comprising of an inductor and a capacitor, acts like an LC oscillator, and the

oscillation frequency ω = 1√
LC

. The procedure for quantization of the energy levels of this circuit

is identical to that of a simple harmonic oscillator (SHO). And similar to the SHO, the energy

levels are equally spaced. Any two energy levels can (in principle) be used as the qubit states |0〉

and |1〉, but since they are equally spaced, it is not convenient to work with them directly as any

classical drive applied to move from one energy level to the other would excite the other levels as

well. The solution to this problem is by introducing a nonlinear circuit element to the system. For-

tunately, there exists such an element, known as the Josephson junction, which can be fabricated

by having two superconducting parts separated by a very thin layer of insulator. This introduction

of nonlinearity makes the previously harmonic oscillator anharmonic, and it is possible to now take

two energy levels as the superconducting qubit states.
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Superconducting qubits (SQs) are broadly classified as charge, flux and phase qubits based on

the parameter regimes where they operate and the way the circuits are biased [25], as shown in Fig.

1.1. The potential energy level diagrams of these qubits take various shapes. We usually choose

a suitable potential well from the energy level diagram and pick out the lowest two energy levels

as the qubit states. SQs are also referred to as artifical atoms as we artificially create these energy

levels and work with them in an analogous way to atoms.

Circuit Quantum electrodynamics (cQED)

If there exists an effective transition dipole moment between the levels, then they can couple to

an electromagnetic field which can drive transitions between those levels. In suitable circuits, the

effective transition dipole moment between the qubit states can be very high [34].

SQs can couple to electromagnetic fields in LC resonators, transmission line resonators or

3-D cavities [35]. An LC resonator is just a closed superconducting loop with an inductor and

a capacitor. The oscillating electric and magnetic fields can be understood as photons with an

angular frequency given by ω = 1/
√

LC. LC resonators can couple inductively with flux qubits

and capacitively with charge and phase qubits. A 1-D transmission line resonator is essentially

a superconducting wire placed between two ground planes. The wire has a gap on both ends.

The gap capacitance plays the role of the mirrors of a Fabry-Perot cavity. The length of the wire

determines the normal modes of the resonator. The qubit is placed at a suitable antinode (e.g.

voltage antinode for a charge qubit or a current antinode for a flux qubit) to achieve the strongest

possible coupling to the electromagnetic field. And a 3-D microwave cavity, as the name suggests,

is a 3-D box, either made of a superconducting element or a normal metal, which can confine

microwave modes. SQs placed inside the 3-D cavity also produce strong SQ-cavity interaction.

In the rest of this chapter, for the sake of brevity, we refer to LC resonators, transmission line

resonators and 3-D cavities as (microwave) resonators.

The study of the interaction of superconducting circuits with the quantized modes of these mi-

crowave resonators is named circuit quantum electrodynamics (cQED). It derives from the well-

5



(a) (b) (c)

Figure 1.2: Schematic diagram of real and artificial atoms interacting with common quantized
bosonic modes. (a) In cavity quantum electrodynamics (CQED), atoms are placed in a cavity
and they interact with the quantised modes of the cavity. (b) In an ion trap, ions are trapped
using electric and magnetic fields. At each site, these ions can interact with each other via the
common quantized vibrational modes (phonons). (c) In circuit quantum electrodynamics (cQED),
SQs qubits can interact with the quantized mode of a transmission line resonator fabricated on a
chip. Reprinted from ref. [31] under the Creative Commons Attribution 4.0 licence.

established field of cavity quantum electrodynamics which deals with atom-photon interaction in

high quality cavities [36, 37]. Fig. 1.2 shows a schematic diagram of the coupling of real and

artificial atoms with some of the useful bosonic modes to mediate interactions between them. The

rapidly emerging field of cQED has seen remarkable progress in recent years with experiments

reaching the strong coupling regime [28], the ultra strong coupling regime [29], and recently be-

yond the ultra strong coupling regime [32] between the qubit and the resonator. Some of these

exotic regimes have not been reached in any other systems. The theoretical implications of work-

ing in such regimes have been started to be explored only recently [38, 39].

Cat states

One of the potential shortcomings of working with SQs in a network context is that the coherence

time of these qubits is not very high, with the best SQs having coherence times close to 100 µs [30].

As we will see in Sec. 1.2.2 and in more detail in Chapter 2, it is important to have long absolute

coherence times for long distance quantum networks. One way around this limitation is to use

the state of the resonators/cavities coupled to the SQs as the qubit levels and manipulate those

resonator states using the SQ-resonator interaction. This interaction hybridizes the SQ-resonator

modes and the nonlinearity of the SQ imparts a nonlinearity to the resonator modes, making them
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suitable as qubits as well. The best microwave resonators can have coherence times close to 1 s,

which is 4 orders of magnitude higher than that of the best SQ [40, 41, 42]. Moreover, there are

hardware efficient codes that have been developed to correct for errors when using the resonator

states as qubits [43, 44, 45, 46, 47, 48, 49, 50, 51]. These are some of the main reasons why we

propose to use them for our network application in Chapter 2.

There are different resonator states which can be used as qubit states, e.g. Fock states and

coherent states [52, 44, 53, 45, 54, 55, 56, 57, 58, 59, 60]. Cat states, which are superpositions

of coherent states, have been proposed as promising qubit states for computation owing to their

relative ease of manipulation and error-correction, and recent experiments have had impressive

accomplishments [53, 45, 54, 55, 60, 61], including the first instantiation of error detection in a

fault-tolerant way [61]. Cat states can be represented as:

∣∣C±α 〉= N ±
α (|α〉± |−α〉) (1.1)

where |α〉 and |−α〉 are coherent states with opposite phase and the normalization constant N ±
α =

1/
√

2(1± e−2|α|2). We discuss more about the preparation, manipulation and detection of these

cat states, which we use as our qubits, in Chapter 2.

1.2.2 Quantum communication

Quantum communication involves sending quantum information over quantum channels. For long

distances at room temperature, optical photons are the most likely candidates to carry this infor-

mation. The information can be encoded in various degrees of freedom, e.g. in the photon number,

or in its polarization, spectral or temporal modes. And possible quantum channels to carry these

photons could be telecom fibers or free space.

Quantum transducers

The superconducting systems, which are one of the most promising systems for quantum compu-

tation, work in the microwave domain, which is at a much lower energy scale than the thermal
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environment at room temperature. For a long distance quantum network, information needs to

travel in photons close to the telecom frequencies, which is approximately 5 orders of magnitude

higher in energy than the microwave photons. This has posed a significant technological challenge

in the community to achieve good microwave to optical transduction in the quantum regime. Here,

I describe in brief two leading approaches for transduction.

(a) Atomic ensembles. Ensembles of atoms, particularly in solid state, are promising candi-

dates for transduction. Fig. 1.3 shows a rare-earth ion doped crystal (REDC) that is coupled both

to a microwave resonator and an optical cavity. An essential requirement for an atomic ensemble

based transducer is that it should have addressable optical and microwave transitions. The optical

transitions are typically the electric dipole transitions and the microwave transitions are typically

the electronic or nuclear spin transitions. In the transduction protocol, usually the optical and mi-

crowave cavities need to be brought in and out of resonance to the relevant optical and microwave

transitions and by suitably applying optical and microwave drives, it should be possible in principle

to achieve transduction with good fidelity and efficiency [62, 63, 64]. A REDC based transduc-

tion scheme has been discussed in some detail in Chapter 2. Other ensemble based approaches to

achieve transduction rely on N-V centers in diamond [65], and cold gases [66].

(b) Electro-opto-mechanics. The radiation pressure of photons inducing vibrations when they

impinge on a movable object is a universal effect that has been used for a variety of interesting tasks

[68, 69, 70, 71, 72, 73, 74, 75, 76, 77], including that for microwave to optical transduction [78, 79,

80, 81]. Fig. 1.4 shows a schematic of an electro-opto-mechanics based transducer. Transducers

based on electro-opto-mechanical interaction are currently leading the field. In the schematic (Fig.

1.4), a mechanical membrane serves both as one of the mirrors of the optical cavity and as a plate

of the capacitor connected to the microwave circuit. Additional drives are applied both in the

microwave and optical domains to enhance the coupling strength with the mechanical resonator.

The drives are red-detuned such that ωc,i−ωd,i = ωm (i = {1,2}), where ωc,1 (ωc,2) is the angular

frequency of the microwave (optical) resonator, ωd,i are the respective drive frequencies, and ωm
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Figure 1.3: Schematic diagram of a rare-earth ion doped crystal (REDC) mediated microwave to
optical transduction protocol. The REDC is coupled simultaneously to a transmission line res-
onator (micorwave resonator) and an optical cavity. In the inset is shown the pertinent energy level
diagram for the REDC. States 1 and 2 are spin levels and the transition energy between them is in
the microwave domain, whereas 1↔ 3 and 2↔ 3 are optical transitions. The transitions are in-
homogeneously broadened because of the inhomogeneous environment around the ions, and ∆inh

opt
and ∆inh

µw are the respective optical and microwave broadenings. δ2 and δ3 are the tunable detun-
ings between the microwave resonator (b̂) and the spin transition (1↔ 2), and the optical cavity (â)
and the optical transition 1↔ 3 respectively, and Ω is the pump strength for the 2↔ 3 transition.
Reprinted from ref. [67] under the Creative Commons Attribution 4.0 licence.

is the angular frequency of the mechanical oscillator. The interaction Hamiltonian of the system in

the linear regime is

Ĥ = G1(â
†
1b̂+ â1b̂†)+G2(â

†
2b̂+ â2b̂†), (1.2)

where â1 (â2) is the annihilation operator of the microwave (optical) mode, b̂ is the annihilation

operator of the mechanical mode and Gi are the respective coupling strengths. This beamsplitter

form of Hamiltonian can lead to an excitation swap from the microwave to optical mode mediated

by the mechanical resonator [78, 79, 80, 81].

Other transduction approaches being pursued are those based on electro-optics [82], quantum

dots [83], organic molecules [84], and magnons [85].
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Figure 1.4: Schematic diagram of an electro-opto-mechanical route to transduction. (a) Schematic
diagram to show the coupling of the microwave photonic mode C1 with the optical photonic mode
C2 mediated by the mechanical phononic mode M. The strength of the coupling between C1-M
modes is G1 and between C2-M modes is G2. (b) The density of states (DOS) of the mechanical
resonator ωm, the microwave cavity ωc,1 (ωd,1 +ωm), the optical cavity ωc,1 (ωd,2 +ωm) and the
respective microwave and optical drives ωd,1 and ωd,2. ζ is the microwave to optical conversion
efficiency. (c) Schematic representation of microwave to optical transduction mediated via the
electro-opto-mechanical interaction. Here, â1 is the annihilation operator of the microwave pho-
tonic mode, b̂ of the mechanical phononic mode and â2 of the optical photonic mode, and κ1, γ

and κ2 are the respective decay rates of the above three modes. Reprinted from ref. [67] under the
Creative Commons Attribution 4.0 licence.
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Entanglement generation

Entanglement is an extremely precious quantum resource for a wide variety of quantum tasks,

including the computation and communication tasks [86]. Two parties A and B are said to be

entangled if the state describing their combined system is not separable, i.e. it is not possible to

independently describe the state of each parties. The combined system, described by the density

matrix ρ , is separable if

ρ = ∑
i

piρ
A
i ⊗ρ

B
i (1.3)

where the pi are the probabilities of finding the subsystems in the mixed states ρA
i and ρB

i respec-

tively. If ρ cannot be expressed in the above form, then the system is entangled.

In a network context, there are different schemes to generate entanglement between two distant

qubits using photonic interconnects. They can be broadly classified into two categories depending

on the number of photons involved in the protocol [8], as shown in Fig. 1.5. The first category

involves only a single photon while the second category effectively involves two photons. In atomic

systems, both the categories can be understood with the help of a 3 level atom in Λ configuration,

whose two hyperfine ground states |↑〉 and |↓〉 are the qubit states and |e〉 is an excited state. Two

such atoms are placed far apart from each other, let’s say one at node A and the other at node B.

(a) One photon interference scheme. A scheme from the first category [87, 8] involves prepar-

ing the atoms in one of the ground states, let’s say |↑〉, and exciting them very weakly from

|↑〉 → |e〉, such that the probability of excitation pe � 1, as shown in Fig. 1.5(a). We place a

50-50 beam splitter midway between those atoms. After the decay of the atom from the excited

state to the state |↓〉 and the transmission of the generated photon to the beamsplitter, the state

is ≈
√

1− pe |↑〉i |0〉i + eikxi
√

pe |↓〉i |1〉i, where i = {A,B} (either of the nodes), |n〉i denotes the

number (n) of photons making it to the beamsplitter, xi denotes the path length from node i to the

beamsplitter, and k is the wavenumber. The detector in the output port is sensitive only to photons

corresponding to the transition |e〉 → |↓〉. Since the atoms are weakly excited, it is unlikely that

both of them produce a photon. The detection in either of the output ports heralds the entanglement
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Figure 1.5: Heralded entanglement generation schemes based on one-photon and two-photon in-
terference on a beamsplitter. (a) A single photon scheme to generate entanglement between two
distant atoms. The two hyperfine ground states |↑〉 and |↓〉 are the qubit states and |e〉 is an excited
state. Both the atoms are weakly excited (the probability of excitation, pe� 1). A single photon
corresponding to the transition |e〉 → |↓〉 detected in either of the output ports of a 50-50 beam-
splitter placed midway between the atoms heralds the entanglement. The entanglement generation
scheme is derived from ref. [87, 8]. (b) A two photon scheme to generate entanglement. After
being excited with a high probability, the atom can decay to either of the ground states to create
spin-photon entanglement. One photon each from two distant atoms interfere on a beam splitter.
The coincidence counts herald the entanglement. The scheme is derived from ref. [88, 89, 8]. (c)
Alternative two-photon scheme to generate entanglement. The initial state is prepared in a super-
position of the ground states |+〉 = |↑〉+|↓〉√

2
, and a laser pulse is used to excite |↑〉 → |e〉. If the

transition |e〉 → |↓〉 is prohibited by selection rules, the spontaneous decay from the excited state
creates spin-photon entanglement. The photon is sent to the beam splitter and entanglement is her-
alded based on the detection in the output port. To get rid of noise terms and to make the scheme
insensitive to fiber length fluctuations, the spins are flipped in the second step and the protocol is
repeated. Successful heralding in both attempts results in the formation of one of the maximally
entangled Bell states |ψ±〉= 1/

√
2(|↑A↓B〉± |↓A↑B〉). The scheme is derived from ref. [90, 91].
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between the distant qubits. The entangled state is of the form [eikxB |↑〉A |↓〉B± eikxA |↓〉A |↑〉B]/
√

2

with the probability of success given by p = peFηtηD, where F is the fractional solid angle of the

emission collected in the transmission channel, ηt is the transmission probability from the emitter

to the beamsplitter that includes fiber losses, and ηD is the detection efficiency. From the form of

the entangled state, it can be noted that for obtaining high fidelity, the relative optical path length

xA− xB should be quite stable; it should be much better than the wavelength of the photon ∼ 2π

k ,

which is of the order of 10−7 m.

(b) Two photon interference scheme. A scheme from the second category [88, 89, 8] involves

exciting the atoms strongly (pe ≈ 1) from |↑〉 → |e〉. The atom can decay to either of the ground

states, emitting a photon that should differ in one of its internal states (e.g. frequency or polar-

ization), as shown in Fig. 1.5(b). The state of each of the qubit-photon pair just before interfering

at the beamsplitter is [eik↓xi |↓〉i
∣∣ν↓〉i + eik↑xi |↑〉i

∣∣ν↑〉i]/
√

2, where
∣∣ν↓〉i and

∣∣ν↑〉i are the photonic

states (here the frequency qubit states) corresponding to the transitions |e〉 → |↓〉 and |e〉 → |↑〉

respectively, and k↓ and k↑ are the corresponding wavenumbers. We place a 50-50 beam splitter

midway between the atoms and observe the coincidence counts. Based on this, we herald entan-

glement between the two distant qubits. The entangled state is of the form [ei(k↓xA+k↑xB) |↓〉A |↑〉B+

ei(k↑xA+k↓xB) |↑〉B |↓〉A]/
√

2, and the success probability is p = (peFηtηD)
2/2. The phase difference

between the terms in the superposition is (xA− xB)(k↓− k↑). Although the success probability can

be less than that for a single photon interference case, this scheme has a significant advantage that

it is much less sensitive to the path length fluctuations for photons travelling to the beam splitter.

The difference in fiber path length xA− xB should only be stable to 2π

k↓−k↑
, which is of the order of

a few cms for telecom photons.

There are other ways to effectively achieve two photon interference [90, 91], e.g. by sending in

two photons in quick succession, as originally proposed by S. D. Barrett and P. Kok [90] and shown

in Fig. 1.5(c). The state is initially prepared in a superposition of the ground states, |+〉= |↑〉+|↓〉√
2

.

A short laser pulse resonant on the |↑〉→ |e〉 transition excites the atom. Let us assume that the se-

13



lection rule prohibits the transition |e〉→ |↓〉. So, after spontaneous emission, the state of the qubit-

photon system at a node is 1/
√

2(|↑ 1〉+ |↓ 0〉) and the combined system including both the nodes

is 1/2(|↑A↑B〉 |1A1B〉+ |↓A↓B〉 |0A0B〉+ |↑A↓B〉 |1A0B〉+ |↓A↑B〉 |0A1B〉). The photons are inter-

fered on a beamsplitter, and the detection of only one photon in either of the photodetectors in the

output ports projects the distant qubits in the entangled state |ψ〉 = 1/
√

2(|↑A↓B〉± e−iϕ |↓A↑B〉),

where φ is the phase difference corresponding to the difference in path lengths of the two nodes

from the beamsplitter. However, since it is possible that both the atoms emitted a photon and one

was lost in the path, the measurement is also compatible with the separable state |↑A↑B〉 of the

atoms. To eliminate this possibility, in the next step, both the qubits are flipped and the process

is repeated. If there is again only a single photon detected in the output port, it implies that the

entangled state was indeed |ψ〉. This step also gets rid of the phase dependence as φ becomes a

global phase, making the protocol insensitive to path length fluctuations. Depending on whether

the same or different detector clicked in the second round, the final entangled is either of the two

maximally entangled Bell states |ψ±〉= 1/
√

2(|↑A↓B〉± |↓A↑B〉).

Recently, using such an entanglement generation scheme, the first loop-hole free Bell’s inequal-

ity test was successfully conducted [92]. We have developed an analogous entanglement genera-

tion scheme for long distance quantum networks between superconducting processors, discussed

in detail in Chapter 2.

Quantum repeaters

When the distance between the places to connect quantumly becomes significantly large, then

direct transmission turns out to be too lossy to be practically useful. For example, for a state-of-

the-art optical fiber, the transmission over a distance of 1000 km is ∼ 10−20. The same problem

exists even in classical communication, and to solve this, the signals are amplified in intermedi-

ate (classical) repeater nodes, thus achieving achieve good distribution rates. But the no-cloning

theorem prohibits such amplification in quantum communication. So, instead one uses something

known as quantum repeaters. Here, the total distance between the distant nodes (let’s say between
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A and Z as shown in Fig. 1.6) is divided into several smaller links, which are called the elementary

links. Independent attempts are made to distribute entanglement in each elementary link. Once

a link has been entangled, one stores the entanglement in quantum memories and waits for the

neighbouring links to be entangled. Once the neighbouring links are entangled, one performs en-

tanglement swap operations in a hierarchical way to distribute entanglement over the whole length

(see Fig. 1.6).

QM QM QMQM QMQM QMQM

QMQM QM QM

QM QM

 A  B  D  W  X  Y  Z

 W D  Z A

 A  Z

(a) Entanglement generation

(b) First entanglement swapping

 (c) Final entangled state

 C

Figure 1.6: Schematic diagram of a quantum repeater. The objective is to entangle the distant
nodes A and Z. The distance between A and Z is divided into several elementary links. (a) In the
first step, entanglement is created between the neighboring links (A and B, C and D, and so on).
(b) Entanglement swapping between neighboring links help distribute it to a longer distance. After
the first swapping operation, nodes A and D, ... W and Z are entangled. (c) At the end of the last
swapping operation, entanglement is distributed over the whole length, i.e. between the nodes A
and Z. The rotated squares are the quantum memories (QM) and the dotted lines with arrows show
the nodes which are entangled.

There can be different entanglement distribution approaches, e.g. determined by the length

scale of the quantum network. For distances less than a couple hundred kilometers, direct trans-

mission would likely be the best option. For distances in the range of 500-2000 km, fiber-optics

based repeater approaches would be preferred. For distances in the range of a few thousand kilo-

metres, repeaters with low Earth orbit (LEO) satellite links and ground stations could be utilized
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[93, 14, 94]. A truly global scale of beyond a few thousand kilometers would likely require a smart

combination of more distant satellites (e.g. geostationary satellites), repeaters with LEO satellite

links, LEO satellites with quantum memories, and fibers for ground communication [93, 14, 95].

In Chapter 2, we discuss a fiber-based repeater scheme in detail.

Now that we have discussed the role of photons in long-distance, possibly global-scale net-

works, in the next section we shall shift our domain to a comparatively much smaller length scale

network, in the brain, and probe the question of the usefulness of photons that have been observed

there.
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1.3 Neuroscience

The brain is one of the most complicated biological systems known. It performs a wide range

of functions and is the unit that essentially creates our reality through our subjective experiences.

The overarching aim in neuroscience is to understand in good detail the mechanisms behind the

different functionalities of the brain.

The well-established model of information processing in the brain is of an electrochemical

nature. Electrical signals flowing through nerves were observed first in dissected frogs in the

later part of the 18th century. Around that time, it was also shown that the nerves are electrically

excitable. After the invention of the microscope, it was possible to study them on a small scale,

and it was hypothesized first by Santiago Ramón y Cajal in the 1890s that the functional unit of

the brain is a neuron [96]. We have close to a hundred billion neurons in the brain. Exchange

of chemicals across the neuronal cell membrane generates an action potential, which propagates

along the long slender part of the neuron, called the axon. When the action potential reaches the

axon terminal, neurotransmitters are released, and the impulse reaches another neuron through the

synapse. This is the standard model for information flow.

Although the above modality of neuronal communication explains to a good extent how the

brain works, there are still many unanswered questions [97], e.g. memory formation, learning,

and perhaps the most intringuing among them, which is hard to even draw analogy with, is the

generation of our conscious experience [98, 99, 100]. It may therefore be timely to wonder if the

brain uses alternate modalities to transport and process information [101, 102, 103, 104, 105]. One

such modality for information transfer could be photons.

Photons have been observed to be emitted in the brain, which poses the question whether they

are used as information carriers. In addition to carrying classical information, which would be

quite interesting on its own, they can potentially carry quantum information as well. One major

obstacle to envisioning quantum effects playing a role in the brain is the short coherence time of

most quantum systems at room temperature. Spins, particularly nuclear spins, have however been
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shown to have long coherence times at room temperature [106, 107], even in biological tissues such

as the brain [108, 109]. Photons can also potentially mediate quantum entanglement between spins

in the brain, similar to an artificial quantum network [14]. Quantum effects such as entanglement

may help explain certain features of our conscious experience. Our conscious percepts are bound,

maybe similarly to how the states of individual entities are bound in an entangled system [86]. A

neural model of cognition was recently proposed based on nuclear spins in ref. [105]. However, in

their model [105], spins have to diffuse in an almost untargeted fashion to distribute entanglement

to different brain regions. Photons, travelling in waveguides, can provide a targeted and speedy

link between these spins.

Quantum communication in the brain could moreover provide an advantage over classical com-

munication in terms of the resource consumption. In the field of communication complexity, there

are several tasks where using quantum states, quantum channels, and quantum protocols, the re-

source requirement is significantly less than that in classical communication [110, 111, 112, 113].

One such task is comparing and distinguishing two n-bit strings, where using a technique called

quantum fingerprinting, the quantum resource requirement could be exponentially less than that

possible classically [110, 113].

Quantum effects have been suspected to play an important role in several biological phenom-

ena, e.g. avian magnetoreception [114, 115], photosynthesis [116, 117], olfaction [118, 119],

anaesthesia [120, 121] and certain drugs for treatment of mental illnesses [122, 123]. Among

these, spin-photon interface is most well-explored in avian magnetoreception. One of the leading

theories to explain how birds are able to navigate long distances is that they have a protein called

cryptochrome in their eyes, which when subjected to blue light, undergoes a radical pair formation.

The radical pair [114, 115] is in an electronic spin entangled state (singlet state) and interconver-

sion between singlet and triplet states, possibly influenced by the nearby nuclear spins, could play

a role in sensitive detection of the earth’s magnetic field.

Cryptochrome is found in a wide range of living species, from simple plants to mammals,
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including humans [124, 125]. In humans, they are believed to primarily be responsible for main-

taining the circadian rhythm [126, 125, 127, 128]. However, some of their other potential roles

have been started to be explored recently [129, 130, 131, 132, 133, 134]. As a couple of exam-

ples, they have been shown to be important for neuronal circuit repair during transcranial magnetic

stimulation (TMS) [134] and can synthesise reactive oxygen species [132]. They could thus serve

as potential candidates for photon detection, coherent spin-photon interface, and even photon gen-

eration.

In the next section, we provide some background on the biophotons observed in the brain and

on the mechanism of light guidance.

1.3.1 Biophotons

Living cells, including brain cells, have been found to emit photons over a wide range of wave-

lengths, from close to 300 nm to 1200 nm [135, 136, 137, 138, 139]. These are known as biopho-

tons. They are believed to primarily be generated as byproducts of metabolism [140, 141, 142, 143,

144]. Shown in Fig. 1.7 are some of the electronically excited species formed during metabolic

processes, which when decay to their ground levels, emit photons in the wavelength range of in-

terest [141]. One such species is the singlet oxygen molecules 1O2, which can make the transition

from the singlet excited state (S1) to the triplet ground state (T0) to generate photons.

There are potential photon detectors in the brain and the rest of the body [145, 146, 147, 148,

149, 150, 151, 152], particularly the opsins [147, 148, 149, 150, 151, 152], whose genetic con-

stitution seems to be evolutionarily preserved [153], suggesting that they are likely being used

for some purpose(s). A well-known opsin found in the eye is rhodopsin, which is very sensitive

to light. Light (even at a few photon level) initiates a photo-isomerization process in the opsin

and sets off a cascade of events, which is finally converted to an electrochemical signal sent to

the brain [154, 155]. The opsins found in the inner brain regions can in principle also undergo a

similar photo-detection process by transducing a photonic signal to an electrochemical signal.
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Figure 1.7: Possible source of biophotons from electronically excited singlet and triplet states
formed in oxidative metabolic processes. (A) Energy levels of singlet oxygen (1O2) and triplet
excited carbonyls (3R –– O*). Transitions between the excited and ground states result in photon
emission. (B) Indirect pathways for photon generation. Starting from the triplet excited state
of carbonyls, different intermediate products can be formed that would decay to their respective
ground states, generating photons of different wavelengths. S0 (T0) is the singlet (triplet) ground
state, and S1 (T1) is the singlet (triplet) excited state. Reprinted from ref. [141] with permission
from Elsevier.

We ask the question if the observed biophotons could serve a physiological role, given our

understanding that photons are excellent information carriers. We focus our attention to the brain

partly because this is one organ that would greatly benefit from this role of photons, given its

complex network structure. For the photons to be useful for communication in a targeted way, they

must travel in proper communication channels. So, we pose the question whether there are suitable

communication channels in the brain. Based on a detailed theoretical simulation of light guidance,

as discussed in Chapter 3, we conclude that myelinated axons could serve as good waveguides.

Myelinated axons

Many axons are covered by a multilamellar structure called the myelin sheath. In the standard

model of neuronal communication, its primary function is to serve as an insulation and effectively
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increase the propagation speed of action potential through the axon via saltatory conduction. The

refractive index of myelin is higher than the inside and outside of the axon. As we shall see in the

next section on optical fibers, a region of higher refractive index surrounded by regions of lower

refractive indices can guide electromagnetic waves. Myelin is prepared in the central nervous

system by a kind of glia cells called the oligodendrocte. Recently, the role of glia cells has started

to be reassessed beyond their mainly accepted suppportive functions [156]. Interestingly, certain

kinds of glia cells, called the Müller cells in the eye, have been shown to guide light and funnel

different wavelengths to pertinent regions of the rods and cones in the retina [157, 158].

There is some indirect evidence of light guidance in myelinated axons. It has been shown that

light has a higher trasmission along the axis of the white matter tracts in the brain and the spinal

cord (comprising primarily of myelinated axons) than in other directions and in unmyelinated

regions [159, 160]. We propose more direct experimental tests in Chapter 3 to test the light-

guidance hypothesis.

Optical fibers

Light guidance in an optical fiber works on the principle of total internal reflection. A light beam

changes its direction when crossing the interface between two media of different refractive indices.

In ray optics, when light travels from a region of higher refractive index to a region of lower

refractive index and the angle of incidence is greater than a critical angle, all the light is reflected

back into the medium. This critical angle, ic is given by the following relation.

sin ic =
nr

ni
(1.4)

where nr is the refractive index of the rarer medium and ni is the refractive index of the denser

medium. The smaller the ratio of the refractive indices, the smaller is the critical angle.

Conventional optical fibers typically have three concentric layers. The innermost layer is

known as the core. It is surrounded by the cladding. And the outermost layer is a protective

coating. The core has a higher refractive index (n1) than the cladding (n2), and light is confined

primarily in the core as it propagates along the fiber.
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Figure 1.8: Schematic diagram of a typical optical fiber. (a) Transverse cross section of the fiber.
The refractive index of the core (n1), with radius a, is slightly higher than the surrounding cladding
(n2). (b) Longitudinal view of the fiber.

Guided modes

A uniform waveguide can have certain spatial modes that travel through it without loss. These

are known as the guided modes of the waveguide. As an example, I show how to calculate the

guided modes of a typical optical fiber, where the core is a cylinder of radius a, surrounded by a

concentric cladding, as shown in Fig. 1.8. The explanation is derived from ref. [161]. We assume

a weakly guiding fiber, where the difference in the refractive indices of the core and the cladding

is quite small (n1 ≈ n2). Let’s take the cross-section of the fiber to be in the X-Y plane such that

the direction for light propagation is along the Z axis. The wave equation for the field components

(e.g. Ex or Ey), denoted by Ψ, is then

∇
2
Ψ = ε0µ0n2 ∂ 2Ψ

∂ t2 (1.5)

where ε0 and µ0 are the dielectric permittivity and magnetic permeability of free space and n is the

refractive index of the medium. If n only depends on the transverse spatial components (r,φ ), then

the field can be separated as

Ψ(r,φ ,z, t) = ψ(r,φ)ei(ωt−β z) (1.6)

Here ω is the angular oscillation frequency and β is a parameter of interest, known as the propaga-

tion constant. Substituting this form of the guided modes in the former equation (Eqn. 1.5) gives
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(
∇

2− ∂ 2

∂ z2

)
ψ +

[
ω2

c2 n2(r,φ)−β
2
]

ψ = 0 (1.7)

If n depends only on the cylindrical radial coordinate (r), as is typically the case for fibers, one can

express the above equation in the cylindrical system of coordinates to obtain

∂ 2ψ

∂ r2 +
1
r

∂ψ

∂ r
+

1
r2

∂ 2ψ

∂φ 2 +
[
k2

0n2(r)−β
2]

ψ = 0 (1.8)

where k0 = ω/c. Also the spatial field coordinate can be separated into its radial and azimuthal

parts if the structure has this cylindrical symmetry, ψ(r,φ) = R(r)Φ(φ). Substituting this in Eqn.

1.8 and dividing by ψ(r,φ)/r2, we get

r2

R

(
d2R
dr2 +

1
r

dR
dr

)
+ r2 [k2

0n2(r)−β
2]=− 1

Φ

d2Φ

dφ 2 = l2 (1.9)

Here l is a constant, and the equation tells us that the azimuthal dependence of the field component

should be of the form cos lφ or sin lφ . And for the function to be single-valued, i.e. Φ(φ +2π) =

Φ(φ), we should have l as integers, i.e. l = 0,1,2, ...

The radial part of the field component follows

r2 d2R
dr2 + r

dR
dr

+
(
r2 [k2

0n2(r)−β
2]− l2)R = 0 (1.10)

Before discussing the full formal solution of the above equation, it is interesting to note a couple

of things from the form of this equation. The solution space can broadly be classified into two

categories of interest.

1. k2
0n2

1 > β 2 > k2
0n2

2

If β lies in the above range, then the field solutions are oscillatory inside the core

and decaying in the cladding. These would give the guided modes of the optical

fiber and are the ones we are interested in. For a given value of l, there are several

guided modes, denoted as LPlm modes (m = 1,2, ...), where LP stands for Linearly

Polarized.
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2. β 2 < k2
0n2

2

These are the modes which are oscillatory even in the cladding and thus radiate out

of the structure. These are consequently known as the radiation modes.

Coming back to Eqn. 1.10, the solution can be expressed in the form

Ψ(r,φ ,z, t) = R(r)ei(ωt−β z)

 cos lφ

sin lφ

 (1.11)

The equation can be separated into two parts, one for the core and the other for the cladding.

r2 d2R
dr2 + r

dR
dr

+

(
U2 r2

a2 − l2
)

R = 0; 0 < r < a (1.12)

and

r2 d2R
dr2 + r

dR
dr
−
(

W 2 r2

a2 + l2
)

R = 0; r > a (1.13)

where

U = a(k2
0n2

1(r)−β
2)

1
2 (1.14)

and

W = a(β 2− k2
0n2

2(r))
1
2 (1.15)

For guided modes, both U and W are real. Eqns. 1.12-1.13 are the well known Bessel’s equations.

The solutions for Eqn. 1.12 are Jl(x) and Yl(x), where x = Ur
a . However, since Yl(x) diverges as

x→ 0, they are discarded. The solutions for Eqn. 1.13 are the modified Bessel’s functions Kl(x̃)

and Il(x̃), where x̃ = Wr
a . Since Il(x̃) diverges as x̃→ ∞, they have to be discarded as well. The

transverse field components can hence be expressed as

ψ(r,φ) =



A
Jl(U)Jl

(Ur
a

) cos lφ

sin lφ

 ; 0 < r < a

A
Kl(W )Kl

(Wr
a

) cos lφ

sin lφ

 ; r > a

(1.16)
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We have assumed the continuity of the field at the interface between the core and the cladding

(r = a). Additional conditions come from the the continuity of the spatial derivatives ∂ψ

∂ r at r = a

UJ′l(U)

Jl(U)
=

WK′l (W )

Kl(W )
(1.17)

which can be expressed in the form

U
Jl+1(U)

Jl(U)
=W

Kl+1(W )

Kl(W )
(1.18)

Solving the above equation gives the value of the propagation constant, β , and hence the spatial

profile of the field components.

However, the solution for the guided mode profiles for arbitrary cross-sectional shapes cannot

in general be expressed in such neat forms. Instead, one needs to solve them numerically. We

have mainly used Lumerical’s Finite Difference Time Domain (FDTD) Solution software package

to generate these mode profiles and to obtain their transmission characteristics. The software

uses finite difference methods in the frequency domain to generate the guided modes and finite

difference methods in the time domain to calculate their transmission along the waveguide. The

basics of the finite difference method, focusing on the time domain solution, are explained in the

next section.

Finite Difference Time Domain (FDTD) method

The Finite Difference Time Domain (FDTD) technique is one of the most accurate techniques to

solve Maxwell’s equations in any dimension. FDTD works by dividing the simulation region into a

spatiotemporal grid. As a simplified version of the full 3-D simulations, I show how the simulation

works in a 1-D material. The 3-D case is an extension of the 1-D case. The explanation is derived

from ref. [162].

It is useful to note at the outset that in the finite difference method, for the estimation of the

derivative at a particular point, one needs to know the value of the function, not at that particular

point, but only at neighbouring points.

∂ f (x)
∂x

∣∣∣∣
x=x0

= lim
δ→0

f (x0 +δ/2)− f (x0−δ/2)
δ

(1.19)
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In the FDTD method, we expand Maxwell’s differential equations in a similar form. An interesting

feature of Maxwell’s equations is the relationship between the curl of the magnetic (electric) field

and the time derivative of the electric (magnetic) field in the absence of a source.

−→
∇ ×−→E =−µ

∂
−→
H

∂ t
−→
∇ ×−→H = ε

∂
−→
E

∂ t

(1.20)

where
−→
E and

−→
H are the electric and magnetic field vectors, and µ and ε are the magnetic perme-

ability and the dielectric permittivity of the medium. Taking a 1-D material whose spatial extent is

along the X axis, and assuming that the electric field only has a non-zero Z component, the above

equation simplifies to

µ
∂Hy

∂ t
=

∂Ez

∂x

ε
∂Ez

∂ t
=

∂Hy

∂x

(1.21)

The first equation is used to advance the magnetic field in time and the second equation is used

to advance the electric field. This method, where the electric and magnetic fields are sequentially

advanced in time, and the process is repeated, is known as the leap-frog method.

We discretize space in intervals of ∆x and time in intervals of ∆t . The electric and magnetic

field components at a space-time point (x, t) are written as

Ez(x, t) = Ez(m∆x,q∆t) = Eq
z [m]

Hy(x, t) = Hy(m∆x,q∆t) = Hq
y [m]

(1.22)

To start the simulation, let’s say that we are interested to update the magnetic field around

the space-time point
((

m+ 1
2

)
∆x,q∆t

)
(see Fig. 1.9). The time derivative of the magnetic field is

related to the spatial derivative of the electric field at that point as

µ
∂Hy

∂ t

∣∣∣∣
(m+ 1

2)∆x,q∆t

=
∂Ez

∂x

∣∣∣∣
(m+ 1

2)∆x,q∆t

(1.23)
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Figure 1.9: Spatiotemporal grid for Finite Difference Time Domain (FDTD) simulation. The space
is 1-D (along the X axis) whereas the other dimension is time (along the Y axis). The magnetic field
nodes are depicted as hollow triangles and the electric field nodes as dark circles. The difference
equation is written at the marked point to update the magnetic field value Hy.

Expanding it in the form of a difference equation, we get

µ
H

q+ 1
2

y
[
m+ 1

2

]
−H

q− 1
2

y
[
m+ 1

2

]
∆t

=
Eq

z [m+1]−Eq
z [m]

∆x
(1.24)

We solve for H
q+ 1

2
y

[
m+ 1

2

]

H
q+ 1

2
y

[
m+

1
2

]
= H

q− 1
2

y

[
m+

1
2

]
+

∆t

µ∆x
(Eq

z [m+1]−Eq
z [m]) (1.25)

This is the update equation for the magnetic field. Magnetic field values are thus updated in time

with the knowledge of the magnetic field at an earlier instant of time and the values of the electric

field around that space-time point. With this update on all the magnetic field nodes, the dividing

line between the past and the future shifts upwards in Fig. 1.10 by half a time-step.
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Figure 1.10: Spatio-temporal grid with the updated values of the electromagnetic field. The divid-
ing line between the past and the future moves upward along the Y axis (forward in time) by a half
step as the magnetic field values were updated in the last iteration. The marked point is where the
difference equation for the electric field (Ez) is written to update its value in this iteration.

Next, we shall update the electric field around the space-time point (m∆x,(q+ 1/2)∆t). The

relationship between the time derivative of Ez and the spatial derivative of Hy at this point is

ε
∂Ez

∂ t

∣∣∣∣
m∆x,(q+ 1

2 )∆t

=
∂Hy

∂x

∣∣∣∣
m∆x,(q+ 1

2 )∆t

(1.26)

Following the same procedure as above, we obtain

Eq+1
z [m] = Eq

z [m]+
∆t

ε∆x

(
H

q+ 1
2

y

[
m+

1
2

]
−H

q+ 1
2

y

[
m− 1

2

])
(1.27)

And we see from this update equation for the electric field that its current value depends on

its value at an earlier instant of time and on the neigbouring magnetic field values. This process

is repeated until the electric and magnetic field values are updated everywhere in the simulation

region.
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In Chapter 3, I simulate light guidance in myelinated axons using the FDTD method discussed

above and conclude that despite the intrinsic inhomogeneities and the presence of several scattering

structures around the waveguide, one can still expect good transmissions over relevant length scales

in the brain.
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Chapter 2

Towards long-distance quantum networks with

superconducting processors and optical links

This chapter is derived from ref. [163]. I performed all the calculations, drew all the figures and

tables, and wrote the manuscript, with feedback and edits from the other authors.

2.1 Abstract

We design a quantum repeater architecture, necessary for long distance quantum networks, using

the recently proposed microwave cat state qubits, formed and manipulated via interaction between

a superconducting nonlinear element and a microwave cavity. These qubits are especially attractive

for repeaters because in addition to serving as excellent computational units with deterministic gate

operations, they also have coherence times long enough to deal with the unavoidable propagation

delays. Since microwave photons are too low in energy to be able to carry quantum information

over long distances, as an intermediate step, we expand on a recently proposed microwave to

optical transduction protocol using excited states of a rare-earth ion (Er3+) doped crystal. To

enhance the entanglement distribution rate, we propose to use spectral multiplexing by employing

an array of cavities at each node. We compare our achievable rates with direct transmission and

with two other promising repeater approaches, and show that ours could be higher in appropriate

regimes, even in the presence of realistic imperfections and noise, while maintaining reasonably

high fidelities of the final state. Thus, in the short term, our work could be directly useful for

secure quantum communication, whereas in the long term, we can envision a large scale distributed

quantum computing network built on our architecture.
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2.2 Introduction

Quantum networks will enable applications such as secure quantum communication based on

quantum key distribution [1, 2, 3], remote secure access to quantum computers based on blind

quantum computation [20, 21], private database queries [9], more precise global timekeeping [10]

and telescopes [11], as well as fundamental tests of quantum non-locality and quantum gravity

[12]. If the total distance through which entanglement needs to be distributed is greater than a few

hundred kilometres, then direct transmission through fibers leads to prohibitive loss. This can be

overcome using quantum repeaters [164, 165], which require small quantum processors and quan-

tum memories at intermediate locations. The development of quantum computers has recently

seen many impressive accomplishments [166, 167, 61, 168]. Networking quantum computers is of

interest both in the medium term, when individual processors are likely to be limited in size due to

technical constraints, and in the long term, where one can envision a full-fledged quantum internet

[13, 169, 14], which would be similar to the classical internet of today, but much more secure, and

powerful in certain aspects.

Out of different architectures for quantum computation being pursued [23, 24, 25, 26, 27],

superconducting circuits are currently one of the leading systems. Easy addressability, high fidelity

operations, and strong coupling strength with microwave photons [28, 29, 31, 32] are some of their

most attractive features. Until recently, one challenge for using superconducting processors in

a network context was the relatively short coherence time of superconducting qubits (SQs) [30].

Long absolute coherence times are important for quantum networks because of the unavoidable

time delays associated with propagation. However, a recent development could help circumvent

this limitation. Instead of the states of a SQ, one can use the states of the coupled microwave

cavity as logical qubits, and manipulate these cavity states using strong SQ-cavity interaction [52,

44, 53, 45, 54, 55, 56, 57, 58, 59, 60]. The coherence time of these cavities can be much higher

than 100 ms [40, 41, 42], whereas that of the best SQ is only close to 0.1 ms [30]. Moreover, the

infinite dimensional Hilbert space of a cavity can allow new error correction codes which are more
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resource efficient than the conventional multi-qubit codes [43, 44, 45, 47, 50, 51]. Since photon

loss is the only prominent error channel here, unlike other architectures, it is also relatively easier

to keep track of these errors.

Out of several cavity based architectures for quantum computation, the approach introduced in

ref. [55, 56] seems to be one of the most promising candidates because of the relative experimental

ease in preparing and manipulating their system. They use coherent states of a microwave cavity as

qubits. A nonlinear superconducting element comprising of Josephson junction(s) is placed inside

the cavity, and the whole system is driven using a two-photon drive, which generates superpositions

of coherent states, also known as cat states, and stabilises them against amplitude decay, even in

the presence of single photon loss. Gates can be performed using detunings and additional single

photon drives. Two or more cavities can be coupled easily, e.g. using a transmon [44, 54, 60, 170].

Let us consider a possible scenario where the quantum processors at each node are based on

the microwave cavity architecture discussed in ref. [55, 56]. Since the energies of the microwave

photons exiting these cavities are lower than the thermal noise at room temperature, they cannot be

used to carry quantum information over long distances. We need quantum transducers to convert

these microwave photons to telecom wavelengths, which can then be transported via optical fibres

or in free space. In addition, we also need a way to encode and send information that is robust to the

realistic noise and losses incurred in long distance transmission. Here, we propose a novel scheme

to generate robust entanglement between cat state qubits of distant microwave cavities mediated

via telecom photons (see Fig. 2.1). There has been a great deal of work related to microwave-to-

optical transduction by hybridising different physical systems with superconducting circuits and

microwave resonators, e.g. NV centers in diamond [65], cold gases [66], rare-earth ions [62, 63,

64], and optomechanical systems [78, 79, 80, 81]. Some of us recently developed a protocol

to achieve transduction in a rare-earth ion (Er3+) doped crystal [171], which has an advantage

of easier integration with the current telecom fibers, mainly because of its addressable telecom

wavelength transition. We use that protocol in our scheme and discuss it in greater detail here.
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Figure 2.1: (color online) Schematic diagram to demonstrate the generation of entanglement be-
tween distant 3-D microwave cavities. At each node, there is a pair of cavities, coupled using
a transmon with two antenna pads, one in each cavity. All the cavities have a nonlinear super-
conducting element, e.g. another transmon, which provides the necessary Kerr nonlinearity for
microwave photons. One of the pair of cavities at each node (cavity ‘a’ in node A and cavity ‘c’
in node B) acts as the stationary qubit, while microwave to optical transducers generate telecom
wavelength flying qubits from the other cavity (cavity ‘b’ in node A and cavity ‘d’ in node B). The
flying qubits are interfered on a beamsplitter located midway between the nodes, and single-photon
detection events herald entanglement between the stationary qubits ‘a’ and ‘c’.

Unlike in classical communication, where one can amplify signals at intermediate stations,

in quantum communication, the no cloning theorem prohibits this kind of amplification. One

solution is to use quantum repeaters, where the total distance is divided into several elementary

links and entanglement is first generated between the end points of each elementary link, and then

swapped between neighbouring links in a hierarchical fashion to ultimately distribute it over the

whole distance [164, 165]. Many repeater protocols rely on using atomic ensembles [172, 165]

at the repeater nodes. But the success probability of their swapping operation based on linear op-

tics is limited to a maximum of 50% [173], which hampers the performance over long distances

and complex networks. It is possible to increase the success probability using auxiliary photons

[174, 175]. But this makes the system more complicated and error-prone, limiting its practical
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utility. Repeater approaches using deterministic swapping operations have been proposed in dif-

ferent systems to overcome this limitation, e.g. in trapped ions [176], Rydberg atoms [177, 178],

atom-cavity systems [179, 180], and individual rare-earth ions in crystals [181]. Some compo-

nents of such a repeater have been implemented experimentally in a few systems, e.g. NV centers

in diamond [92], trapped ions [182], and quantum dots [183].

Deterministic two-qubit gates are easily achievable in the microwave cavity architecture pro-

posed in ref. [55, 56]. So, instead of relying on one of the above systems to build a repeater,

we leverage the quantum advancements of superconducting processors, and develop a new re-

peater scheme using microwave cavities and transducers. This could also be useful in allocating

some resources of relatively nearby quantum computing nodes to serve as repeater links to con-

nect more distant nodes. We calculate the entanglement distribution rates, and compare those with

direct transmission, with the well-known ensemble-based Duan-Lukin-Cirac-Zoller (DLCZ) re-

peater protocol [172], and with a recently proposed single-emitter-based approach in rare-earth

(RE) ion doped crystals [181]. We conclude that our approach could yield higher rates in suitable

regimes. We also estimate the fidelities of our final entangled states in the presence of realistic

noise and imperfections, and we find them to be sufficiently high to perform useful quantum com-

munication tasks, even without entanglement purification or quantum error correction. The latter

protocols are likely to be needed for more complex tasks such as distributed quantum computing,

and we anticipate that it should be possible to incorporate them in the present framework.

The chapter is organised as follows: In Sec. 2.3, we briefly describe the qubit and the gates,

following ref. [55, 56]. In Sec. 2.4, we discuss the entanglement generation scheme between

distant qubits, which includes a description of the transduction protocol. Sec. 2.5 deals with our

proposal for a quantum repeater with the same architecture. In Sec. 2.6, we provide some additional

implementation details pertinent to our proposal. In Sec. 2.7, we estimate the rates and fidelities

of our final entangled states, and make pertinent comparisons with other schemes. In Sec. 2.8, we

draw our conclusions and enumerate a few open questions and avenues for future research.
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2.3 The qubit and the universal set of gates

2.3.1 Theoretical model

An individual physical unit of the quantum processor is a nonlinear microwave cavity. The nonlin-

earity arises because of the interaction of the cavity with a nonlinear superconducting element, e.g.

a transmon placed inside the cavity (see Fig. 2.1). The system is driven by a two-photon drive. The

Hamiltonian of the system with two photon driving, in a frame rotating at the resonance frequency

of the cavity is

H0(t) =−Ka†2
a2 +(Ep(t)a†2

+E ∗p (t)a
2) (2.1)

Here, a is the annihilation operator of the cavity mode, K is the magnitude of Kerr nonlinearity,

and Ep(t) is the time dependent pump amplitude of the two photon parametric drive.

The coherent states |α〉 and |−α〉, where α =
√

Ep/K, are instantaneous eigenstates of this

Hamiltonian. Under an adiabatic evolution of the pulse amplitude Ep(t), the photon number states

(Fock states) |0〉 and |1〉 are mapped to the states |C+
α 〉 and |C−α 〉 respectively. These so called cat

states are equal superpositions of coherent states: |C±α 〉 = N ±
α (|α〉± |−α〉), where the normal-

ization constant N ±
α = 1/

√
2(1± e−2|α|2). Faster non-adiabatic evolution is possible with high

fidelity using a transitionless driving approach [184, 56] (see Sec. 2.6.1 for a detailed discussion).

There are several advantages of forming and manipulating cat states this way using Kerr non-

linearity, as compared to other techniques, e.g. using the engineered dissipation approach [44, 53].

The system is easier to implement experimentally, has better stabilization against losses, has effec-

tively longer coherence times, and since all the processes are unitary, it is possible to trace back a

path in phase space, e.g. between cat states and Fock states, which is an important requirement for

our entanglement generation scheme discussed in Sec. 2.4. For conciseness, we shall refer to the

mapping from photon number states to cat states as ‘driving’ and from cat to photon number states

as ‘undriving’.
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We pick |C+
α 〉 and |C−α 〉 as our logical qubits, denoted by

∣∣0̄〉 and
∣∣1̄〉 respectively. We pick

α large enough such that the coherent states |α〉 and |−α〉 have negligible overlap. Continuous

rotation around X axis can be implemented using an additional single photon drive, described by

the Hamiltonian

Hx = H0 +Ex(a+a†) (2.2)

Here Ex is the amplitude of the additional drive. Rotation around Z axis can be achieved by

switching off the two photon drive, and evolving the system under the Hamiltonian

Hz =−K(a†a)2 (2.3)

To complete a universal set of gates, we need a two qubit entangling operation. The Hamilto-

nian for the system of two linearly coupled cavities is

Hc = H01 +H02 +Ec(a
†
1a2 +a1a†

2) (2.4)

H01 and H02 are the Hamiltonians of the individual cavities (given by Eqn. 2.1), a1 and a2 are

the annihilation operators for their respective microwave photonic modes, and Ec is the coupling

strength. The cavities can be coupled using a transmon with two antenna pads, one in each of these

cavities, overlapping with the microwave fields inside [54, 60, 170] (see Fig. 2.1).

2.4 Entanglement generation scheme between two distant nodes

Next, we discuss our scheme to generate entanglement between distant cat state qubits, which in-

volves application of a few of the gates discussed in the previous section. The scheme is inspired

from Barrett-Kok’s (BK) original theoretical proposal [90] for entanglement generation between

distant atomic spins. The protocol is robust to path length fluctuations of the fiber connecting

the distant spins. Minor variants of the BK protocol have been implemented in a few recent ex-

periments [91, 92, 185]; probably the most notable one was the demonstration of loophole-free
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Step (I) Step (II)
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Umo
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c

d

Figure 2.2: (color online) Quantum circuit to explain the entanglement generation protocol. In
addition to the standard symbols for quantum operations, we denote the cavity driving operation
by Epd , the undriving operation by Epu, microwave to optical transduction by Umo and the beam-
splitter operation by UBS. The driving operation takes the Fock states |0〉 and |1〉 to the cat states
|C+

α 〉 ≡
∣∣0̄〉 and |C−α 〉 ≡

∣∣1̄〉 respectively. The protocol is divided into two steps; the second step is
undertaken to discard the noise terms and to stabilize the protocol against path length fluctuations
of the fiber, following Barrett-Kok’s original proposal [90]. The state at the end of the protocol
is either 1√

2
(
∣∣1̄a0̄c

〉
+
∣∣0̄a1̄c

〉
) or 1√

2
(
∣∣1̄a0̄c

〉
−
∣∣0̄a1̄c

〉
) depending on whether the same or different

detector(s) clicked during each step.

violation of Bell’s inequality [92]. The novelty of our work is in bringing a promising contender

for quantum computation, i.e. microwave cat qubits, and probably the only feasible carrier for

long distance quantum communication, i.e. optical photons, together in a single platform, with

a robust BK like entanglement generation protocol. We rely on microwave cavity cat states for

computational and storage tasks, and on optical Fock states for communication.

2.4.1 Entanglement generation protocol

Our goal is to entangle one qubit at one node, let’s call it node ‘A’, with another qubit at another

node, let’s call it node ‘B’. For this, we start with a set of two coupled cavities at each node, e.g.

cavities ‘a’ and ‘b’ at node ‘A’ and cavities ‘c’ and ‘d’ at node ‘B’, as shown in Fig. 2.1. We shall

perform a sequence of operations such that at the end, one of these cavities at each node (cavity

‘a’ at node ‘A’ and cavity ‘c’ at node ‘B’) are entangled. Our approach for remote entanglement

generation is somewhat similar in spirit to those suggested for NV centers in diamond [186, 187],

where the aim is to entangle distant long-lived nuclear spins of 13 C (analogous to our cavities ‘a’
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and ‘c’), by performing spin-photon operations on the optically addressable electronic spins of NV

centers and using the hyperfine interaction between the nearby electronic and nuclear spins. A sim-

ilar approach has also been proposed recently in a rare-earth ion based repeater architecture[181].

Here, individual Er3+ spins in crystals are manipulated to generate spin-photon entanglement, and

the state of Er3+ is then mapped to the long lived nuclear spins of the nearby Eu3+ ions, which

serve as the storage qubits.

Following the BK’s proposal, we incorporate a two step protocol, depicted in Fig. 2.2. Step

(II) helps in discarding the noise terms and in stabilizing against path length fluctuations. In step

(I) of the protocol shown in Fig. 2.2, we first set out to generate entanglement between the two

neighbouring cavities at each node. Let’s focus on cavities ‘a’ and ‘b’ at node ‘A’. The cavities are

initially in vacuum state. They are driven using suitable microwave pulses and an Xπ/2 rotation

on cavity ‘a’ prepares the system in the state 1√
2
(
∣∣0̄a
〉
+
∣∣1̄a
〉
)⊗
∣∣0̄b
〉
. As a reminder,

∣∣0̄〉 and
∣∣1̄〉

are the cat states |C+
α 〉 and |C−α 〉 respectively. We then perform a CNOT operation (see Sec. 2.6.1

for the sequence of gates needed), with the first qubit as the control and the second as the target,

to reach the entangled state 1√
2
(
∣∣0̄a
〉
⊗
∣∣0̄b
〉
+
∣∣1̄a
〉
⊗
∣∣1̄b
〉
). Cavity ‘b’ is then undriven coherently

(see Sec. 2.6.1), such that
∣∣0̄b
〉
→ |0b〉 and

∣∣1̄b
〉
→ |1b〉, where |0b〉 and |1b〉 are the microwave

Fock states of cavity ‘b’. A quantum transducer is then used to convert microwave photons to

propagating optical photons at telecom wavelength. We discuss one possible transduction protocol

in the next subsection. To avoid usage of more complicated notations, telecom Fock states obtained

after transduction shall also be represented by |0b〉 and |1b〉; the distinction between microwave and

telecom Fock states should be clear from the context.

The same procedure is followed in a distant set of two cavities ‘c’ and ‘d’ at node ‘B’. The cat

states stored in the cavities ‘a’ and ‘c’ shall be referred to as the ‘stationary qubits’, and the tele-

com Fock states as the ‘flying qubits’. The combined state of the system, including the stationary

and flying qubits at this point is 1
2(
∣∣0̄a0̄c

〉
|0b0d〉+

∣∣0̄a1̄c
〉
|0b1d〉+

∣∣1̄a0̄c
〉
|1b0d〉+

∣∣1̄a1̄c
〉
|1b1d〉).

The telecom photons are directed to a beamsplitter placed midway between those distant nodes.
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Detection of only a single photon in either of the output ports of the beamsplitter would imply

measuring the photonic state 1√
2
(|1b0d〉+ e−iφ |0b1d〉) or 1√

2
(|1b0d〉− e−iφ |0b1d〉). Here φ is the

phase difference accumulated because of the different path lengths of those photons. The detec-

tion event projects the stationary qubits into either of the maximally entangled odd Bell states

1√
2
(
∣∣1̄a0̄c

〉
+ e−iφ

∣∣0̄a1̄c
〉
) or 1√

2
(
∣∣1̄a0̄c

〉
− e−iφ

∣∣0̄a1̄c
〉
).

If the detectors can’t resolve the number of photons, or if both the nodes emitted a photon

each and one of those photons was lost in transmission, then instead of the above pure entangled

state of stationary qubits, the projected state would be a mixture, with contribution from the term∣∣1̄a1̄c
〉
. To get rid of this term, and to make the protocol insensitive to phase noise which is greatly

detrimental to the fidelity of the final state, we follow BK’s approach [90], and perform step (II).

In step (II), we flip the stationary qubits (Xπ rotation), drive the cavities ‘b’ and ‘d’ from

vacuum states to
∣∣0̄b
〉

and
∣∣0̄d
〉

respectively, and then perform the same operations as in step (I),

i.e. CNOT operation, followed by undriving of the cavities ‘b’ and ‘d’, followed by transduction

to telecom photons which leave the cavity, and finally single photon detection in one of the output

ports of the beamsplitter. Successful single photon detection heralds the entanglement, and the

state of the stationary qubits is either 1√
2
(
∣∣1̄a0̄c

〉
+
∣∣0̄a1̄c

〉
) or 1√

2
(
∣∣1̄a0̄c

〉
−
∣∣0̄a1̄c

〉
) depending on

whether the same or different detector(s) clicked during each step. Once the two nodes A and B

share an entangled state, it can also be used to teleport a quantum state from one node to the other

using only classical bits and local operations [188].

The main reason that we undrive one of the two cavities at each node to generate Fock states,

which we then transduce to telecom wavelengths, instead of the more obvious route of directly

transducing these microwave cat states to telecom cat states and then transporting it over a fiber is

that cat states dephase because of photon loss and it’s complicated to correct for those errors over

long-distances where fiber loss could be greater than 90% [189, 190].
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2.4.2 Transduction protocol

Microwave to telecom transduction has attracted significant attention in recent times for various

applications involving hybridising different systems [35]. Coupling superconducting circuits with

spin based systems e.g. NV centers [65], cold gases [66] and rare-earth ions [62, 191, 63, 192],

or optomechanical systems [78, 79, 80, 81] are a few possible ways to achieve desired frequency

conversions. Our entanglement generation protocol does not rely on a specific implementation of

the transducer. However as a concrete example, we elaborate on the protocol some of us proposed

in ref. [171] using a rare-earth ion (Er3+) doped crystal. High efficiency conversion due to en-

semble enhanced coupling strengths, and easy integration with the current fiber optics owing to its

available telecom wavelength transition, are a few of the attractive features of this system.

In this section, we shall explicitly describe only the one-way microwave to telecom frequency

conversion, since we only need this in our entanglement generation scheme. The opposite con-

version can be achieved by running the pertinent steps of our transduction protocol in reverse.

The protocol is implemented in an Er3+ doped Y2SiO5 crystal, which could be placed inside a

microwave cavity (see cavities ‘b’ and ‘d’ in Fig. 2.1). Er3+ is a Kramers ion and as such has

doubly degenerate energy eigenstates. An external constant magnetic field,
# »
B0, splits the ground

state (4I15/2) into the Zeeman levels |1〉 and |2〉, and the excited state (4I13/2) into |3〉 and |4〉. The

energy level diagram of the ensemble of Er3+ ions is shown in Fig. 2.3. The optical transitions

between ground and excited states are at telecom wavelengths (around 1536 nm), whereas the

Zeeman splitting is in GHz range for magnetic field strength (| # »
B0|) of the order of tens to hundreds

of mT depending on the field’s directions [171, 191].

The transduction approach is inspired from the Controlled Reversible Inhomogeneous Broad-

ening (CRIB) memory protocol [193, 194] and is similar to the previous transducer proposal by

O’Brien et al. [63]. The idea is to first map the microwave photon to a spin excitation and then

map this spin excitation to an optical excitation followed by its eventual read-out. We assume that

initially all the ions are in the ground state |1〉. As in the CRIB memory protocol, a narrow ab-
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Figure 2.3: (color online) Reversible microwave to telecom transduction using a rare-earth ion
doped crystal. (a) Energy level diagram of an ensemble of Er3+ ions in Y2SiO5 crystal. A narrow
spectral feature is selected from the naturally broadened |1〉 to |4〉 transition, which is later artifi-
cally broadened by ∆ao using a magnetic field gradient, ~δB. The spin transition |3〉 to |4〉 is used for
the microwave side of the transduction process. A sequence of π pulses (Ωπ ) is applied between
|1〉 to |3〉 at different times to transfer the population and control the dephasing and rephasing of
the collective dipole. An optical photon of frequency ωo, described by the field E is emitted during
the final step of transduction from microwave to optical wavelength. (b) Transfer of a microwave
photon to a collective spin transition. On resonance, the collective spin transition (|3〉− |4〉) cou-
ples strongly to a single mode of the microwave cavity. The enhanced coupling strength is g′

√
N,

where N is the number of participating spins in the ensemble, and g′ is the single spin-cavity cou-
pling strength. The spin decay rate (γ1) and the cavity decay rate (κ) are also shown. (c) Variation
of the dynamical phase of the collective dipole as a function of time to illustrate the role of various
π pulses applied between |1〉 and |3〉. The dipoles dephase because of the induced inhomogeneous
broadenings (spin broadening between |3〉− |4〉 and optical broadening between |1〉− |4〉). As the
direction of the magnetic field gradient is reversed ( ~δB→− ~δB), the dipoles rephase leading to a
collective emission of a single optical photon. Although, in the figure, we do not show the effect
of the intrinsic inhomogeneous broadening, the decay linewidth, and the homogeneous linewidth
of the spin transition for simplicity, we do consider them for our calculation of the transduction
efficiency.
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sorption line from the inhomogeneously broadened |1〉− |4〉 transition is prepared by transferring

the rest of the population to an auxiliary level, e.g. level |2〉. At a later stage of the protocol, this

narrow absorption line is artificially broadened using, for example, a one-dimensional magnetic

field gradient,
#  »

δB(z), where the ‘z’ direction can be suitably chosen.

In contrast to the original proposal [63], we propose to use the excited state Zeeman levels

|3〉 and |4〉 (see Fig. 2.3 (b)) to transfer a microwave photon from the cavity into a collective spin

excitation. The excited state spin transition of Er3+ is less susceptible to the various spin-dephasing

sources, such as spin flip-flop and instantaneous spectral diffusion, and can thus have considerably

longer coherence lifetimes than the ground state spin transition [171]. The spin transition |3〉− |4〉

is initially detuned from the microwave cavity by an amount δ . A π pulse is applied to transfer

all the population from |1〉 to |3〉. The spin transition is now brought in resonance with the cavity.

The dynamics of the system can be described by the following Hamiltonian:

H = ∑
j

ω j

2
σ
( j)
z +∑

j
g′(a†

σ
( j)
− +aσ

( j)
+ )+ωma†a (2.5)

where σ
( j)
− is the spin flip operator, σ

( j)
z is the spin population operator and ω j is the spin transition

frequency of the jth spin, and a is the annihilation operator of the cavity mode and ωm is the

resonance frequency of the cavity. The collective spin S− = 1√
N ∑

N
j=1 σ

( j)
− strongly couples to the

cavity mode with an enhanced coupling strength g′
√

N, where N is the total number of participating

spins. The free evolution of the coupled cavity-spin system transfers the cavity excitation into the

collective spin excitation in time TS = π/(2g′
√

N). The efficiency of the process is primarily

limited by the natural spin inhomogeneous broadening, denoted by ∆ns. For realistic values of

g′
√

N = 2π × 34 MHz, ∆ns = 2π × 10 MHz, the homogeneous linewidth of spin transition γ2 =

2π × 100 kHz, the spin decay rate γ1 = 2π × 160 Hz, and the cavity decay rate κ = 2π × 10 Hz

[171], the efficiency of transfer is 99.04%.

The emission of a telecom photon is controlled by the dephasing and rephasing of the collective

spin and optical dipoles. The change of the dynamical phase as a function of time is depicted in Fig.

2.3 (c). After the microwave photon has been transferred to the spin excitation, the spin transition
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is detuned from the cavity, and the field gradient,
#  »

δB(z), is applied. This artificially broadens the

optical and spin transitions by ∆ao and ∆as respectively. After some spin-dephasing time τ1, a π

pulse (π1 pulse in Fig. 2.3 (c)) is applied to transfer all the population back from |3〉 to |1〉. The

collective excitation now dephases at a rate ∆ao on the optical transition. To initiate the rephasing

process required for emission of a photon, the direction of the magnetic field gradient is reversed

(
#  »

δB(z)→−
#  »

δB(z)). The population from |1〉 is again taken to |3〉 (π2 pulse) and is kept there for

some time to allow spin rephasing. Afterwards, the population is brought back to |1〉 (π3 pulse)

and the optical dipoles rephase, leading to a collective emission of a single photon corresponding

to the |1〉− |4〉 transition frequency, ω0. The efficiency of the overall transduction process also

depends on the total time spent in the rephasing and dephasing operations, the finite optical depth

of the crystal, and the coupling of the generated photon to the fiber. The overall efficiency can be

greater than 85% for realistic values [63]. Higher efficiencies are possible with a more optimized

π pulse sequence. It is worth mentioning here that even though these transduction operations may

look complicated, they can be compatible with the kind of 3-D microwave cavities we have in

mind. See Sec. 2.6.2 for a discussion on this.

The fidelity of the final entangled state between the nodes depends on the indistinguishability of

the photons interfering at the beamsplitter. Interestingly, for photon-echo based quantum memories

in big atomic ensembles, this value can approach unity, as decoherence predominantly affects

only the efficiency of the photon generation process, but not the purity of the generated photons

[195]. Possible imperfections in the setup, e.g. scattering of the pump laser, might cause some

optical noise, but these could be almost entirely filtered out, as was shown in similar systems

[196, 197]. We realistically assume that the temperature in the dilution refrigerator is low enough

(≈ 20 mK) to neglect contribution of thermal microwave photons [54, 60]. However generation

of spurious microwave photons possibly because of the noisy microwave circuit components and

heating caused by lasers would adversely affect the overall process. This needs to be overcome

with better experimental control or alternative theoretical approaches [80, 81].
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Figure 2.4: (color online) Schematic diagram of our repeater architecture. (a) Repeater architec-
ture using microwave cavities at each node. Independent attempts to generate entanglement are
made in 2n elementary links, each of length L0. Each pair of coupled cavities are denoted by the
same number. The stationary qubits shall have the subscript ‘s’ while the flying qubits shall have
the subscript ‘f’. In the first step, the neighbouring sets of stationary qubits, e.g. ‘1s’ and ‘2s’,
‘3s’ and ‘4s’, and so on, are entangled. Not all the links need to be entangled at the same time.
As soon as the neighbouring links are entangled, we go to the second step, where entanglement is
swapped using Bell state measurement (BSM) and classical communication, such that the qubits
‘1s’ and ‘4s’, ‘5s’ and ‘8s’, and so on are entangled. It takes n steps to distribute entanglement over
the total length L = 2nL0. (b) Part of a spectrally multiplexed repeater architecture. An array of
cavities is placed at each node. A frequency translator is placed at the output port of each cavity
generating the flying qubits, and independent attempts are made to distribute entanglement in m
spectrally distinct channels in each elementary link. The coupler (CPLR) couples light from those
m channels to the same fiber, while the decoupler (DECPLR) decouples it, followed by 2m sin-
gle photon detectors for heralding entanglement. The greyish shaded boxes represent the possible
BSM between neighboring storage cavities (for the entanglement swap operation), needed to dis-
tribute entanglement hierarchically over the total length, L, in the same set of identical channels
(same frequency). There are m sets of 2n identical channels. The protocol is successful when
entanglement is distributed over the total length in at least one set of identical channels.
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2.5 Quantum repeater architecture based on microwave cavities

Quantum repeaters are essential for distributing entanglement over long distances (hundreds of

kilometres) [164, 165] for quantum computation and quantum communication applications. Many

repeater proposals involve using atomic ensembles as stationary qubits mainly because good opti-

cal quantum memories can be built using them [198, 199, 200, 201, 202]. However, one drawback

is their probabilistic swapping operation, which hampers the entanglement distribution rate, and

this prompted several single-emitter based approaches [176, 177, 178, 179, 180, 181, 92, 182, 183].

Since nonlinear microwave cavities have sufficiently long coherence times, are easy to address,

and have deterministic two-qubit gates, in addition to a quantum computing architecture, one can

also envision a quantum repeater architecture based on them. Moreover, this also allows relatively

nearby quantum computing nodes to serve as repeater nodes to connect more distant quantum com-

puters. Here we discuss a ground based quantum repeater architecture with microwave cavities and

transducers.

2.5.1 Single set of cavities in an elementary link

In a quantum repeater, the total length L over which entanglement needs to be distributed is di-

vided into several smaller elementary links of length L0 each. A repeater architecture with a few

elementary links using microwave cavities and transducers, connected via optical fibers, is shown

in Fig. 2.4 (a). Entanglement is distributed in multiple steps in a hierarchical way. In the first step,

entanglement is generated between individual links of length L0, possibly after several independent

attempts, e.g. after the first step, stationary qubits ‘1s’ and ‘2s’, ‘3s’ and ‘4s’, and so on, are entan-

gled. However, not all the links need to be successfully entangled at the same time. We keep trying

until the neighbouring links are entangled, and in the subsequent steps, entanglement is distributed

over the whole length by performing the entanglement swapping operations. For instance, in the

second step, stationary qubits ‘1s’ and ‘4s’, ‘5s’ and ‘8s’, and so on are entangled by performing

Bell state measurement (BSM) on qubits ‘2s’ and ‘3s’, ‘6s’ and ‘7s’, and so on. It takes ‘n’ such
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steps (known as nesting levels) to distribute entanglement over the total length, L, comprising of

2n elementary links, L = 2nL0.

2.5.2 Multiplexed repeater architecture

An important metric for quantifying the usefulness of a repeater architecture is the rate of distribu-

tion of entangled states between distant nodes. One way to increase this rate is to use a spectrally

multiplexed architecture [203, 165, 204, 181]. A part of that architecture is shown in Fig. 2.4 (b).

An array of cavities is employed at each end of the elementary link. There are ‘m’ number of the

pair of coupled cavities (the storage cavity and the cavity generating the flying qubit) in this array.

Each of the cavity generating the flying qubits at each node is coupled to a corresponding cavity

at the next node independently via a quantum channel. To distinguish each of these m channels

spectrally, a frequency translator which spans tens of GHz can be optically coupled to the output

ports of the cavities generating the flying qubits [205]. These photons with different carrier fre-

quencies are then coupled to the same spatial mode of a fiber using a tunable ridge resonator filter

with≈ 1 MHz resonance linewidths [206], thus allowing a very large multiplexing in principle. At

the measurement station, there is a beamsplitter, two sets of ridge resonators for demultiplexing,

and 2m single photon detectors.

Independent attempts are made to distribute entanglement along each set of identical channels

of frequency ω j. There are m such sets and each set comprises of 2n identical channels. Our

approach requires entangling operations (for entanglement swap) only between neighbouring stor-

age cavities, as shown in Fig. 2.4 (b)). A more complicated multiplexing approach that requires

all-to-all connectivity between the storage qubits at each node would yield higher rates [203], but

we do not adopt that approach here because all-to-all connectivity is difficult to be realised exper-

imentally with good fidelities [59, 58]. Our protocol is successful if entanglement is successfully

distributed over the total distance L in at least one set of identical channels.

In sec. 2.7, we discuss our achievable rates for distribution of entanglement, compare those
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K(2 π × MHz),
κ (2 π × Hz)

K/ κ
ratio

Fidelity,
Time (μs)
Driving

Fidelity,
Time (μs)

Xπ/2

Fidelity,
Time (μs)

Zπ/2

Fidelity,
Time (μs)

Gπ/2

Fidelity,
Time (μs)

CNOT

0.025,25 103 0.9997, 3.18 0.9961, 8.84 0.9975, 10.00 0.9926, 9.38 0.9498, 84.73

0.517, 51.7 104 0.99994, 0.15 0.99898, 0.85 0.99975, 0.48 0.99848, 0.76 0.98948, 6.11

0.521, 5.21 105 0.99997, 0.31 0.99982, 1.91 0.99997, 0.48 0.99967, 1.65 0.99863, 11.20

Table 2.1: Time and fidelities of different operations for different values of Kerr nonlinearity K
and cavity decay rate κ . The driving operation takes the Fock state |0〉 (|1〉) to the cat state

∣∣∣C+√
2

〉
(
∣∣∣C−√

2

〉
). Xπ/2, Zπ/2 , and Gπ/2 are π/2 rotations about X axis, Z axis, and a suitable axis in the

two qubit Hilbert space respectively. The values of K and κ are chosen such that the ratio K/κ is
103, 104, and 105 in the three rows. For conciseness, we shall often refer to these ratios instead of
specifying the explicit values.

rates with direct transmission and with two other repeater approaches, and provide the fidelities for

our final entangled states. Before proceeding to that section, we list the realistic values adopted for

some of the experimental parameters and calculate the fidelities of the relevant operations in the

next section.

2.6 Some implementation details

2.6.1 The qubit and the gates

One way to realise the Hamiltonian (2.1) using 3-D cavities is to place a non-linear element, e.g.

a transmon inside the cavity (see Fig. 2.1), and drive it using suitable microwave tones [56, 44,

53]. In 2-D, one could use a λ/4 transmission line resonator (TLR) terminated by a flux-pumped

SQUID [56, 207].

Next, we quantify the performance of the qubits in the presence of realistic losses. Most of

the simulations incorporating such losses have been carried out using an open source software,

QuTiP (Quantum Toolbox in Python) [208]. The most prominent loss mechanism for the cavities

is individual photons leaking out of the cavity at a rate κ .

Through most of the chapter, we have tried to illustrate our points with the help of explicit

examples. We have chosen 3 sets of experimentally realisable values for Kerr nonlinearity K [209],
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and cavity decay rate κ [40, 41, 42], which are listed in Table 2.1-2.2. Although the individual

values of K and κ are all different, these are chosen such that the ratios of K/κ are 103, 104 and

105 in increasing order. These will often represent the different rows of our tables. The fidelities

of most of the operations depend on these ratios, rather than their individual magnitudes. For the

sake of brevity, we’ll often refer to these values by referring to the ratios.

Driving and undriving of the cavity

The pulse amplitude Ep(t) can be increased adiabatically to evolve the state of cavity from the

Fock states |0〉, and |1〉 to the cat states |C+
α 〉 and |C−α 〉 respectively, preserving parity, where

α =
√

Ep/K. As an example suggested in ref. [56], we take the pulse Ep(t) = E 0
p (1− e(−t/τ)4

),

Ep(t = 0) = 0, Ep(t) = E 0
p = 2K for t � τ to create a cat state with α =

√
2. For K/κ = 103, |0〉

is mapped to |C+
α 〉 with 99.62% fidelity in the duration 1.3τ = 0.04 ms. To undrive the cavity, we

simply apply the time reversed control pulse, to get back to |0〉 with the same fidelity.

Since this was just a smooth pulse obtained after some intuitive guessing, it need not be

optimized to reach the final state with the highest possible fidelity in the fastest possible way.

Faster mapping with higher fidelity is possible with an additional orthogonal two photon drive

iE ⊥p (t)(a†2− a2) [56] using the non-adiabatic transitionless driving approach propopsed in ref.

[184]. The shape of both of these pulses (Ep(t) and E ⊥p (t)) is optimized with Gradient Ascent

Pulse Engineering (GRAPE) algorithms [210, 211]. Fig. 2.5 (a) shows the two orthogonal drive

pulses applied for mapping |0〉 to
∣∣∣C+√

2

〉
in t = 0.5/K with 99.97% fidelity for K/κ = 103. Fig.

2.5(b) shows the pulses required for undriving the cavity from
∣∣∣C+√

2

〉
to |0〉 in t = 0.5/K. Table

2.1 gives the drive times and fidelities for different ratios of K/κ .

Values of K≥ 2π×10 MHz, much higher than those we have considered, are possible, and

would make the process much faster [209]. However, the ideal platforms for very large K are usu-

ally the 2-D TLRs. But, at present, since the quality factors of 3-D cavities are reported to be much

higher than those of 2-D TLRs, they seem to be a better choice for long distance entanglement

distribution as long coherence time is more important than the speed of operations (see Sec. 2.7).
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Our entanglement generation scheme, however, is independent of the type of cavity.

Single and two qubit gates

Rotation around X axis can be implemented with an additional single photon drive Ex (see Eqn.

(2.2)). The drive amplitude Ex should however be much smaller than the two photon drive drive

strength E 0
p = |α|2K to stay within the qubit space. Under that approximation, Xπ/2 is accom-

plished in t = π/(8|α|Ex). In the absence of noise due to single photon loss, taking a very small

value of Ex would yield a very high fidelity, but noise forces one to be fast to minimise decoher-

ence, even if it means going a little bit out of the qubit space. Thus one has to optimise between

reduction in fidelity because of noise and because of leaking out of the qubit space, keeping the

operations sufficiently fast. See Table 2.1 for the fidelities and gate times, taking Ex = E 0
p /10,

Ex = E 0
p /20, and Ex = E 0

p /45 for the three K/κ ratios respectively.

Zπ/2 is achieved in time π/(2K) by the free evolution under the Kerr Hamiltonian in Eqn. 2.3.

Tables 2.1 shows the fidelities and times for our parameters.

For a two qubit entangling gate (see Eqn. (2.4)), we start with the state
∣∣0̄〉⊗ ∣∣0̄〉 and evolve it

under the Hamiltonian described by Eqn. 2.4. The rotation in the two-qubit space is denoted by

Gθ , where θ is the same angle as that disscussed in ref. [55]. When θ = π/2, we arrive at the

maximally entangled state
(1+i)|0̄〉⊗|0̄〉+(1−i)|1̄〉⊗|1̄〉

2 in t = π/(8|α|2Ec), where Ec is the coupling

strength between the two cavities. As was the case for Xφ rotation, to remain in the Hilbert space

of the two qubits, a small Ec is preferable, but time and noise considerations pushes us to be fast.

See Table 2.1 for the times and fidelities for Ec = E 0
p /15, Ec = E 0

p /25, and Ec = E 0
p /55 for the

three ratios of K/κ respectively.

This set of values for the single photon driving amplitude Ex and the coupling strength Ec has

been chosen after running many simulations, and taking different values in each of these simula-

tions to arrive at a set which gave reasonably good fidelities. But optimum amplitudes, possibly in

the form of time dependent functions, can be obtained using GRAPE, and they might yield slightly

higher fidelities.
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Figure 2.5: (color online) Optimised GRAPE pulses for driving and undriving the cavities. (a)
The pulses needed to drive the cavity from |0〉 to

∣∣∣C+√
2

〉
in time 0.5/K with 99.97% fidelity for

K/κ = 103. The red solid curve is the original two photon drive (Ep(t)) while the blue dashed
curve is the additional orthogonal drive (E ⊥p (t)). (b) The pulses needed to undrive the cavity from∣∣∣C+√

2

〉
to |0〉 in time 0.5/K with 99.97% fidelity for K/κ = 103.
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Bare decay
rate

Cavity (κc)
(2 π × Hz)

Coupling
(g)

(2 π × MHz)

Detuning
(Δ)

(2 π × GHz)

Anharmonicity
SQ (Kq)

(2 π × MHz)

Decay rate
SQ (γ)

(2 π × kHz)

Enhanced
decay rate
Cavity (κ)
(2 π × Hz)

Effective
decoherence rate
Cat state [α=√2]

(κeff)
(2 π × Hz)

Kerr
nonlinearity

Cavity (K)
(2 π × MHz)

1.59 200 1.65 95 1.59 25 100 0.025

0.32 485 2.70 325 1.59 51.7 206.8 0.517

0.08 490 2.80 350 0.17 5.21 20.8 0.521

Table 2.2: Estimating the effect of a SQ placed inside the cavity on its coherence time and on
the Kerr nonlinearity for photons. The decay rate of the cavity (κ) is affected by the SQ-cavity
coupling strength (g), the detuning (∆), and the decay rate of the SQ (γ). The decay rate of the bare
cavity (κc) is shown in column 1. The effective coherence time of the cat state (κe f f ), with α =

√
2,

is tabulated in the second-last column. The last column provides the estimated magnitudes of Kerr
nonlinearity K, which is related to the above parameters and the anharmonicity of the SQ (Kq).

In addition to the two-qubit rotations Gθ , we need additional single qubit operations to perform

a CNOT gate in our chosen basis of |C+
α 〉 and |C−α 〉. One of the sequence of operations which yields

a CNOT gate with the first qubit as the control and the second qubit as the target is

X2
π/2X1

−π/2Z1
π/2Gπ/2X1

−π/2Z1
−π/2X1

π/2 (2.6)

Here Xφ and Zφ are the respective single qubit rotations around those axes. The superscript denotes

the qubit on which those gates act. Table 2.1 shows the resulting fidelities and time taken for

different parameters.

2.6.2 Compatibility of 3-D microwave cavities with additional elements and op-

erations

Effect of a Kerr nonlinear element on the decay rate of a microwave cavity

The Hamiltonian of a weakly anharmonic SQ coupled to a cavity can be expressed in the form

H = ωca†a+ωqb†b−Kqb†2
b2 +g(a†b+ab†) (2.7)

Here, a is the annihilation operator for the cavity mode with frequency ωc, and b is the an-

nihilation operator for the SQ mode with ωq as the transition frequency between its ground state

and the first excited state. Kq is the anharmonicity of the SQ mode, and g is the coupling strength

between the cavity and qubit modes.

51



The qubit-cavity interaction hybridizes these modes, and in the dispersive regime, where the

coupling g is much less than the detunings between the cavity and qubit transition frequencies,

the cavity acquires a bit of the SQ component and vice-versa. Consequently, a part of the non-

linearity of the SQ mode (Kq) is also inherited by the cavity and in the dressed picture, there

appears a Kerr nonlinearity term of the form −Ka†2a2 (see the Hamiltonian in Eqn. 2.1), where

the mode a now has a small SQ component. K can be estimated by observing the energy spectrum

of the eigenstates of the full Hamiltonian given in Eqn. 2.7. We do so numerically by diagonalis-

ing the above Hamiltonian and observing the energy difference between consecutive cavity levels

ω|i+1,0〉−ω|i,0〉. Here, |i, j〉 denotes an eigenstate of the above Hamiltonian with i and j number of

excitations in the dressed cavity and SQ mode respectively. We verify that the energy difference

between consecutive cavity levels follow the trend expected from a Kerr nonlinearity term in the

Hamiltonian. Our way of obtaining the Kerr nonlinearity numerically agrees well with those seen

in experiments [212].

The coherence times mentioned in ref. [40, 41, 42] are for a bare cavity. But due to the hy-

bridization of the cavity-SQ modes, the lifetimes of both the cavity and the SQ change. Since a

SQ has a shorter coherence time than our desired kind of cavities, the SQ-cavity interaction will

shorten the lifetime of the cavity. We therefore need to take this effect into account.

To the lowest order in g/∆, the ‘inverse-Purcell’ enhanced decay rate of the cavity κ ≈ (1−

(g/∆)2)κc +(g/∆)2γ [213, 214, 215]. Here, g is the qubit-cavity coupling strength, ∆ = ωq−ωc

is the detuning between the cavity and the qubit, and κc and γ are the decay rates of the bare cavity

and the SQ respectively. Taking the above κ , the effective coherence time of a cat state in the

cavity in the presence of the two photon drive, κe f f , is numerically found by fitting the evolution

of coherence as a decaying exponential. It is approximately equal to 2κ|α|2, where |α| is the size

of the coherent state.

For experimentally conceivable values of κc [40, 41, 42], γ [216, 30], g [34, 212, 31], ∆ [212,

214], and Kq [217, 209, 218, 214], the calculated K and κ are listed in Table 2.2.
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We note that due to the difference of as much as four orders of magnitude between κc and γ , κ

is practically determined by γ . On the one hand, this relaxes the requirement on the quality factor

of the bare cavity that is needed for our implementation. As an example, for K/κ = 104, instead

of taking κc = 2π × 0.32 Hz, if we assume an order of magnitude larger κc = 2π × 3.2 Hz, the

resulting κ stays almost the same (aprox. 5% variation). But on the other hand, large γ makes

achieving large K/κ ratios difficult, as both K and (the effect of γ on) κ increase simultaneously,

though not exactly in the same way. Since the dependence of K and κ on the experimental param-

eters is not identical, it is still possible to obtain high K/κ ratios with appropriate values for these

parameters (see Table 2.2). It should be pointed out that our selection of these values is based on

running multiple simulations, ensuring that we stay in the dispersive regime, and from the intuition

derived indirectly from approximate perturbative expressions in ref. [219, 217, 212]. It is likely

that a proper optimization of the relevant parameters might yield slightly better values for K and

κ than the ones we have used. However, even with the values we have taken, we still manage to

obtain high entanglement generation rates and fidelities, as discussed in the next section (Sec. 2.7).

It is worth noting that improving γ of the SQs will significantly improve the achievable K/κ

ratios. If the SQs were as long-lived as the cavities, then K/κ ratios of the order of 107 should be

achievable with the parameters in Table 2.2.

Compatibility of 3-D microwave cavities with the transduction operations

Here we discuss the compatibility of high quality factor (high Q) 3-D superconducting cavities

with the transduction operations, specifically those involving magnetic fields necessary for our

protocol.

There is an increasing effort towards designing 3-D microwave cavities that would permit mag-

netic field manipulation of SQs [220, 221], and spin systems [222, 223] inside them. The two most

common elements used to build high Q superconducting cavities are Aluminium (Al) and Niobium

(Nb) [40, 41, 42]. The demand for magnetic field at least in tens of mT for our transduction pro-

tocol [171, 191] is difficult for cavities made out of pure Al, which loses its superconductivity at a
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criticial magnetic field strength, Hc ≈ 10 mT [224], unless one includes a pathway for the magnetic

field lines to escape without interacting much with the Al walls, e.g. by making a hybrid cavity

including Copper (Cu) [220]. However, many of these designs would still result in slightly lower

Q cavities for high magnetic fields. As a better alternative, one can opt for cavities made out of Nb,

whose Hc ≈ 200 mT [224, 225] can sustain the magnetic field strengths needed in our protocol.

Another concern here is that the SQs (placed inside these cavities) themselves are predominantly

made of Al, and it is important to shield them from strong magnetic fields. The fields generated in

some experiments, e.g. in ref. [222] have a gradient like character, and we can therefore place SQs

close to regions of weak magnetic field while the transducer close to the more intense regions.

It should be pointed out that since the transducer is placed in the cavity generating the flying

qubits, and not the one which is supposed to act as a memory, the requirement of long coherence

time is less stringent on this cavity. If, however, these operations turn out to be experimentally

too challenging to be performed in the cavity while maintaining reasonably good coherence, one

can adopt an alternative route. After the undriving operation to a microwave Fock state, one could

transfer the microwave photon to a lower finesse cavity, possibly even a planar resonator, and

perform transduction there. To make the operation faster, it should be possible to tune the decay

rate of the original cavity to approximately 4 orders of magnitude higher than its intrinsic value

[226, 227].

2.7 Entanglement distribution rates and fidelities

In the previous section, we presented some experimental values which will be relevant here to

calculate the possible entanglement distribution rates for our repeater protocol, and to estimate the

fidelities of the final states. We shall compare the rates with those possible with direct transmission,

with the popular ensemble based DLCZ repeater approach [172], and with a recently proposed

repeater approach using single rare-earth (RE) ions in crystals [181].

The average time to distribute entanglement over length L using a quantum repeater scheme
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with 2n elementary links, each of length L0 is [176, 165, 228, 181] (see the Supplementary Infor-

mation in Appendix A for a brief explanation of the formula)

〈T 〉L = (
3
2
)n(

L0

c
+To)

1
P0P1P2....Pn

(2.8)

Here, To is the time taken for the local operations at one node for one elementary link, P0 is the

success probability of generation of entanglement in an elementary link, and Pi is the success

probability of entanglement swapping in the ith nesting level. The local operations include the

gates and the driving, undriving, and transduction operations (see Fig. 2.2) at each node. For

our protocol, P0 = 1
2ηt pηo

2. The transmission efficiency in the fiber is ηt = e−
L0

Latt , where Latt

is the attenuation length. The probability of emitting a telecom photon from a cavity into the

fiber mode is denoted by p. For our system, it is primarily the transduction efficiency. And ηo

is the single (optical) photon detection efficiency. Pi is mainly governed by the (stationary) qubit

readout efficiency. Cat states can be read out in a Quantum Non-Demolition (QND) fashion with

close to unit efficiency by measuring the parity [229, 45] (see section A.1.7 in the Supplementary

Information in Appendix A for a brief discussion on parity measurements). Another way to read-

out cat states, is to un-drive them to Fock states, and then read out the number of photons non-

destructively, using a similar technique as before [230]. Since two such measurements are needed

for entanglement swap, Pi = ηm
2, where ηm is the QND efficiency. Values close to unity are

expected for our long storage-time cavities.

The entanglement distribution rate is the inverse of the average time needed to distribute entan-

glement. For the multiplexed architecture the rate is multiplied by m, since there are m independent

sets of channels operating in parallel.

In Fig. 2.6, we plot entanglement distribution rates for our proposed protocol as a function

of the total distance L and compare these with the rates possible using direct transmission and

a source producing entangled photons at 1 GHz [231], with the rates achieved using the DLCZ

protocol [172, 232], and with those achieved using single RE ions (RE) in crystals [181]. We

choose K/κ = 105 and n = 3 for our repeater protocol. In the Supplementary Information in
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Figure 2.6: (color online) Entanglement distribution rate as a function of distance for different
schemes. ‘A’ is direct transmission in a fiber with a 1 GHz entangled photon source, ‘B’ and ‘C’
are the multiplexed (m = 200) versions of our cat scheme and the rare-earth (RE) scheme [181]
respectively, and ‘D’ and ‘E’ are the non-multiplexed versions (m = 1) of these schemes. ‘F’ and
‘G’ are the multiplexed and non-multiplexed versions of DLCZ scheme. The number of nesting
levels, n = 3 for all the repeater schemes.

Appendix A, we discuss the rationale behind choosing this particular nesting level, and also show

the rates and fidelities for other nesting levels and other ratios of K/κ . We take realistic values for

other pertinent experimental parameters, e.g. p = 0.8, Pi = 0.9, ηd = 0.9, and Latt = 22 km. The

relevant parameters for DLCZ include the single photon generation probability and the memory

efficiency, which too have been taken realistically as 0.01 and 0.9 respectively [172, 232, 165].

Since the operation times for DLCZ protocol can in principle be fast enough to be ignored [232],

we do not include those here. For the single RE ion based approach, apart from the parameters

already considered for the rate calculation in ref. [181], we have taken into account a realistic

operation time of 0.1 ms. The figure also depicts the increased rates obtained by multiplexing

(m = 200) for all three repeater protocols. Our protocol yields higher rates than the other two

repeater protocols.

Quantum repeaters would be practically more useful when the rate of distribution of entangle-

ment surpasses that of direct transmission at the so called ‘cross-over’ point. From the plot, the

cross-over points for our protocol for m = 1 and m = 200 are 387 km and 244 km respectively.
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The fidelity of the final entangled state can be estimated by subsequently multiplying the fidelities

of different operations and the residual coherence of the storage cavities.

Ftot = (Felem)
l× (Fswap)

l−1×CR (2.9)

Here, Ftot is the fidelity of the final entangled state, Felem = ∏i FOi is the fidelity of generation

of entanglement in an elementary link, where Oi are the various local operations, e.g. the gates, the

driving and undriving of the cavities, and the transduction from microwave to optical frequencies.

Fswap is the fidelity of entanglement swap, and l = 2n is the number of elementary links, where

n is the nesting level; the number of entanglement swaps needed to distribute entanglement over

the whole length, L, is l−1. CR is the residual coherence of the storage cavities, only taking into

account the decoherence because of the non-zero waiting times.

The residual coherence (CR) for cat states is approximated as e−κe f f T , where ke f f is the cat’s

decoherence rate and T is the average time needed to distribute entanglement. One relatively

simple way to have a larger CR is by undriving the storage cavities from the cat basis to the Fock

basis before the waiting times. The decoherence rate in the Fock basis is approximately κ , which

is less than the decoherence rate (ke f f ≈ 2κ|α|2) of our cat states. The cavities would then be

driven back to the cat basis when the additional operations need to be performed. Moreover, since

even κ is much greater than the decay rate of the bare cavity, κc, because of the relatively lossy

SQ coupled to it, one could increase CR further by transferring the Fock state to an effectively

longer lived microwave cavity for storage [226, 227, 233, 234]. The residual coherence can also

be enhanced with appropriate error-correction codes [43, 52, 44, 53, 45, 47, 235, 61, 50, 51]. For

suitably encoded cat states, error-correction has been experimentally implemented to increase the

coherence time by a few times [45], and error detection has been performed in a fault-tolerant way

[61]. Note that our present protocol would require quantum error correction for qubits encoded in

states of different parity. See the Supplementary Information in Appendix A for a discussion on

different approaches to increase the residual coherence.
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In addition to the fidelities of the different operations calculated explicitly using QuTip (see the

Supplementary Information in Appendix A for a list of all the operations considered), if we take

the fidelity for transduction as 99.95%, comparable to the fidelities of several of the gate operations

in Table 2.1, the highest fidelities of the final entangled states calculated for m = 1 and m = 200

at the cross-over points are approximately 91% and 92% for m = 1 and m = 200 respectively (see

the Supplementary Information in Appendix A for details).

Considering only factors such as a non-zero single photon generation probability, and imperfect

memory and detection efficiencies, and using the already mentioned realistic values for them (0.01,

0.9 and 0.9 respectively), the fidelity of the final state for DLCZ repeater protocol with n= 3 would

be roughly 75% [165]. However this should be treated as kind of an upper bound, since we have

not considered the finite fidelities of other operations, e.g. the read and write processes, the finite

coherence times of the memories, and the effect of the phase fluctuations of the fibers, which

would all contribute towards bringing down the final fidelity. For the RE ion-based approach,

an upper bound on fidelity, estimated considering only entanglement swapping and spin mapping

(Er3+−Eu3+) operations, is roughly 80%. It is worth mentioning here that an additional advantage

of schemes such as ours over schemes such as the DLCZ is that it is difficult to envision device-

independent certification of the violation of Bell’s inequalities and device-independent quantum

key distribution with the DLCZ protocol [236].

Using established protocols of entanglement purification, the fidelity of our final states can be

significantly increased as they cross the threshold above which purification is possible [237]. Here,

however, we do not incorporate error-correction or entanglement purification in our architecture,

but we believe that those should be possible (see the Supplementary Information in Appendix A

for a brief discussion on error-correction).
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2.8 Conclusion and Outlook

Recently, orthogonal cat states in microwave cavities [55, 56] have been proposed as promising

qubits for quantum computation. Their long coherence times also make them attractive in a quan-

tum network context. Here, we proposed a robust scheme to generate entanglement between distant

cat-state qubits, mediated by telecom photons in conventional optical fibers. As an important step

of this entanglement generation scheme, we expanded on a specific microwave to optical transduc-

tion protocol some of us recently proposed using a rare-earth ion (Er3+) doped crystal [171]. We

also designed a quantum repeater architecture using these cat state qubits and rare-earth ion based

transducers. Our calculations show that higher entanglement distribution rates than that possible

with direct transmission or with two other repeater approaches, including the well-estalished DLCZ

approach, can be achieved, while maintaining a high fidelity for the final state in the presence of

realistic noise and losses, even without entanglement purification or quantum error correction. By

increasing the size of the local quantum processing nodes, our proposed approach can naturally be

extended to a full-fledged distributed quantum computing architecture, thus paving the way for the

quantum internet [13, 169, 14].

We hope that our results will stimulate new experimental and theoretical work involving these

cat state qubits and transducers. It would be useful to think about ways to generate higher Kerr

nonlinearities and to diminish the effect of the SQ on the decay rate of the cavity, possibly by

engineering novel Hamiltonians and by designing novel forms of filters respectively [238, 209,

239]. Regarding cat state qubits, future work may include developing and incorporating efficient

quantum error-correction codes [53, 47, 235, 51], and possibly envisioning schemes to protect

against phase decoherence. It is worth mentioning that although we have chosen microwave cat-

state qubits, rather than the more obvious (microwave) Fock state qubits as our computational

units, since quantum computation with error correction seems to be currently more mature with

cat states, our entanglement generation protocol, and hence the overall repeater framework can

straightforwardly be applied to Fock state qubits. Recently, new error correction codes have been
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proposed for Fock state qubits [46, 48]. There have consequently been a few experiments to

demonstrate error-correction [49], as well as single and two qubit gates [60, 170, 49] on suitably

encoded Fock state qubits. The recent work thus tightens their competition with cat state qubits,

and it will be interesting to see how the field progresses.

Within the areas of modular and distributed quantum computing, it is of interest to think about

how best to connect different computational units to efficiently distribute an arbitrary computa-

tional task [5, 6, 7, 8]. Regarding the quantum communication aspect, one would need to figure

out efficient repeater architectures for a truly global quantum network, possibly using both ground

based and (quantum) satellite links [240, 93, 14, 94].
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Appendix A

Supplementary Information for “Towards long-distance

quantum networks with superconducting processors and

optical links”

A.1 Entanglement distribution rates and fidelities

In this section, we present the entanglement distribution rates and fidelities for different ratios of

K/κ and for different nesting levels n. We will try to build an intuition for the realistic distances

over which entanglement can be distributed, and how best to beat direct transmission, for different

experimental parameters. We shall consequently provide a justification for choosing n = 3 for

K/κ = 105 in the main text.

A.1.1 Description of the rate formula

For a quantum repeater, it is intuitive to expect the average time required to distribute entanglement

over the total distance L to be of the form [165]

〈T 〉L = (
L0

c
)

f0 f1 f2.... fn

P0P1P2....Pn
(A.1)

when the time needed to perform the operations is negligibly small compared to the communi-

cation time L0/c to and from the beamspitter placed in between the neighbouring nodes. P0 is the

probability that entanglement is generated in one elementary link in a single attempt, determined

primarily by the losses in the fiber and the inefficiencies of the detectors. Pi is the probability of

successful entanglement swap in the ith nesting level. If all the components are ideal and lossless,

and the operations are all deterministic, then P0 = P1 = P2 = ....Pn = 1. Non-unit efficiency of

realistic operations obviously increases the average time. The factors fi arise because one has to
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have two neighbouring links entangled in the nesting level i−1 before attempting the swap opera-

tion for the nesting level i. They should all thus be in the range 1≤ fi ≤ 2. To our knowledge, an

analytic expression for a general fi has not been derived so far, but to the lowest order in P0, all the

fi’s can be well approximated to be 3/2 [165].

Now, if one takes into account the finite times for performing all the local operations, then in

addition to the communication time L0/c, one has to spend an additional time To every time one

makes an entanglement generation attempt in an elementary link. Thus, we obtain the formula

used in Chapter 2 (Eqn. 2.8 in Chapter 2), i.e.

〈T 〉L = (
3
2
)n(

L0

c
+To)

1
P0P1P2....Pn

The entanglement distribution rate is the inverse of the average time needed to generate entan-

glement. For a multiplexed architecture, where ‘m’ spectrally distinct sets of channels operate in

parallel, the entanglement distribution rate is simply m times the rate obtained in a single set of

channels.

A.1.2 Entanglement fidelity

The fidelity of the final entangled state, Ftot , can be estimated by subsequently multiplying the

fidelities of all the individual operations and the residual coherence of the memories, as shown in

the following equation.

Ftot = (Felem)
l× (Fswap)

l−1×CR

Here, Felem = ∏i FOi is the fidelity of generation of entanglement in an elementary link, where

Oi are the various local operations, e.g. the gates, the driving and undriving of the cavities, and the

transduction from microwave to optical frequencies. Fswap is the fidelity of entanglement swap, and

l = 2n is the number of elementary links, where n is the nesting level; the number of entanglement

swaps needed is l−1. CR is the residual coherence of the storage cavities, taking into account the
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decoherence because of the non-zero waiting times.

Residual coherence of the storage cavities

While waiting for entanglement to be established in neighbouring links, the cat states in the storage

cavities decohere at the rate ke f f = 2κα2, where κ is the single photon decay rate and α is the

amplitude of the coherent state. If the average time needed to distribute entanglement is T , then

the residual coherence left in the storage cavities is approximately CR = e−κe f f T . For α =
√

2,

ke f f = 4κ . Although error-correction can, in principle, correct these errors (see Section A.1.7),

currently an easier way to increase the residual coherence (CR) is to undrive the cavity from the

cat basis to Fock basis while waiting. Once entanglement is confirmed to be generated in the

neighbouring links, one can then drive the cavity back to the cat basis to perform the logical

operations. The trade-off in doing so would be a slight reduction in Felem and a slight increase

in Toper because of the additional driving and undriving operations. But since these operations

are quite fast and proceed with very high fidelity (see Table I in the main text), we find that, as

compared to storing the photonic states in the cat basis, taking this route increases the final fidelity

in almost all the cases. Therefore, unless stated otherwise, we shall adopt this route here to estimate

our final fidelities. However, this interconversion is not a necessity, and keeping the photonic states

in the cat basis will yield good fidelities for many cases as well.

We saw in Chapter 2 that because of the difference of as much as four orders of magnitude

in the loss rates of the cavity and the SQ coupled to it, κ is essentially determined by the decay

rate of the SQ, γ (see Table 2.2 in Chapter 2). We need strong dispersive coupling to the SQ to

generate high Kerr nonlinearities, which makes the dependence of κ on γ stronger too. Under such

a scenario, κ � κc, where κc is the decay rate of the bare cavity without the SQ. However, for

storage in the Fock basis without error-correction, in principle, we do not need the qubit cavity

interaction (g) at all. So, ideally we would want to switch off the interaction during storage to

keep κ ≈ κc during the waiting times, and switch it on when the gates need to be performed. But,

turning g on and off is likely not possible in the (circuit-QED) experimental setup. One could
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work with the detunings between the SQ and the cavity, and that will reduce κ to a certain extent.

But significant detuning is also experimentally challenging. Another solution could be to transfer

the photons (in Fock basis) from these cavities used for computation to other long-lived cavities,

whose κ ≈ κc, using the techniques available [226, 227, 233, 234]. As an illustration of how much

better the final fidelity gets if the transfer happens perfectly to and from these cavities, in the tables

below, we shall also list the final fidelities assuming storage in the best currently available 3-D

microwave cavities.

One could enhance the residual coherence further by integrating our storage cavities with other

solid-state quantum memories, e.g. phosphorus spins in silicon [106], or rare-earth ensembles

[241], where coherence times up to hours are possible. Alternatively, one could still use our entan-

glement generation scheme to implement a more complicated multiplexed repeater protocol which

is mostly insensitive to the short coherence times of the storage cavities [203]. It however needs

more resources and more complicated operations, which would be experimentally challenging.

A.1.3 One elementary link (n=0)

For entanglement generation in one elementary link, we need 6 driving operations, 2 Xπ/2 rota-

tions, 4 CNOT gates, 4 undriving operations, 4 transduction operations, and 2 Xπ rotations (see

Fig. 2 in the main text). Inter-converting the photons from cat basis to Fock basis for storage adds

4 more undriving and undriving operations. Taking the fidelity for a single transduction operation

to be 99.95%, and calculating the others numerically with QuTiP, the fidelities for an elementary

link of length 50km for the three sets of values of K and κ are presented in Table A.1(a)-(b). Table

A.1(a) is for the case when we store in the Fock basis in the same cavity, and Table A.1(b) is when

we transfer the photon perfectly to another cavity, whose lifetime is 10 s, which is comparable to

the highest quality factor (Q) 3-D cavities available currently [42].

The first column of Table A.1 gives the values for the Kerr nonlinearity and the decay rate

of the cavity. The next two columns have broken down the fidelity of the final state into its two
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important parts: (i) the fidelity of the local operations, which includes all the gates, driving and

transduction operations, and (ii) the residual coherence of the storage cavities as they wait for

local operations and communication tasks to be finished. We have the final fidelity in the next

column, followed by one showing the possible entanglement generation rates. There are two sets

of the above values, one for multiplicity m = 1 and the other for m = 200. We observe that for all

these values, the fidelity exceeds the entanglement purification bound 50% by a significant margin,

such that even with imperfect local operations, the fidelity of the distributed entangled states can

be further enhanced, however at the expense of the distribution rate [237]. We see that though

the transfer of photons to a long lived cavity improves the coherence and hence the final fidelity,

the final fidelity even without doing this is sufficiently high, and thus this additional step is not

necessary here. This table might be pertinent if one were to design an architecture to distribute

entanglement within a relatively short distance, e.g. a city.

A.1.4 Two elementary links (n=1)

The next table, i.e. Table A.2 shows the fidelities for nesting level n = 1, keeping the length of an

elementary link the same, i.e. 50 km. Here too, Table A.2(a) is for the case when the photons are

stored in the same cavity, and Table A.2(b) is for the case when they are transferred to effectively

longer lived cavities for storage. In addition to a couple of sets of the above local operations

required for an elementary link, we need to perform an entanglement swap, which includes a

CNOT and a Hadamard at the sender and a rotation at the receiver. We include the fidelities of all

these operations. We assume an X-Z rotation at the receiver as a worst case scenario. As compared

to the previous table (Table A.1), we notice a drastic drop in coherence of the storage cavity for

m= 1 in Table A.2(a). This difference in coherence is because of the difference in the time duration

for which the storage cavity needs to store entanglement. Even though the communication times

remain the same, in a repeater, one has to wait till entanglement has been successfully established

in a neighbouring link before one can perform the swap. For the previous case (n = 0), there was
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K(2 π × MHz),
κ (2 π × Hz)

Fidelity and rate
m=1

Fidelity and rate
m=200

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Rate
Entanglement

generation
(Hz)

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Rate
Entanglement

generation
(Hz)

0.025, 25 0.7896 0.9282 0.7328 56 0.7896 0.9282 0.7328 11252

0.517, 51.7 0.9507 0.9172 0.8719 100 0.9507 0.9172 0.8719 20064

0.521, 5.21 0.9910 0.9908 0.9819 95 0.9910 0.9908 0.9819 19013

K(2 π × MHz),
κ (2 π × Hz)

Fidelity and rate
m=1

Fidelity and rate
m=200

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Rate
Entanglement

generation
(Hz)

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Rate
Entanglement

generation
(Hz)

0.025, 25 0.7896 0.99995 0.7895 56 0.7896 0.99995 0.7895 11252

0.517, 51.7 0.9507 0.99997 0.9506 100 0.9507 0.99997 0.9506 20064

0.521, 5.21 0.9910 0.99997 0.9909 95 0.9910 0.99997 0.9909 19013

(a)

(b)

Table A.1: Fidelities and entanglement distribution rates in an elementary link of length 50 km
for different values of K and κ . (a) The photonic states are stored in the Fock basis in the same
cavities used for computation. (b) Additional longer-lived cavities, whose lifetimes are 10 s, are
used to store the photonic states (in Fock basis) during the waiting times. The fidelity of the final
entangled state is estimated to be the product of the coherence of the cavity and the fidelity of local
operations. One set of reading is for the non-multiplexed architecture (m = 1), and another set is
for the multiplexed architecture with multiplexing m = 200.

no such waiting time required. This highlights the role of a good memory for repeaters. This also

highlights the importance of multiplexing, where because of several parallel attempts, this wait

time is reduced, and we get reasonable fidelities, for the same values of K and κ (see the column

for m = 200 in the first row). Since the cavities in Table A.2(b) have effectively much longer

coherence times, they have good residual coherence even for m = 1. Thus, if one wants high

fidelity entangled states using multiplexing, one need not use the additional longer lived cavities,

but if one wants high fidelity for m = 1 as well, one would need to store the states in additional

high-Q cavities.

A quantum repeater would practically be more useful when the rate of entanglement distri-

bution using repeaters exceeds that of direct transmission using, for example, a 1 GHz source of

entangled photons. The distance at which this occurs is known as the cross-over point. For n = 1,
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K(2 π × MHz),
κ (2 π × Hz)

Fidelity and rate
m=1

Fidelity and rate
m=200

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Rate
Entanglement

generation
(Hz)

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Rate
Entanglement

generation
(Hz)

0.025, 25 0.5775 0.0095 0.0055 34 0.5775 0.9770 0.5642 6752

0.517, 51.7 0.8909 0.0045 0.0040 60 0.8909 0.9734 0.8672 12038

0.521, 5.21 0.9800 0.5633 0.5520 57 0.9800 0.9971 0.9772 11408

K(2 π × MHz),
κ (2 π × Hz)

Fidelity and rate
m=1

Fidelity and rate
m=200

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Rate
Entanglement

generation
(Hz)

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Rate
Entanglement

generation
(Hz)

0.025, 25 0.5775 0.9970 0.5758 34 0.5775 0.999985 0.5775 6752

0.517, 51.7 0.8909 0.9983 0.8894 60 0.8909 0.999992 0.8909 12038

0.521, 5.21 0.9800 0.9983 0.9783 57 0.9800 0.999991 0.9800 11408

(a)

(b)

Table A.2: Fidelities and entanglement distribution rates for nesting level n = 1, taking different
values of K and κ . The length of an elementary link is 50 km. (a) The photonic states are stored
in the Fock basis in the same cavities used for computation. (b) Additional longer-lived cavities
are used to store the photonic states during the waiting times. The first set of reading is for the
non-multiplexed architecture (m = 1), and the second set is for the multiplexed architecture with
multiplexing m = 200.

K(2 π × MHz),
κ (2 π × Hz)

Fidelity, rate, and cross-over point
m=1

Fidelity, rate, and cross-over point
m=200

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Distance
(km),

Ent. gen. rate
(Hz)

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Distance
(km),

Ent. gen. rate
(Hz)

0.025, 25 0.5775 0 0 721, 10-5 0.5775 0.8158 0.4711 472, 0.491

0.517, 51.7 0.8909 0 0 716, 10-5 0.8909 0.8669 0.7723 464, 0.700

0.521, 5.21 0.9800 0 0 716, 10-5 0.9800 0.8634 0.8462 464, 0.681

Table A.3: Fidelities and entanglement distribution rates for nesting level n = 1, taking different
values of K and κ . The cross-over distances are listed in the fifth and ninth columns for different
values of K and κ . Additional longer-lived cavities are used to store the photonic states during the
waiting times.
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we numerically calculate that value to be close to 700 km for m = 1 and 450 km for m = 200 (see

Table A.3). However, we find that if we store the states in the same cavities that we use for com-

putation, then even the cavity with our best set of values of K and κ would decohere by the time

we finish the operation. Instead, if we transfer the states to the longer lived cavities for storage,

then the multiplexed version still yields usable rates and fidelities for higher K/κ ratios. Table A.3

shows the fidelities for that scenario. In the tables, fidelities smaller than 10−4 are written as 0.

For (low enough nesting levels in) our architecture, as we increase the number of nesting levels,

this cross-over distance becomes smaller and so does the waiting time. Therefore we need to

increase the nesting level and hope that we might be able to beat direct transmission with good

fidelities. However, since the fidelity for local operations for the first set of K and κ is 57.75% for

n = 1, adding another nesting level would drop it below 50%, rendering the generated entangled

state unuseful for most quantum communication tasks. Therefore, we focus only on our second

and third set of values of K and κ from now on.

A.1.5 Four elementary links (n=2)

Table A.4 shows the fidelities for n = 2 at the cross-over distances for the two sets of values

of K and κ . In addition to the fidelities, the table also shows the different cross-over distances.

Without multiplexing (m = 1), the average time needed to distribute entanglement (over the cross-

over distance) for all K/κ ratios considered is so large that the storage cavities decohere almost

completely, yielding very low residual coherence and final fidelities (see Table A.4(a)). But with

multiplexing (m = 200), we see that the fidelity of the final entangled state for even our moderately

good values of K and κ (K/κ = 104) at the cross-over point (291 km) is 65.31%, which is well

above the purification threshold. For the K/κ ratio of 105, the final fidelity at the cross-over point

(292 km) is 94.01%.

If we transfer the photonic states to additional longer-lived cavities, then we find that the co-

herence of the cavities is not negligible anymore (see Table A.4(b)) for m = 1. Even for the
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K(2 π × MHz),
κ (2 π × Hz)

Fidelity, rate, and cross-over point
m=1

Fidelity, rate, and cross-over point
m=200

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Distance
(km),

Ent. gen. rate
(Hz)

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Distance
(km),

Ent. gen. rate
(Hz)

0.517, 51.7 0.7824 0 0 459, 0.854 0.7824 0.8348 0.6531 291, 1799

0.521,5.21 0.9584 0 0 460, 0.825 0.9584 0.9809 0.9401 292, 1701

K(2 π × MHz),
κ (2 π × Hz)

Fidelity, rate, and cross-over point
m=1

Fidelity, rate, and cross-over point
m=200

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Distance
(km),

Ent. gen. rate
(Hz)

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Distance
(km),

Ent. gen. rate
(Hz)

0.517, 51.7 0.7824 0.8896 0.6960 459, 0.854 0.7824 0.99994 0.7824 291, 1799

0.521, 5.21 0.9584 0.8859 0.8490 460, 0.825 0.9584 0.99994 0.9583 292, 1701

(a)

(b)

Table A.4: Fidelities and entanglement distribution rates for different cross-over points for nesting
level n = 2. (a) The photonic states are stored in the same cavities used for computation. (b)
Additional longer-lived cavities are used to store the photonic states during the waiting times. The
cross-over distances are listed in the fifth and ninth columns for different values of K and κ . One
set of reading is for the non-multiplexed architecture (m = 1), and another set is for the multiplexed
architecture with multiplexing m = 200.

non-multiplexed version, one can beat direct transmission with useful fidelities.

A.1.6 Eight elementary links (n=3)

In Table A.4, we observe that for our best set of values of K and κ , the multiplexed version

beats direct transmission, but the non-multiplexed version fails to do so because of the loss in

coherence of the memory. An intuition to make the waiting time smaller is to reduce the length

of an elementary link. We do so by increasing the nesting level to 3. Table A.5 lists the fidelities,

rates, and cross-over points for the two sets of values of K and κ .

The additional set of local operations cost us the advantage gained in coherence of the cavity

for K/κ = 104, and brought down the highest fidelity possible to approx. 60%. Therefore, if one

were to design a repeater with K/κ = 104, then the optimum number of nesting levels is 2. For our

best set of values of K and κ , the difference in fidelities of local operations is not too significant.
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Though we can comfortably beat direct transmission with the multiplexed version without needing

additional storage cavities, we could still not beat direction transmission without needing those

longer lived cavities for m = 1. We can, in principle go for higher n to make the waiting time

shorter, such that the repeater beats direct transmission with a useful fidelity for m = 1 without

needing to transfer the photons to additional longer lived cavities (e.g. for m = 1 and n = 4, the

final state fidelity at the cross-over point is approx. 57% without requiring additional cavities). But

the fidelity of the multiplexed version would reduce because of the additional operations needed.

It’s also practically more reasonable to use additional cavities for m = 1 rather than adding another

nesting level with shorter elementary links. We choose n= 3 in the main text (see Fig. 6 in the main

text) while comparing different schemes to distribute entanglement because both the multiplexed

and non-multiplexed versions beat direct transmission with greater than 90% fidelities here. This

is possible even without needing to convert from cat basis to Fock basis for storage. For the

multiplexed version, we do not need additional longer lived cavities for storage, while for the non-

multiplexed version, we need those. Compared to n = 2, n = 3 yields much higher entanglement

distribution rates (see the last column in Table A.4 and Table A.5). However, our scheme still

outperforms the other schemes mentioned in the main text, with good fidelities, even for n = 2.

A.1.7 Error-correction for cavity qubits

One of the most attractive features of working with cat states is the relatively more efficient error-

correction codes designed for them [43, 52, 44, 53, 45, 47, 235, 61, 242, 51]. However, the

hardware-resource efficiency of the implementation of these codes depends on the way the qubits

are encoded. If the qubits are encoded in cat states of the same parity, then single photon loss,

which is the most prominent source of errors, is easy to keep track of and correct [52, 44, 45, 61].

Single photon loss turns the states of even (odd) parity into odd (even) parity, and Quantum Non-

Demolition (QND) measurements on the parity (of individual cavities) can track this leakage out

of the qubit space. One way to measure parity is by using an ancillary transmon qubit and a
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K(2 π × MHz),
κ (2 π × Hz)

Fidelity and cross-over point
m=1

Fidelity and cross-over point
m=200

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Distance
(km),

Ent. gen. rate
(Hz)

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Distance
(km),

Ent. gen. rate
(Hz)

0.517, 51.7 0.6034 0 0 386, 24 0.6034 0.9810 0.5920 242, 16961

0.521, 5.21 0.9166 0.2370 0.2172 387, 23 0.9166 0.9979 0.9146 244, 15264

K(2 π × MHz),
κ (2 π × Hz)

Fidelity and cross-over point
m=1

Fidelity and cross-over point
m=200

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Distance
(km),

Ent. gen. rate
(Hz)

Fidelity
Local

operations

Coherence
Cavity

Fidelity
Entangled

state

Distance
(km),

Ent. gen. rate
(Hz)

0.517, 51.7 0.6034 0.9959 0.6009 386, 24 0.6034 0.999994 0.6034 242, 16961

0.521, 5.21 0.9166 0.9956 0.9126 387, 23 0.9166 0.999993 0.9166 244, 15264

(a)

(b)

Table A.5: Fidelities and entanglement distribution rates for different cross-over points for nesting
level n = 3. (a) The photonic states are stored in the same cavities used for computation. (b)
Additional longer-lived cavities are used to store the photonic states during the waiting times. The
cross-over distances are listed in the fifth and ninth columns for different values of K and κ . One
set of reading is for the non-multiplexed architecture (m = 1), and another set is for the multiplexed
architecture with multiplexing m = 200.
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fast-decaying readout cavity coupled to the storage cavity [229, 45]. A Ramsey type measure-

ment is performed. Here, two π/2 pulses are applied on the transmon (initially prepared in its

ground state), separated by a period of dispersive interaction with the storage cavity (equivalent to

a Controlled-Phase gate). These operations take the transmon to either its ground or excited state,

depending on the photon-number parity in the storage cavity. The state of the transmon is then

read-out projectively using the other cavity.

On the other hand, if the qubit is encoded in states of different parity, as is true of our qubits

(|C±α 〉 = N ±
α (|α〉± |−α〉)), then error-correction turns out to be more challenging. However, if

there is protection against amplitude decay of the coherent states, and the qubits are encoded in

cat states, then one needs to worry only about bit-flip errors. It has been shown that if there is a

noise bias in the system, i.e. if one kind of noise (e.g. phase flip) is much more prominent than

other kinds of noise (e.g. bit-flip), then the error-correction threshold for fault tolerant quantum

computation can be significantly better as compared to without a noise bias [243, 244, 51]. The

errors can be corrected with joint parity measurements on several cavities [53, 47, 235]. Joint

parity measurements would be more hardware-resource consuming than parity measurements on

single cavities, but a few experiments have demonstrated their feasibility, e.g. the one in ref. [54].

Similar challenges rise in applying error correction when encoding the qubits in the different parity

Fock states, |0〉 and |1〉 [46, 48]. .

The instantaneous eigenstates of our Hamiltonian H(t) = −Ka†2a2 + (Ep(t)a†2
+ E ∗p (t)a

2)

are the coherent states |α〉 and |−α〉, where α =
√

Ep/K. It is interesting to note that a general

Hamiltonian of the form H(t)=−Ka†nan+(Ep(t)a†n
+E ∗p (t)a

n) would have ‘n’ different coherent

states as their eigenstates, e.g. for n = 4, the eigenstates are |α〉, |−α〉, |iα〉, and |−iα〉, where

α = (Ep/K)1/4. Different cat states, i.e. superposition of these coherent states can be reached

by driving the Fock states, |0〉 − |3〉 with a 4-photon drive. Using these 4 coherent states, it is

possible to encode a qubit in states of the same parity, e.g. the logical qubits
∣∣0̄〉 and

∣∣1̄〉 could be

N (|C+
α 〉+

∣∣C+
iα
〉
) and N (|C+

α 〉−
∣∣C+

iα
〉
) respectively, where N is a normalization constant. The
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well developed cat codes for error-correction could be directly used in such a system, however it

is experimentally difficult to generate a reasonably high value for this higher order nonlinearity,

Ka†4a4. Even if one were to achieve this, it is unclear how to use the then undriven Fock states of

same parity, e.g. |0〉 and |2〉, for robust distribution of entanglement after transduction to optical

frequencies. Photon loss in the fiber and the detector inefficiencies make it difficult to envision a

robust scheme similar to the one we used in our work (for Fock states |0〉 and |1〉). Coming up

with schemes to efficiently distribute entanglement between cavity states of the same parity would

likely be interesting and useful.
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Chapter 3

Possible existence of optical communication channels in the

brain

This chapter is derived from ref. [245]. I performed all the calculations, drew all the figures and

tables, and wrote the manuscript, with feedback and edits from the other authors.

3.1 Abstract

Given that many fundamental questions in neuroscience are still open, it seems pertinent to explore

whether the brain might use other physical modalities than the ones that have been discovered so

far. In particular, it is well established that neurons can emit photons, which prompts the question

whether these biophotons could serve as signals between neurons, in addition to the well-known

electro-chemical signals. For such communication to be targeted, the photons would need to travel

in waveguides. Here we show, based on detailed theoretical modeling, that myelinated axons could

serve as photonic waveguides, taking into account realistic optical imperfections. We propose

experiments, both in vivo and in vitro, to test our hypothesis. We discuss the implications of our

results, including the question whether photons could mediate long-range quantum entanglement

in the brain.

3.2 Introduction

The human brain is a dynamic physical system of unparalleled complexity. While neuroscience

has made great strides, many fundamental questions are still unanswered [97], including the pro-

cesses underlying memory formation [246], the working principle of anesthesia [120], and–most

fundamentally–the generation of conscious experience [98, 99, 100]. It therefore seems pertinent

74



to explore whether the brain might generate, transmit and store information using other physical

modalities than the ones that have been discovered so far.

In the present work we focus on the question whether biophotons could serve as a supplemen-

tary information carrier in the brain in addition to the well established electro-chemical signals.

Biophotons are the quanta of light spanning the near-UV to near-IR frequency range. They are

produced mostly by electronically excited molecular species in a variety of oxidative metabolic

processes [140, 141] in cells. They may play a role in cell to cell communication [140, 247],

and have been observed in many organisms, including humans, and in different parts of the body,

including the brain [135, 136, 137, 138, 139, 248]. Photons in the brain could serve as ideal candi-

dates for information transfer. They travel tens of millions of times faster than a typical electrical

neural signal and are not prone to thermal noise at body temperature owing to their relatively high

energies. It is conceivable that evolution might have found a way to utilize these precious high-

energy resources for information transfer, even if they were just the by–products of metabolism to

begin with. Most of the required molecular machinery seems to exist in living cells such as neu-

rons [249]. Mitochondrial respiration [142, 143] or lipid oxidation [144] could serve as sources

of biophotons, and centrosomes [145] or chromophores in the mitochondria [146] could serve as

detectors.

However, one crucial element for optical communication is not well established, namely the

existence of physical links to connect all of these spatially separated agents in a selective way. The

only viable way to achieve targeted optical communication in the dense and (seemingly) disordered

brain environment is for the photons to travel in waveguides. Mitochondria and microtubules in

neurons have been hypothesized to serve as waveguides [250, 251, 104, 252]. However, these

structures are too small and inhomogeneous to guide light efficiently over significant distances

(over the length of a typical axon).

Here we propose myelinated axons as potential biophoton waveguides in the brain, and we

support this hypothesis with detailed theoretical modeling. These axons are tightly wrapped by
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a lamellar structure called the myelin sheath, which has a higher refractive index [253] than both

the inside of the axon and the interstitial fluid outside (see Fig. 3.1a). This compact sheath could

therefore also serve as a waveguide, in addition to increasing the propagation speed of an action

potential (via saltatory conduction) based on its insulating property [254]. There is some indirect

experimental evidence for light conduction by axons [255, 137], including the observation of in-

creased transmission of light along the axes of the white matter tracts, which consist of myelinated

axons [159, 160]. Myelin is formed in the central nervous system (CNS) by a kind of glia cell

called oligodendrocyte. Interestingly, certain glia cells, known as Müller cells, have been shown

to guide light in mammalian eyes [157, 158].

An interesting feature of photonic communication channels is that they can transmit quantum

information as well. The potential role of quantum effects in biological systems is currently being

investigated in several areas, including avian magnetoreception [114, 115], olfaction [118, 119],

and photosynthesis [116, 117]. There is also growing speculation about the role of fundamental

quantum features such as superposition and entanglement in certain higher level brain functions

[101, 102, 103, 104, 105, 248]. Of particular relevance is the “binding problem” of conscious-

ness, which questions how a single integrated experience arises from the activities of individual

molecules in billions of neurons. The answer to this question might be provided by quantum en-

tanglement [86], where the whole is more than the sum of its parts in a well-defined physical and

mathematical sense.

The main challenge in envisioning a “quantum brain” is environmental decoherence, which

destroys quantum effects very rapidly at room temperature for most physical degrees of free-

dom [256]. However, nuclear spins can have coherence times of tens of milliseconds in the brain

[108, 109], and much longer times are imaginable [105]. Long-lived nuclear spin entanglement

has also been demonstrated in other condensed-matter systems at room temperature [107]. A re-

cent proposal on “quantum cognition” [105] is based on nuclear spins, but relies on the physical

transport of molecules to carry quantum information, which is very slow. In contrast, photons are
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Figure 3.1: 3-D schematic representation of a segment of a neuron, and an eigenmode of a cylin-
drical myelinated axon. (a) Different parts of a segment of a neuron whose myelinated axon is
sliced longitudinally near the end of the segment. The inset depicts the cross section in the trans-
verse plane. Here r and r′ are the inner and outer radii of the myelin sheath, d is the thickness
of the myelin sheath, and nmy, nax, and next are the refractive indices of the myelin sheath, the
inside of the axon, and the interstitial fluid outside respectively. The compact myelin (shown in
red) terminates in the paranodal region near the Node of Ranvier, with each closely apposed layer
of myelin ending in a cytoplasm filled loop (shown in light red). (b) Magnitude of the electric field
of a cylindrically symmetric eigenmode (λ = 0.612 µm) of a (cylindrical) myelinated axon, with
r=3 µm, and r′=5 µm. (c) A vector plot of the electric field showing the azimuthal polarization of
the input mode. For clarity in the depiction of the direction of the field at different points, the arrow
length is renormalised to the same value everywhere. The adjacent color bar depicts the actual field
magnitude. (d)-(e) Electric field components along the Y (Ey), and Z axes (Ez) respectively.

well suited for transmitting quantum information over long distances, which is why currently en-

visioned man-made quantum networks rely on optical communication channels (typically optical

fibers) between spins [13, 165].

Efficient light guidance therefore seems necessary for both classical and quantum optical net-

works in the brain. Is this possible in myelinated axons with all their “imperfections” from a

waveguide perspective? In an attempt to answer this question, we have developed a detailed theo-

retical model of light guidance in axons. We show in the next section that the answer seems to be

in the affirmative.
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3.3 Results

3.3.1 Introduction to our approach

We use Lumerical’s software packages FDTD (Finite Difference Time Domain) Solutions and

MODE Solutions for numerically solving the three dimensional electromagnetic field equations in

various scenarios to elucidate the waveguiding characteristics of myelinated axons. For the major-

ity of our simulations, we take the refractive indices of the compact myelin sheath, the axon and the

fluid outside to be 1.44, 1.38 and 1.34 respectively (see Fig. 3.1a), consistent with their observed

values [253, 257, 258]. This index contrast allows guided modes of light inside the myelin sheath.

Although there are many scatterers both inside the axon (cell organelles, e.g. mitochondria, and

endoplasmic reticulum, lipid vesicles, and filamentous structures, e.g. microtubules, and neurofila-

ments) and outside (e.g. microglia, and astrocytes), modes confined primarily in the myelin sheath

will effectively not see these structures. The modes are primarily confined in a waveguide if its di-

mension is close to or larger than the wavelength of the light. Myelinated axons in the brain greatly

differ in length and caliber. The short axons of the interneurons are only ∼1 mm long, while the

longest axons can run through almost the whole length of the brain with numerous branches. Their

diameters range from 0.2 microns to close to 10 microns [259]. We shall assume the g-ratio (the

ratio of the radius of the axon, r and the outer radius of the myelin sheath, r′) equal to 0.6 for the

majority of our simulations, close to the experimental average [260].

Biophotons have been observed in the wavelength range 0.2 µm–1.3 µm. Most proteins (in-

cluding the proteins in the myelin sheath) strongly absorb at wavelengths close to 0.3 µm. To

avoid absorption, we shall consider the transmission of light with wavelengths above 0.4 µm. For

different axon calibers, we send in light at different wavelengths, ranging from 0.4 µm to the thick-

ness of the myelin sheath (denoted by d), or 1.3 µm (the upper bound of the observed biophoton

wavelength), whichever is smaller. This ensures good confinement in the myelin sheath to limit

interactions with the inhomogeneous medium inside and outside the axon (see the Supplementary
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Information in Appendix B). We call this upper wavelength bound the longest permissible wave-

length (λmax). The shortest permissible wavelength (λmin) for all simulations is 0.4 µm. In addition

to λmax, and λmin, we choose an intermediate wavelength corresponding to the central permissible

frequency (mid-frequency of the permissible frequency range), denoted by λint . In a single simu-

lation, FDTD calculates the input mode at λint , and sends light at different wavelengths with the

same spatial mode profile (see Methods). Note that for the thinnest axons considered, λmax= λint=

λmin=0.4 µm (d=0.4 µm, too, for good confinement).

3.3.2 Guided modes in myelinated axons

Let us pick the thickest axon in our analysis (r=3 µm, and r′=5 µm) to explain a few relevant

details associated with the guided modes. Fig. 3.1b shows the magnitude of the electric field of a

cylindrically symmetric eigenmode of this structure for the wavelength 0.612 µm, obtained using

the Finite Difference Eigenmode (FDE) solver in Lumerical’s FDTD Solutions. The electric field

is azimuthally polarized (see Fig. 3.1c–e), similar to the TE01 mode of a conventional fiber [261],

where the refractive index of the core is higher than that of the cladding. Azimuthal polarization

would prevent modal dispersion in the birefringent myelin sheath, whose optic axes point in the

radial direction [262]. There are hundreds of other guided modes for this thickness of myelin

sheath. Photons generated by a realistic source in the axons could couple to all these modes,

with various coupling coefficients. However, for the sake of simplicity (and lack of knowledge of

realistic photon emission characteristics by potential sources), we pick a single mode and study its

transmission.

Next, we discuss transmission in the presence of several optical imperfections (e.g. disconti-

nuities, bends and varying cross-sections). The theory of various imperfections in optical fibers is

developed with long distance communication in mind, which requires very small imperfections,

and focuses on the conventional fiber geometry. Since the myelin sheath-based waveguide does

not pertain to either of these conditions, we shall mostly deal with explicit examples. We simulate
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short axonal segments as the computational resource requirements for FDTD are very high, and

extrapolate the results for the full length of an axon.
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Figure 3.2: Transmission of light through the nodal and paranodal regions of the axons. (a) Lon-
gitudinal cross-section of our 3-D model of the nodal and the paranodal regions. For this example,
the radius of the axon including the myelin sheath, r′ = 5 µm, g-ratio = 0.6, and the length of
the paranode, lparanode = 5 µm. (b) Magnitude of the electric field in the longitudinal direction
(EFPL) as a cylindrically symmetric input mode with wavelength 0.612 µm crosses the region.
(c) Transmission for an axon with r′ = 5 µm, as a function of the p-ratio, defined as lparanode/d.
(d)-(f) Transmission as a function of the axon caliber for different wavelengths and different para-
nodal lengths. The number of cytoplasmic loops, and the microtubules in the paranodal region are
kept in proportion to the thickness of the myelin sheath, and the volume of the paranodal region
respectively (see Methods).
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3.3.3 Nodal and paranodal regions of the axons

The myelin sheath is interrupted at almost regular intervals by the ‘Nodes of Ranvier’, leaving

the axon bare for approximately 1 µm [263]. The lamellae, whose fusion and apposition leads to

the formation of the compact myelin, terminate near the nodes in the paranodal region such that

each lamella ends in a loop filled with dense cytoplasm (see Fig. 3.1a). Many of these cytoplasmic

loops are attached to the axonal membrane. For a thin myelin sheath, the paradonal region is

almost ordered, with the innermost lamella terminating first, and so on, but for thicker sheaths,

many cytoplasmic loops do not reach the axonal surface, but terminate on other loops. The length

of the paranodal region should, however, depend roughly on the the number of myelin lamellae,

and hence on the thickness of the myelin sheath. We shall call the ratio lparanode/d, the p-ratio,

where lparanode is the length of the paranode in one internode (the axon between two consecutive

nodes) and d is the thickness of the myelin sheath as defined earlier; p-ratios around 5 are realistic

[264].

Fig. 3.2a shows our model for the region of the axon close to the node (see Methods section

for detailed discussion on the model), and Fig. 3.2b depicts the magnitude of the electric field in

the longitudinal direction (along the length of the axon), as a cylindrically symmetric input mode

crosses this region. We call this EFPL (Electric Field Profile in the Longitudinal direction). We

vary the length of the paranodal region for an axon with r′=5 µm in Fig. 3.2c, and observe the

corresponding modal transmission (power transmission in the guided modes) up to a wavelength

away from myelin sheath boundaries (see Sec. 3.5 and the Supplementary Information in Ap-

pendix B) for 3 different wavelengths, 0.40 µm, 0.61 µm, and 1.30 µm. We interpret the results in

terms of beam divergence and scattering, which are the two primary sources of loss here. Shorter

wavelengths diverge less, but scatter more than longer wavelengths. For a short paranodal region

(p-ratio=2.5), shorter wavelengths have a higher transmission, but for longer paranodal regions,

longer wavelengths have higher transmission because scattering becomes a more powerful agent

of loss than divergence as the length is increased. In general, the transmission drops for all the
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wavelengths as the p-ratio increases, although the trend is less clear for the longest permissible

wavelength.

In Fig. 3.2d–f, we simulate the nodal region for 5 different axon calibers, several different

wavelengths, and different p–ratios. In general, the greater the mode volume, the less is the di-

vergence. So, a mode with a larger mode volume (corresponds to thicker myelin sheath) should

diverge less for the same paranodal length. Here, however, we are dealing with ratios (lparanode/d),

rather than absolute values of the lengths, making intuition slightly difficult. Still, in Fig. 3.2d,

we see that the most loosely confined modes (λmax) crudely follow this intuition, and transmission

increases for thicker axons. For a fixed axon caliber, the transmission does not depend on the para-

nodal length in a well-defined way. One possible explanation for this feature is the unconventional

nature of the waveguide itself. The long wavelengths mostly suffer loss because of divergence.

However, in these waveguides, not all the light that diverges is lost. There is a possibility of a

fraction of the light diverging into the axon to come back into the myelin sheath at the end of the

paranodal region. This sometimes even increases the transmission in the myelin sheath for longer

paranodal regions.

In, Fig. 3.2e, and Fig. 3.2f, for p-ratio = 2.5, the trend follows the intuition based on divergence.

Increase in myelin thickness leads to better confinement, and less divergence. However, for larger

p–ratios, the trend almost reverses, and thicker axons perform worse than thin ones. In these cases,

scattering becomes more relevant than divergence, and longer paranodal regions lead to greater

scattering.

Even with such a sudden discontinuity in the sheath, we find that transmission can still be fairly

high. To summarize, if the p-ratio is small (∼2.5), well confined modes (shorter wavelengths) yield

higher transmission, whereas loosely confined modes fare better for larger p-ratios. Thicker axons

are usually better than the thinner ones for smaller p–ratios (∼2.5) at all wavelengths. However, for

shorter wavelengths and larger p–ratios (∼5 or greater), thinner axons have higher transmission.

We verified that the transmission after multiple paranodal regions can be approximately predicted
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by exponentiating the transmission through one (see the Supplementary Information in Appendix

B).

3.3.4 Bends in the axons

Optical power from the eigenmodes of a straight waveguide leaks out on encountering bends.

Bends of constant curvature have eigenmodes that can propagate with minimal loss, but axons

typically change their curvature along their length. These bent–modes (eigenmodes for circular

bends) are more lossy than the straight–modes (eigenmodes for straight structures) for changing

curvature. Therefore, an appropriate way to quantify the bend losses for an arbitrary axon path will

be to send in the straight–mode in a waveguide with continuously varying curvature, and observe

the transmission in the myelin sheath at the other end. We choose a sinusoidal waveguide since it

has alternating regions of positive and negative curvatures, and can thus serve as a prototype for

any arbitrary contour. Fig. 3.3a is an example for an axon with radius 0.6 µm, and Fig. 3.3b shows

the EFPL as a straight–mode passes through.

Bending losses for conventional S bend waveguides (half a cosine function) depend most

strongly on the change of curvature [265]. We therefore plot total power transmission (calculated

by integrating the real part of the Poynting vector of the output light directly across the required

area, and dividing it by the source power) up to a wavelength away from the myelin sheath bound-

aries (see Sec. 3.5 and the Supplementary Information in Appendix B) as a function of the change

of curvature, ∆κ = 4Ak2 (A is the amplitude and k is the wavenumber of the sinusoidal function)

for 3 different wavelengths in Fig. 3.3c (r′=5 µm). A shorter wavelength is better confined and

therefore yields higher transmission. Fig. 3.3d–f compare transmission for axons of different cal-

ibers. Note that we calculate ∆κ of the curve passing through the central axis of the axon. But the

inner part of a bent axon has a larger curvature than the outer part at each point. Such a differ-

ence becomes particularly important for thicker axons, since they see a larger effective change of

curvature than thinner axons, and suffer more loss for the same ∆κ . For ∆κ ∼0.024 µm−1, almost
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Figure 3.3: Transmission of light through bends in the axons. (a) The geometry of a sinusoidally
bent waveguide. For this example, r′ = 1 µm, and the amplitude (A) and wavelength of the cosine
function (l) are 5 µm and 100 µm repectively. (b) EFPL as the input mode with wavelength 0.4 µm
crosses the region. (c) Transmission as a function of the change in curvature, ∆κ , for different
wavelengths in an axon with r′ = 5 µm (∆κ is varied by varying A). (d)-(f) Transmission as a
function of the axon caliber for different wavelengths and different ∆κ .
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all the permissible wavelengths are guided with negligible loss for all axon calibers discussed. We

assume that in a typical axon, regions of large curvature do not exist for considerable length (which

seems justified [266]) and ∆κ is a good parameter to quantify the bend inhomogeneity. Some of

the axons (r’ ∼1 µm) of length ∼1 mm in the images [266] appear relatively straight with ∆κ <

0.05 µm−1, which would yield greater than 90 % transmission.

3.3.5 Varying cross-sectional area of the axons

The thickness of the myelin sheath is not uniform all along the length of the axon. We vary d

randomly according to a normal distribution, assuming the correlation length in the roughness of

the myelin sheath boundary to be 5 µm–10 µm (see Sec. 3.5). The mean of the distribution is in

close agreement with that predicted by the g-ratio, and the standard deviation (s.d.) of the distri-

bution is varied. Fig. 3.4a shows the longitudinal cross-section for one such simulation (r=2.4 µm,

length of the axonal segment is 50 µm, and the s.d. is 30 % of the average thickness of the myelin

sheath). Fig. 3.4b shows the EFPL for input light with λ = 0.48 µm. In Fig. 3.4c, we observe that,

in general, a more random distribution of the radius suffers a greater loss (for all wavelengths),

and shorter wavelengths transmit slightly better. Fig. 3.4d–f compare the total power transmission

(up to a wavelength from the myelin sheath boundaries) in axons of different calibers. Thinner

axons can tolerate greater percentage-inhomogeneity, suggesting a closer dependence on the abso-

lute value of the inhomogeneity. All the axons have close to unit efficiency in transmission for less

than 10 % variation in radius. Extrapolation for transmission in a longer segment of the axon is

straightforward. One can exponentiate the transmission fraction by the number of 50 µm segments

in the axon. Longer correlation lengths would yield better transmission for the same s.d, while

significantly shorter correlation lengths would strongly scatter the mode. Some of the axonal seg-

ments (length∼5 µm) of thin axons (r ∼1 µm) are within this inhomogeneity, as seen in the images

of [267]. We did not find suitable images of thicker myelinated axons, and longer segments from

which a more realistic estimate of this particular inhomogeneity could be extracted.
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Figure 3.4: Transmission of light through varying cross-sectional area of the axons. (a) The ge-
ometry of a myelinated axon where the cross sectional area of the myelin sheath varies smoothly
along the longitudinal direction. For this example, the mean radius of the axon with the myelin
sheath is 3 µm and the standard deviation (s.d.) of the variation of the myelin sheath’s radius is
0.36 µm. (b) EFPL as the input mode with wavelength 0.48 µm crosses the region. (c) Transmis-
sion as a function of the s.d. of the variation in the myelin sheath’s radius for different wavelengths
(the mean radius of the axon with the myelin sheath is 5 µm). (d)-(f) Transmission as a function
of the mean radius of the axon including the myelin sheath for different wavelengths and different
s.d. of the variation of myelin sheath’s radius.
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3.3.6 Non-circular cross section of the axons

Axons can have quite arbitrary transverse cross-sectional shapes, and the ensheathing myelin partly

imbibes that shape [267]. We give an example in Fig. 3.5a and the corresponding EFPL when an

eigenmode for a circular cross-section (λ=0.612 µm, r=3 µm, and r′=5 µm) is sent in it in Fig.

3.5b. In this example, the points along the cross-sectional circumference of the axon are generated

randomly according to a normal distribution with a mean value 3 µm and a standard deviation

0.4 µm (13.33 % of the axon radius). The myelin sheath is an approximate parallel curve drawn at

a perpendicular distance of 2 µm (so that the average g-ratio = 0.6) surrounding the axon.
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Figure 3.5: Transmission of light through non-circular cross section of the axons. (a) An example
of the cross-section of a myelinated axon. The mean distance of the points along the circumference
of the axon from its center is 3 µm and the s.d. is 0.4 µm. The outer boundary of the myelin sheath
is a parallel curve drawn at an approximate separation of 2 µm from the axonal boundary. (b)
EFPL as a cylindrically symmetric eigenmode for a circular cross-section (λ=0.612 µm, r=3 µm,
and r′=5 µm) passes a straight waveguide with this non-circular cross-section. (c) Transmission as
a function of the s.d. of the distance between the points on the circumference of the axon and a
circle of radius 3 µm for different wavelengths.

Fig. 3.5c shows the total power transmission (within a wavelength of the myelin sheath bound-

aries) in the myelin sheath for different shapes and different wavelengths in a 100 µm long struc-

ture. As expected, transmission drops for all wavelengths as the cross-section becomes more ran-

dom. Images in [267] show many axons with less than 10% inhomogeneity in the cross-sectional

shape. If the axon and myelin sheath do not change the cross-sectional shape substantially along

their length, there will be almost no more loss, as coupling loss is the primary source of loss here

(rather than the propagation loss). However, if the cross-section changes significantly, there will be
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propagation loss as well. We model this by twisting an axon, such that it starts out with an elliptical

cross-section, interchanges the minor and major axes midway of the simulated segment (25 µm),

and reverts to its original shape at the end of the segment (see Figure B.2 in the Supplementary

Information in Appendix B).

3.3.7 Other imperfections in the axons

In addition to the sources of loss discussed above, there can be several other imperfections, the

most significant of which is the cross-talk between axons. Light in a myelinated axon would not

leak out significantly, even if placed in direct contact with cells of lower refractive indices than

the myelin sheath. However, if two or more myelinated axons are placed very close to each other

(side by side), then light leaks out from one to the other (see the Supplementary Information in

Appendix B). Cross-talk can be interpreted both as a loss and a coupling mechanism between

axons in a nerve fiber. In general, the axons should be a wavelength apart to prevent cross-talk,

which seems realistic from some of the images in [267].

The other imperfections that we considered do not affect the transmission significantly. The

refractive indices of the axon, the myelin sheath, and the outside medium, were taken to be con-

stants for the simulations so far. Next, we varied the refractive indices of the axon, and the myelin

sheath, both transversely and longitudinally (with a correlation length for the random longitudinal

variation of the refractive index∼ 5 µm–10 µm), keeping the mean the same as the one used so far,

and a s.d. of 0.02 (typical variation as expected from [253, 257]) for a few of the simulations. We

observed no significant changes in the transmission (typically less than 1 %). Moreover, there can

be astrocytes and other glia cells in the nodal region close to the axon. As light crosses this region

from one internode to the other, it will pass through these cells. We modeled them as spheres with

radii varying from 0.1 µm to 0.3 µm, and refractive index 1.4, filling up one third of the volume of

the nodal region outside the axon (expected from the images in [267]). The transmission through a

node of Ranvier increased slightly (∼2 %) for the thinnest axons, while it stayed almost unchanged
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for the thickest ones. It is worth noting that in some regions of the internode (apart from the para-

nodes), the myelin sheath might be unusually inhomogeneous (for instance, by decompaction of

the lamellae) leading to additional scattering losses.

3.3.8 Absorption of light

In biological tissues, and more so in the brain, scattering of light, rather than absorption, is the main

source of attenuation of optical signals [268]. To our knowledge, the absorption coefficient of the

myelin sheath has not been measured experimentally. We can only infer it indirectly with limited

accuracy. The average absorption coefficient in the white matter decreases almost monotonically

from ∼0.3 mm−1 to ∼0.07 mm−1 for wavelengths 0.4 µm to 1.1 µm [269]. But myelin can not

be responsible for the majority of the absorption since grey matter (almost devoid of myelin) has

comparable absorption coefficients [269]. It is likely that light sensitive structures (e.g. chro-

mophores in the mitochondria) are the main contributors to the absorption. Another way to infer

myelin’s absorption coefficient is to look at the absorption of its constituents, i.e. lipids, proteins

and water. Mammalian fat shows an absorption coefficient less than 0.01 mm−1 for the biopho-

tonic wavelength range [270]. Water has similar absorption coefficients. Most proteins have a

strong resonance peak close to 0.28 µm with almost negligible absorption above 0.34 µm, and the

proteins in the myelin (e.g. myelin protolipid protein, and myelin basic protein) behave similarly

[271]. Thus, absorption in myelin for the biophotonic wavelengths seems negligible (over a length

scale of ∼1 cm), based on the data of its constituents. Only a direct measurement could tell us

more.

3.3.9 Attainable transmission

We discuss a few examples to estimate the attainable overall transmission. The internodal length

is typically equal to 100–150 times the axonal diameter [260, 272]. For an axon with r = 3 µm (r′

= 5 µm), internodal length = 1 mm, wavelength of input light = 1.3 µm, s.d. for varying area = 2.5
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%, ∆κ = 0.039 µm−1, s.d. for non-circularity in cross-section shape = 13.33 %, separation from

the nearby axons = 1 µm, and p-ratio = 7.5, the transmission after 1 cm would be ∼31 % (see Sec.

3.5 for the procedure). However, if the wavelength of input light = 0.61 µm, p-ratio = 2.5, and all

the other parameters are kept the same, the transmission could be ∼82 %. A thinner axon with r

= 1.8 µm (r′ = 3 µm), internodal length = 500 µm, wavelength of light = 1.2 µm, p-ratio = 7.5, s.d.

for varying area = 20 %, separation from other axons = 1.2 µm, and ∆κ = 0.039 µm−1 would yield

∼3 % transmission after 1 cm. However, there are neurons in the brain whose axons are ∼1 mm

long [273] (e.g. the local interneurons). If we take a 2 mm long axon, then the transmission for the

3 examples discussed above would be ∼78 %, ∼96 %, and ∼46 % respectively. The predominant

loss for these examples is in the paranodal regions. Sources and receivers would need to be located

close to the ends of the myelinated sections of the axon to reduce coupling losses. Let us note that

photons could travel either way (from the axon terminal up to the axon hillock or in the opposite

direction) in an axon.

3.3.10 Attainable communication rates

One potential challenge for the use of biophotons for inter-neuron communication is the fact that

biophoton emission rates per neuron seem to be quite low. In [137], the authors count the num-

ber of biophotons emitted per minute by a slice of mouse brain, using a photodetector placed at a

certain distance away, after exciting the neurons with glutamate, the most common excitatory neu-

rotransmitter. Substituting the relevant experimental parameters, the estimated rate of biophoton

emission is about 1 photon per neuron per minute, which is 1-2 orders of magnitude lower than the

average rate of electrochemical spikes [274]. However, this estimate has significant uncertainty.

On the one hand, the brain slice is strongly stimulated by glutamate, so the estimate might be high.

On the other hand, only the scattered photons are counted. If there are photonic waveguides in

the brain, most of the photons propagating in these waveguides would likely be absorbed in the

brain itself rather than being scattered outside, so the estimate could be much too low. It should
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also be noted that the emission rates could be very different depending on the specific neuron or

neuron type. Taking the above estimate at face value for the sake of the argument, such low photon

rates could still be relevant. Given that there are about 1011 neurons in a human brain, there would

still be over a billion photon emission events per second. This could be sufficient to transmit a

large number of bits, or to distribute a large amount of quantum entanglement. In this context, it is

worth keeping in mind that psychophysical experiments suggest that the bandwidth of conscious

experience is less than 100 bits per second [275, 276]. From a quantum perspective, it is known

that the behavior of even moderate numbers of qubits (e.g. one hundred) is impossible to simulate

efficiently with classical computers [277].

3.3.11 Proposals to test the hypothesis

There is some indirect evidence of light guidance in axons [255, 137, 159, 160]. A relatively

simple way to look for evidence of guidance in-vitro might be to illuminate a brain slice (preferably

with many suitable myelinated axons) from one end, and observe for bright spots corresponding

to the open ends of suitable myelinated axons at the other end. Optimal illumination might be

required to overcome the strong scattering and absorbance by the surrounding medium. For a

more conclusive test, one could isolate a neuron with the necessary thickness of the myelin sheath,

and small enough inhomogeneity, suspend it in a suitable solution to keep the cell alive for some

time, and try to couple one of the guided modes into the axon, similar in spirit to the procedure

adopted for verifying light guidance by Müller cells [157]. We could couple the light in close to the

axon terminals, as real sources are suspected to be present there [137]. To inject a guided mode in

the myelin sheath and verify its guidance, one might need to decapitate the axon near the terminal

and hillock regions, couple the mode directly in the myelin sheath, and observe the intensity (and

if possible, the modal structure) of light emanating from the other end quickly, since the cellular

properties start to change soon after death. Evanescent coupling and readout of light is another

option.
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For an in-vivo test of light guidance, one might first try to prove the presence of photons in the

myelin sheath. One could inject a light sensitive chemical (e.g. AgNO3) either in the cytoplasmic

loops in the paranodal region directly or in the oligodendrocytes, which would then circulate the

chemical in the cytoplasmic loops, and possibly some to the myelin too. Light will activate the

oxidation of Ag+ to Ag, which should be visible as dark insoluble granules. This is similar in spirit

to the development of photographic films, and the in-situ biophoton autography (IBA) technique

[255].

Another interesting type of in-vivo tests would involve the artificial introduction of sources

and detectors into living neurons. Fluorescent molecules or nano-particles could serve as sources,

and also as detectors, if their fluorescence can be triggered by the absorption of photons from

the molecule or nano-particle that serves as the source [278]. An alternative possibility for the

insertion of detectors may be provided by optogenetics [279], where specific kinds of neurons are

genetically modified to produce proteins which can function as light sensitive ion-channels (e.g.

channel rhodopsin). If we could embed these proteins specifically in the axonal membrane near a

terminal end of the myelin sheath, or in the membranes of the cytoplasmic loops in the paranodal

region at an end, and detect photons produced by an artificial source at the other end of the axon,

we could verify the light guidance hypothesis. It is interesting to note that there is an increase

in oligodendrogenesis and myelin sheath thickness near these genetically modified neurons when

stimulated by light [280]. Do the axons adapt themselves for better light guidance too (in addition

to electrical guidance) by adding sufficient layers of myelin?

The final type of test would involve identifying naturally occurring sources and detectors in real

neurons, and showing that photons are guided from the sources to the detectors. To our knowledge,

photon emission has not yet been studied at the level of individual neurons. Photon measurements

have been done macroscopically, counting only the scattered photons [135, 136, 137, 138] (neglect-

ing those which are guided or absorbed). It would be important to precisely pinpoint the sources

of these photons and to characterize their wavelength and emission rates. This may be possible
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by enhancing the emission rates through nanoantennas [281]. It would also be very interesting to

study the photon detection capabilities of potential natural detectors, such as centrosomes [145]

and chromophores in mitochondria [146], ideally at the single-photon level. There may be other

potential detectors that are yet to be discovered, e.g. light-sensitive proteins similar to channel

rhodopsin used in optogenetics [279].

3.4 Discussion

We have shown that light conduction in a myelinated axon is possible even with realistic imperfec-

tions. We have proposed experiments to verify the key aspects of our hypothesis. We now briefly

mention several related fundamental questions.

If photons are to serve as quantum communication links between nuclear spins, one also needs

to explain how the photons and spins would interface with each other. Researchers in spin chem-

istry [282] have discovered various ways in which electron and even nuclear spins can influence

chemical reactions, which can also involve photons. A well-known biological example is pro-

vided by cryptochrome proteins, which can be activated by light to produce a pair of radicals with

correlated electronic spins, which are suspected to be involved in bird magnetoreception (the abil-

ity to perceive magnetic fields) [114]. Recent theoretical work suggests that interactions between

electron and nuclear spins in cryptochromes are important for explaining the precision of the mag-

netoreception [115]. Cryptochromes are found in the eyes of mammals too (including humans),

and they are also magnetosensitive at the molecular level [128]. Some of their other potential roles

are being studied recently [129, 130, 131, 132, 133, 134]. In the inner brain regions [134], they

might act as an interface between biophotons and nuclear spins.

In order to connect individual quantum communication links to form a larger quantum network

(allowing for the creation of entanglement between many distant spins), the nuclear spins interfac-

ing with different axons would have to interact coherently, which might require close contact. The

existence of synaptic junctions between individual axons is particularly interesting in this context.
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Concerning the potential relevance of (classical or quantum) optical communication between

neurons for consciousness and the binding problem, an interesting anatomical question would be

whether brain regions that have been implicated in consciousness [283], such as the claustrum

[284, 285], the thalamus, hypothalamus and amygdala [286], or a recently identified “hot zone” in

the posterior cerebral cortex [283] have myelinated axons with sufficient diameter to allow light

guidance.

From a medical perspective, an active role of the myelin sheath as an optical waveguide, in

addition to the conventional role as an insulating layer, might also enable us to understand the

causes of the diseases associated with it (e.g. multiple sclerosis [287]) better, and help conceive

and design subsequent treatments.

Given the potential advantages of optical communication, it would be interesting to explore

more whether simpler living species, e.g. plants, are using biophotons for some purposes [141],

and if they are using waveguides to transport these biophotons [288]. One might also wonder why

evolution did not shift exclusively to an optical modality of information transfer. Did evolution

reach a local optimum of some kind?

If optical communication along myelinated axons is indeed a reality, this would reveal a whole

new aspect of the brain, with potential impacts on many fundamental questions in neuroscience.

3.5 Methods

3.5.1 Software packages

We use Lumerical’s FDTD Solutions, and Lumerical’s MODE Solutions for all our simulations.

Both these software packages use the Finite Difference Eigenmode (FDE) solver to generate the

propagation modes for different waveguide geometries. FDE solves Maxwell’s equations for the

eigenmodes on a cross-sectional mesh using the finite difference algorithm [289]. Finite Difference

Time Domain (FDTD) method solves Maxwell’s equations in time-domain on a discrete spatio-

temporal grid formed by Yee cells [290]. Since FDTD is a time domain technique, it can cover a
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wide-frequency range in a single simulation. We use this feature to study the dependence of light

guidance on the wavelength of the input light. But one has to be careful in the interpretation of

the results. The two main areas of concern are the meshing accuracy of the simulation, and the

change of the beam profile with wavelength. Lumerical’s meshing algorithm refines the mesh for

smaller wavelengths while leaves it coarse for the larger ones. We manually increase the mesh

accuracy for all our large wavelength simulations to keep the number of Yee nodes almost constant

for different wavelengths. We have some tiny structures in our simulations (e.g. the microtubules),

which need to be included in the mesh. We ensure that they are included by increasing the mesh

accuracy to a setting such that the results converge for finer mesh. The variation of the beam profile

with wavelength requires careful analysis too. When we select a wide wavelength range, e.g. 400

nm to 1300 nm (equivalently 750 THz to 231 THz), and calculate the eigenmodes of the structure,

FDTD calculates the eigenmode at the wavelength corresponding to the central frequency, which

is 612 nm (equivalently 490 THz) for this example. It injects light at different wavelengths but

with the same spatial field profile. However, the mode-profiles for different wavelengths can differ

substantially. Different kinds of waveguide imperfections need different analysis methods to ac-

count for this error, and we shall address this point individually for each imperfection. We also ran

multiple simulations (narrow wavelength sources at different wavelengths), where we send in the

exact eigenmodes, and ensure that the results converge with that for a single simulation and a wide

wavelength range.

3.5.2 Paranodal region of the axons

The paranodal region is modelled by carving part of a paraboloid out of the cylinder comprising the

axon and the myelin sheath, closely imitating their real geometry [264]. This part of the paraboloid

is generated by revolving a segment of a parabola about the axis parallel to the length of the axon.

This segment starts at the end of the paranodal region away from the node and terminates at the

node. The general equation of the segment is y = r+
√

d2/lparanode× x, where r, d, lparanode,x,
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and y are the radius of the axon, the thickness of the myelin sheath, the paranodal length, the co-

ordinate along the axis of the axon, and the coordinate perpendicular to the axis respectively. The

paranodal region is divided into many cytoplasmic loops, modeled by the compartments between

concentric rings of increasing radius as one approaches the node. This is in accordance with the

fact that the lamellae close to the axonal membrane terminates first and the most distant lamellae

terminates last. The thickness of a ring is 10 nm, which is the typical thickness of the cell mem-

brane. The number of these loops equals the number of the lamella in the compact myelin (average

separation between adjacent lamellae is 20 nm [291]). The microtubules in the cytoplasmic loops

are generated randomly according to a uniform distribution, and placed transverse to the axon axis.

They are concentric cylinders with inner and outer diameter equal to 6 nm and 13 nm respectively.

The number of the microtubules is proportional to the volume of the paranodal region. The volume

fraction of the microtubules (with respect to the paranodal region) is kept at 1.33 % which is a typ-

ical value of the volume fraction inside the axon [292]. The refractive indices of the cytoplasmic

loops, the cell membrane, and the microtubules are taken to be 1.38, 1.50, and 1.50 respectively,

close to their expected values [293, 294].

We obtain the electric field profile after a paranodal region, and expand it in an eigenbasis of

the guided modes. Each time, we truncate this basis manually (for different axon calibers, and

different wavelengths) in Lumerical’s MODE Solutions, neglecting higher order modes (with ef-

fective refractive indices, neff < 1.34), almost all of which are lossy. Thus, our basis comprises

of guided modes with neff between 1.44 and 1.34. The input mode is antisymmetric about two

orthogonal axes in the cross-sectional plane (see Fig. 3.1d–e). We label these axes Y and Z, with

the origin at the center of the axon. Then Ey is antisymmetric about the Y axis, and Ez is anti-

symmetric about the Z axis, where Ey, and Ez are the real parts of the Y and and Z components

of the electric field E respectively. Since the input mode is antisymmetric, and the structure is

cylindrically symmetric, the guided modes will all be antisymmetric about the central axes. We

therefore work in the subspace of antisymmetric modes, and expand the electric field profile in
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the basis of this subspace. Our waveguide permits a few guided modes primarily confined inside

the axon. But the medium inside the axon (and outside the myelin) is expected to be scattering

(see the Supplementary Information in Appendix B), and we neglect the fraction of power residing

in regions beyond a wavelength of the myelin sheath boundaries. We just integrate the real part

of the Poynting vector (with the electromagnetic fields corresponding to the guided portion of the

output light) across the myelin sheath up to a wavelength from its boundaries (see the Supplemen-

tary Information in Appendix B for the mathematical expressions). This is an approximate way of

expanding the electric field profile in a basis of modes confined strongly in the myelin sheath. We

choose to include the power within a wavelength of the myelin sheath boundaries to account for

the evanescent fields and a few guided modes which are still very close to the myelin sheath, and

are not strongly affected by the inhomogeneities inside and outside.

To account for the change in mode profile with wavelength, we expand the input mode (calcu-

lated at the central permissible frequency) in the basis of the guided modes at a particular wave-

length. For shorter wavelengths, almost the entire power resides in a superposition of the guided

modes (typically greater than 99.5 %), but for longer wavelengths, the percentage of power in the

guided modes can be significantly lower (e.g. for d = 2 µm, the expansion of an input mode in a

basis of the modes at 1.3 µm yield 97.11 % coupling). So, we divide the output power (after the

paranodal region) for longer wavelengths (obtained by integrating the real part of the Poynting vec-

tor with the electromagnetic fields corresponding to the guided portion of the output light across the

myelin sheath up to a wavelength from its boundaries) by the input power in the guided modes at

those particular wavelengths (before the paranodal region) to obtain the normalized transmission.

3.5.3 Bends in the axons

Bends are generated by extruding a circular cross-section along a sinusoidal path. The cross-

section is not exactly a circle, but a 26 sided polygon with the vertices lying on the corresponding

radius (for the axon and the myelin sheath). All these vertices then follow the sinusoidal path to
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construct a bend. The path is discrete too, with a step size equal to 0.5 µm. The number of vertices,

and the step-size is optimized taking into account the accuracy and the speed of the simulation.

With a straight path generated this way (discrete step size along the length, and a 26 sided polygon

resembling a circle as the cross-section), and an eigenmode of the straight structure as the input,

we ensure that we get close to 100 % transmission. The percentage transmission is calculated by

integrating the real part of the Poynting vector (with the fields corresponding to the output light)

across the myelin sheath up to a wavelength away from the myelin sheath boundaries and dividing

it by the source power. This is to include the evanescent fields and a few guided modes which

are very close to the myelin sheath. Note that unlike the paranodal regions, we do not expand the

output light in the basis of the guided modes at the end of the axon segment since the structure

is continuously varying, and so is the basis of the guided modes. Some fraction of light in the

non-guided modes at a particular cross-section might be included in the the basis of guided modes

at an adjoining cross-section and vice-versa. Therefore it is more appropriate to observe the total

power transmission instead of the modal transmission in such cases. We continue to be cautious,

and ignore all the power inside the axon (a wavelength away from the myelin sheath boundary).

To account for the difference in the mode-profiles at different wavelengths, we send in the

eigenmode corresponding to the central permissible frequency in a uniform straight axon, and ob-

serve the transmission in the myelin sheath up to a wavelength. We observe that for the wavelength

corresponding to the central permissible frequency and lower, the transmission is close to 100 %.

But for longer wavelengths, the transmission can be substantially lower (e.g. for the thickest axon

in our examples, the transmission is 96.81 % for the longest wavelength). If the right mode (corre-

sponding to the longer wavelength) had been sent in, we would have obtained 100 % transmission.

To compensate for this insertion loss, we divide the transmission of the longer wavelengths by the

transmission we obtain (for the same long wavelengths) when we send in a mode corresponding to

the central frequency in a straight waveguide.

On rare occasions, for very small bends, this normalization procedure can yield slightly greater
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than 100 % transmission (the maximum observed overshoot was ∼0.18 %) due to the finite res-

olution of the simulations, including the coarseness in the construction of the waveguide, and the

import and export of field profiles across different programs (with different mesh sizes). In these

cases the transmission is taken to be 100 %. We also adopt this approach for other inhomogeneities

which face this overshoot problem. We ran separate simulations with the exact input mode profiles

for the particular wavelengths for a number of cases exhibiting the overshoot issue to verify that

the transmission is indeed very close to unity in these cases.

We verify that the change of curvature seems to be the most important loss factor in the case

of bends by running a few simulations for longer axonal segments (150 µm). For the same ∆κ , the

transmission for the longer segments was comparable to the transmission for the shorter ones.

3.5.4 Variable cross sectional area of the axons

The cross-sectional area of the myelin sheath is varied randomly according to an approximate

normal distribution. We first generate 11 random points along a 50 µm segment with the desired

mean and the standard deviation (s.d.) in Mathematica (assuming a correlation length ∼ 5 µm–

10 µm). As an example, for an axon with r = 3 µm, d = 2 µm, and s.d. 10 % of d, the mean and s.d.

of the points generated are 5 µm and 0.2 µm respectively. We fit these points with a polynomial of

degree 7 (optimized over several trials). A polynomial of order 10 fits all the points exactly, but

the local extrema of the function usually extend outside the span of the points it connects, and thus

it has a greater randomness than that of the generated points. To ensure that the points in the fitted

function indeed follow this distribution (with the expected mean and s.d.), we calculate the mean

and the s.d. of this function by evaluating it at 200 points in the 50 µm segment. This process is

repeated many times to get an appropriate function with the s.d. within 2.5 % of the desired value.

The Gaussian nature of the randomness of the function is ensured manually (by observing that∼95

% of the points lie inside 2 s.d.). The normalization to account for the change of mode profiles

with wavelength is exactly the same as that for the bends.
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3.5.5 Non-circular cross-section of the axons

The non-circular cross-section (in the X-Y plane) is generated, similar in spirit to the varying cross-

sectional area. Here, the random points, corresponding to the vertices of the cross-section of the

axon, are generated separately for the 2 halves (one in the positive Y plane and one in the negative

Y plane). In the positive Y plane, 10 points are generated at equal intervals from the polar angle 0 to

π such that the mean separation of these points from the center is kept constant (equal to the mean

radius). Now, a polynomial of order 7 is fitted to these points. The 2 points where this function

crosses the X-axis (corresponding to the polar angles 0 and π) are noted. In the negative Y plane, 8

random points are generated at different polar angles. The other 2 points are those where the former

function crossed the X axis. Now, a second fitting function (polynomial of degree 7) is generated

with the weights of the couple of points lying on the X axis kept high to ensure that the function

passes through these points. This is required because we want a continuity in the cross-sectional

boundary for both the halves. This is the procedure for the construction of the cross-section of the

axon. For the myelin sheath, we need to generate a parallel curve ensheathing the axon at a fixed

perpendicular distance from the boundary of the axon. But a unique parallel curve for the g-ratio

= 0.6 exists only when the s.d. of the boundary of the axon is small. For larger s.d. the segments

in the generated parallel parametric curve start intersecting. Only an approximate parallel curve

can be drawn in this case. We do that manually by selecting ∼50 points separated from the axon’s

boundary at the required perpendicular distance. Thus, the myelin sheath boundary is actually a

∼50 sided polygon.

We choose a relatively long axonal segment (100 µm) and verify that almost all the non-guided

modes of the waveguide are lost during propagation (by noting the transmission across many dif-

ferent cross-sections along the length and seeing that they converge). We integrate the real part of

the Poynting vector just across the myelin sheath (not up to a wavelength) for each wavelength. We

divide this transmission by the transmission just in the myelin sheath for the corresponding wave-

length in a straight cylindrical waveguide of the same length, when the cylindrically symmetric
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mode (eigen mode for a circular cross-section) corresponding to the central permissible frequency

is sent in. This gives us an approximate normalized transmission for each wavelength. Following

the procedure adopted while dealing with the inhomogeneities discussed earlier (e.g. bends, and

varying cross-sectional area), we could have constructed separate inner and outer parallel curves

at a wavelength separation from the myelin sheath and integrated the real part of the Poynting

vector across that region. However, such unique parallel curves do not exist for long wavelengths

and large inhomogeneities, and drawing approximate curves manually would also yield only ap-

proximately correct transmission values. We have verified that the results obtained using both

procedures almost match with each other for a number of trial cases (within ∼2 % of each other).

Since the transmission under such an inhomogeneity (the cross-sectional shape remains the same)

almost does not drop with further increase in axonal length, slight inaccuracies in the transmission

values do not matter.

3.5.6 Procedure for estimating the attainable transmission

We considered several optical imperfections to estimate the attainable transmission over the total

length of an axon. We exponentiate the transmission fraction (obtained in our simulations for short

axonal segments) for the variable cross-sectional area, the nodal and the paranodal regions, and the

cross-talk between axons the required number of times. We do not exponentiate the transmission

fraction for bends and non-circular cross-sections. For bends, as discussed earlier, we believe that

the transmission depends primarily on the change of curvature (irrespective of the total length).

For non-circular cross-sections, all the loss can considered as coupling loss (propagation loss is

negligible). We then multiply all these transmission fractions to obtain the net transmission over

the total length of an axon.
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Appendix B

Supplementary Information for “Possible existence of optical

communication channels in the brain”

B.1 Approximate analytic expressions for the guided modes

The exact analytic form for the guided modes of cylindrical myelinated axons with the uncon-

ventional fiber geometry (the refractive index of the cladding higher than the core) would involve

linear combinations of different Bessel functions, similar to those in [295]. However, we can come

up with much simpler approximate expressions of the mode profiles observing those generated by

the software. The cylindrically symmetric modes used in our simulations (identical to Fig. 3.1b–e

from Chapter 3) have a radial intensity dependence that is very close to a Gaussian, with peak in-

tensity at the center of the myelin sheath, and with continuously decreasing intensity on both sides.

The beam diameter corresponds to some fraction of the thickness of the myelin sheath (intensity

of the form Ae−(r−r0)
2/(2σ2), where A, r, r0, and 4σ are the amplitude, radial coordinate, the radial

distance of the center of the myelin sheath, and the beam diameter respectively). The fraction

can be estimated by knowing the fraction of the optical power inside the myelin sheath (e.g. 95.4

% power in the myelin would imply that 4σ = d, where d is the myelin sheath thickness). Note

that this discussion about the approximate Gaussian shape of the field intensity is just to provide

an intuition about the modes. In all our simulations, we use the modes directly generated by the

software, and not the ones based on these simple approximate expressions.

In Fig. B.1, we tabulate the modal fraction (fraction of the total power of a mode) inside the

myelin sheath for different axon calibers and different wavelengths to illustrate their confinement.

The power confined in the myelin sheath varies from 99.58 % for the best confined mode in the

thickest axon in our simulations to 82.13 % for the least confined mode in the thinnest one, which
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is still higher than the typical confinement in the core of practical single mode fibers [296] used for

communication over tens of kilometres. Good confinement is necessary to limit interactions with

the inhomogeneous medium inside and outside the axon. The scatterers inside the axon are the cell

organelles, e.g. mitochondria, microtubules, and neurofilaments, whereas on the outside there are

different types of cells, e.g. microglia, and astrocytes. There are guided modes with much weaker

power confinement in the myelin sheath (less than 50 %). However they might soon be lost to

the inhomogeneities, and are therefore neglected. Fig. B.1 also explicitly lists the thickness of the

myelin sheath (d), the longest permissible wavelength (λmax), the wavelength corresponding to the

central permissible frequency (λint), and the shortest wavelength (λmin) for each axon caliber. To

remind the readers, for different axon calibers, we send in light at different wavelengths, ranging

from 0.4 µm (chosen to avoid absorption by the proteins) to the thickness of the myelin sheath, or

1.3 µm (the upper bound of the observed biophoton wavelength), whichever is smaller for good

confinement in the myelin sheath (at least 80 %). We call this upper wavelength bound the longest

permissible wavelength (λmax). The shortest permissible wavelength (λmin) for all simulations is

0.4 µm. In addition to λmax, and λmin, we choose an intermediate wavelength corresponding to

the central permissible frequency (mid-frequency of the permissible frequency range), denoted

by λint . In a single simulation, FDTD calculates the input mode at λint and sends light at different

wavelengths with the same spatial mode profile. Note that for the thinnest axons considered, λmax=

λint= λmin=0.4 µm (d=0.4 µm, too, for good confinement).

Next, we shall discuss effects of a few imperfections in detail, expanding on the points men-

tioned in Chapter 3.

B.2 Continuously varying non-circular cross-sectional shape of the axons

The cross-sectional shape of an axon changes in the longitudinal direction. In our model, we twist

an axon, such that it starts out with an elliptical cross-section with semi-major and semi-minor

axes a and b respectively, interchanges the axes midway (25 µm) and reverts to its original shape
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Radius of the
axon including

the myelin
sheath (µm)

Thickness of
the myelin

sheath (µm)

Longest
permissible
wavelength

λmax

(µm)

Wavelength
corresponding
to the central
permissible

frequency λint

(µm)

Shortest
permissible
wavelength

λmin

(µm)

Percentage
confinement

for λmax

Percentage
confinement

for λint

Percentage
confinement

for λmin

1 0.40 0.40 0.40 0.40 82.13 82.13 82.13

2 0.80 0.80 0.53 0.40 82.13 91.49 95.44

3 1.20 1.20 0.60 0.40 82.30 95.47 98.28

4 1.60 1.30 0.61 0.40 87.67 97.62 99.19

5 2.00 1.30 0.61 0.40 92.17 98.68 99.58

Figure B.1: Modal confinement in the myelin sheath. Range of permissible wavelengths for dif-
ferent myelin thicknesses and the percentage of power confined in the myelin sheath for those
wavelengths.

at the end of the segment (50 µm). Since the cross-section is continuously changing, the guided

modes at each section change too. An appropriate way to quantify the loss in such a structure

would be to send in an eigenmode of a cylindrical waveguide (circular cross-section), and observe

its transmission at the other end. Fig. B.2a, and Fig. B.2b show the longitudinal cross-section

of the structure in 2 different planes (here, the X-Y and the X-Z planes). Fig. B.2c–d depict

the magnitude of the electric field along the length of an axon in those planes, as a cylindrically

symmetric eigenmode of a cylindrical waveguide (r = 3 µm, r′ = 5 µm, and λ = 1.3 µm), identical to

Fig. 3.1b–e from Chapter 3, passes by. We call this EFPL (Electric Field Profile in the Longitudinal

direction). Fig. B.2e shows the total power transmission (calculated by integrating the real part

of the Poynting vector of the output light directly across the required area, and dividing it by

the source power) upto a wavelength away from the myelin sheath boundaries, as a function of

the change in the aspect ratio (defined as the change in the ratio of the axes of the ellipse along

two fixed orthogonal directions, here the Y and Z axes) of the ellipse per 50 µm. We notice that

longer wavelengths transmit better. We see transmission as a function of axon caliber in Fig.

B.2f–h. Fig. B.2f, dealing with transmission for the longest permissible wavelengths, shows an

interesting dip in transmission for r′=2 µm, and r′=3 µm. Comparing the transmissions for certain

axon caliber (e.g. r′=2 µm, and r′=3 µm), and different wavelengths in Fig. B.2f–h, we observe that
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Figure B.2: Transmission of light through a continuously varying non-circular cross-sectional
shape of the axons. (a)-(b) The refractive index profile of a myelinated axon in the X-Y plane
and the X-Z plane respectively. The semi-major and semi-minor axes of the ellipses denoting the
axonal boundaries at the start of the segment are 3.75 µm, and 2.25 µm respectively (the corre-
sponding axes for the myelin sheath’s outer boundaries are 5.75 µm, and 4.25 µm respectively).
(c)-(d) Magnitude of the electric field in the longitudinal direction (EFPL), as an eigenmode of a
cylindrical waveguide (r = 3 µm, r′ = 5 µm, and λ = 1.3 µm) crosses the axonal segment in the
X-Y plane and the X-Z plane respectively. (e) Transmission as a function of the change in the
aspect ratio (∆AR); ∆AR is defined as change in the ratio of the axes of the ellipse along two fixed
orthogonal directions (here the Y and Z axes). The mean of the semi-axes of the axonal ellipse is
3 µm (corresponding mean for the myelin sheath’s outer boundary is 5 µm). (f)-(h) Transmission
as a function of the axon caliber for different wavelengths and different ∆AR.
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the intermediate wavelength has a larger transmission. We note from Fig. B.1 that λmax = d for

them, while for thicker myelin sheaths, i.e. r′=4 µm, and r′=5 µm, λmax < d. These observations

suggest that there is an intermediate wavelength somewhere between d and λmin (not necessarily

λint) where transmission is maximized. The propagation loss can be understood as a coupling loss

between subsequent cross-sections (infinitesimally apart from each other). Shorter wavelengths

have a higher number of guided modes at each cross-section than longer wavelengths, but the

input mode at a shorter wavelength can get distorted more too (by exciting higher-order modes). If

it is distorted beyond a certain extent, light in those higher-order modes would be lost in subsequent

cross-sections that do not have similar modes. Or if these higher order modes are at a wavelength

away from the myelin sheath boundaries, they are not included in the transmission. So there is a

competition between the number of available modes to couple to, and the extent of distortion. An

intermediate wavelength turns out to be optimum. Also, for larger ∆AR, and short wavelengths,

thinner axons are better, suggesting the relevance of the absolute value of the change in the ellipse’s

axes. The transmission for close to ∆AR (per 50 µm) = 0.40 is close to unity for all the cases

discussed. Note that the approximate equivalence of the elliptical shape and a randomly shaped

cross-section for transmission of a circular mode is discussed in the Supplementary Methods.

B.3 Cross talk between axons

The neurons might be close to, or in contact with other neurons or non-neuronal cells in the brain

(e.g. glia cells). Light in a myelinated axon would not leak out significantly, even if placed in

direct contact with cells of lower refractive indices than the myelin sheath. However, if two or

more myelinated axons are placed very close to each other (side by side), then light could leak out

from one to the other. Fig. B.3a shows the longitudinal refractive index profile of 2 axons (r′ =

4 µm) touching each other, and Fig. B.3b is the EFPL (for those axons) when an input mode with

wavelength 0.612 µm is sent in one of them. In Fig. B.3c, we notice that shorter wavelengths stay

confined in the myelin sheath better, as expected. Fig. B.3d–f deal with transmission (see Sup-

106



plementary Methods for the procedure to quantify transmission) in the myelin sheath for different

axon calibers, different wavelengths, and different separation between the axons. As a general rule,

axons should be a wavelength away from one another to avoid cross talk, although the confinement

for the same wavelength for different axon calibers can be quite different. Multimode waveguides

(greater caliber) confine light much better than those with a few modes for a particular wavelength.

For our simulations, we considered cross talk between identical axons, which is stronger than

that between non-identical ones. Also, the cross-talk between axons does not imply irretrievable

loss. For perfectly identical optical fibers placed in contact, it is known that there is a complete

power transfer from one to the other periodically [297]. Moreover, extrapolation of the transmis-

sion for greater axon length is not straightforward, as light could propagate in the guided modes

of the composite structure (many axons touching each other), with fluctuations (or oscillations)

in power from one to the other. Since the most important source of loss (more so for the smaller

wavelengths) here is light leaking into the myelin sheath of a different axon (and not the inside of

the axons or outside), on average the power should be divided equally among the axons touching

each other, provided that the segments in contact are long enough. Extrapolation from the data in

Fig.B.3 as an exponentiation of the fraction of the power transmitted through 50 µm should there-

fore be interpreted as a strict upper bound on the loss. Moreover, this might be a mechanism for

information transfer between axons, leading to a collective behaviour of neurons in a nerve fiber

(several axons bunched close together for a considerable length).

The power loss when the axons touch each other under different spatial orientations is signifi-

cantly less. For example, when two axons cross perpendicular to each other, the power loss is less

than 0.5 % for all the axon calibers.

B.4 Guided modes inside the axon

We have taken the refractive indices of the axon, the myelin sheath, and the medium outside as

1.38, 1.44, and 1.34 respectively for almost all our simulations. A vast majority of the modes of
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Figure B.3: Transmission of light in the presence of cross talk between axons. (a) The refrac-
tive index profile of 2 axons touching each other (r′ = 4 µm). (b) EFPL as the input mode with
wavelength 0.612 µm crosses the region. (c) Transmission as a function of the separation between
axons for different wavelengths (r′ = 5 µm). (d)-(f) Transmission as a function of the axon caliber
for different wavelengths and different separation between axons.
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such a waveguide are confined strongly in the myelin sheath if it is thick enough. However, a

few guided modes exist which have a greater fraction of optical power inside the axon than in the

myelin sheath even if the myelin sheath is thick, and the wavelength is small. This is true if the axon

has a greater refractive index than the medium outside the myelin sheath, and is sufficiently thick

(true if the myelin is thick and the g-ratio = 0.6). In Chapter 3, we were particularly conservative

and ignored the guided modes inside the axon, and treated them as loss, because we are not sure

about the relevant light-guidance parameters inside the axon (see the later discussion on scatterers

inside the axon). Without ignoring them, the transmission for all the inhomogeneities would be

slightly better. Especially for the long paranodal regions, where some light inevitably leaks into

the axon, one sees a clear difference.

B.5 Nodal and paranodal regions with inclusion of the guided modes inside

the axon

Let’s be optimistic and assume that the inside of the axon is homogeneous (has a constant refractive

index of 1.38) to obtain an upper limit on the transmission as light crosses the nodal and paranodal

regions. In Fig. B.4, we plot the modal transmission (power transmission in all the guided modes

of the myelinated axon) after two paranodes and a node in between. We shall call two paranodes

with a node in between a PNP (Paranode-Node-Paranode) region. We notice that for p-ratio = 2.5,

almost all the light for different axon calibers stays in the guided modes within a wavelength span

from the myelin sheath (comparing it with Fig. 3.2c–f in Chapter 3, where we took the transmission

in the guided modes only upto a wavelength away from the myelin sheath boundaries). Also, for

longer paranodal regions, the smaller wavelengths scatter more into the axon (and also in the

medium outside the myelin sheath) than the longer wavelengths, as is evident from the difference

in the transmission as compared to Fig. 3.2c–f in Chapter 3. As an example, the transmission in all

the guided modes for λ = 0.4 µm and r′ = 5 µm is 67.09 %, but that within a wavelength span of the

myelin sheath is only 33.78 %. In a realistic scenario where there are scatterers inside the axon,
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Figure B.4: Transmission of light through the nodal and paranodal region with inclusion of the
guided modes inside the axon. (a) Transmission in all the guided modes as a function of lparanode/d
(p-ratio), where lparanode is the length of a paranode, and d is the thickness of the myelin sheath.
The p-ratio is varied by changing the length of the paranode, keeping the axon caliber constant (r
= 3 µm, and r′ = 5 µm). (b)-(d) Transmission in the guided modes as a function of the axon caliber
for different wavelengths and different p-ratios.

the transmission would lie between these values. So, the plots in Fig. B.4 should be interpreted as

an upper bound on the transmission and Fig. 3.2c–f in Chapter 3 should be interpreted as a lower

bound.

B.6 Subsequent nodal and paranodal regions of the axons

If the inhomogeneities in the rest of the internodal length is within the acceptable values, there

would be no more loss as the rest of the light is in the guided modes. However, since there is

mixing of modes as light passes through the paranodal regions, one might wonder how the mixture

of modes behaves as it encounters the next PNP region (after an internodal length). Fig. B.5 shows

the transmission in the guided modes after subsequent PNP regions for different axon calibers and

different wavelengths for p-ratio = 2.5. Note that the transmission is re-normalized to unity after
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each PNP region, such that the total modal transmission after 3 PNP regions is the product of the

modal transmission after each of these regions. In general, the longest permissible wavelengths

(weakly confined) get better or almost saturate after 3 PNP regions. For shorter wavelengths, the

modal transmission after each segment is less predictable since they are more prone to distortions

in the shape of the myelin and undergo significant mode mixing. However, for most of the cases,

the modal transmission fluctuates both ways (increases and decreases), and an average close to the

first pass is approximately true. Thus, we can approximately predict the modal transmission after

multiple PNP regions by exponentiating the modal transmission through one.

B.7 Effect of the scatterers and possibility of light guidance inside the axon

There are many potential scatterers inside the axon, e.g. microtubules, mitochondria, agranular

endoplasmic reticulum, and multivesicular bodies. We would not only need the refractive indices of

these structures, but also their shapes, sizes and spatial distribution, to accurately predict their effect

on light guidance. We have little relevant (and sometimes conflicting) data. For instance, Sato et

al. measured the refractive index of microtubules to be 1.512 [293], but Mershin et al. measured

the refractive index of tubulin, the building block of microtubules to be 2.9 [298]. Microtubules

are one of the most numerous structures inside the axon, forming the cytoskeleton and a rail-road

for the transport of materials inside the axon. The density of microtubules varies during the axon

differentiation from ∼1 % in the initial phase to ∼3 % during the most dense phase and again

drops (to a value we do not know) [292].

To study the scattering effects of the microtubules on our previous simulations, we distribute

them randomly (but according to a uniform distribution) such that they occupy∼2 % of the volume

inside the axon. Their refractive index is taken to be 1.5 and they are placed in a medium of

refractive index 1.38. We had seen that in a few of our previous simulations, some fraction of

optical power leaked into the axon, e.g. for large variation in the cross-sectional area, and paranodal

regions. We ran the simulations again, this time in the presence of the microtubules. We found
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Figure B.5: Transmission of light through subsequent PNP regions of the axons. (a) Geometry
of 3 PNP regions placed sequentially. A PNP (Paranode-Node-Paranode) region is defined as two
facing paranodes with a node in between. The discontinuity between two PNP regions implies the
presence of a straight and uniform internode there. (b)-(f) Transmission in all the guided modes
as a function of the number of PNP regions for different wavelengths and different axon calibers.
Note that the transmission is normalized to unity after each PNP region, such that the total modal
transmission after 3 PNP regions is the product of the modal transmission after each of these
regions.
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negligible variation in the transmission, both inside and outside the axon (±∼1 %). Even the light

that leaked into the axon did not scatter much in the presence of the microtubules (owing to their

small size and close to uniform distribution).

There are proposals of light guidance by the microtubules and mitochondria inside the axon

[250, 251, 104]. But they are too tiny for this to be realistic in the observed biophotonic wave-

length range. Mitochondria are typically less than a few microns long, and microtubules are too

thin (tubular structures with the inner and outer diameters as ∼12 nm and ∼24 nm respectively) to

confine light in the biophotonic wavelength range (waveguide dimension should be comparable to

the wavelength of light). However, if we assume that the microtubules are uniformly distributed,

we can approximately average the refractive index of the composite system comprising of the ax-

onal fluid and microtubules as
√

f ×n2
m +(1− f )×1.342, where f and nm are the volume fraction

and the refractive index of the microtubules respectively, and 1.34 is the refractive index of the fluid

inside the axon. The average is possible since the microtubules are much smaller than the wave-

length of light, and so is the average separation between them [292]. We could wonder whether

this composite system can guide light, which is only possible if the inside of the axon has a higher

refractive index than the medium outside. If the refractive index of the microtubules is 1.5, then a

typical volume fraction, e.g. 1.7 % would give navg = 1.343, and if the refractive index is 2.9, then

navg = 1.381. Since the observed refractive indices inside the axon in both the longitudinal and the

transverse directions are in a broad range (1.34–1.38 in [253], and 1.35–1.40 in [257]), assuming

the axon as a uniform medium with refractive index 1.38 is not entirely correct. Moreover, the

axons can be in direct contact with glia cells which can have comparable refractive indices as the

inside of the axon. This would prevent guided modes to exist inside the axon. Note that if the

refractive index of the axon is lower than 1.38, most of our simulations in Chapter 3 will yield

slightly better transmission as the light guidance mainly depends on the refractive index contrast.

And if the refractive index of the outside is greater than 1.34, the transmission will suffer slightly.

However, since the refractive index of the myelin sheath is much larger than both the regions, these
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effects would not be too significant for most of the simulations.

However, if we assume that the axons are not in contact with other glia cells, and have a higher

refractive index than the interstitial fluid outside, then weak guidance might still be possible if

the mode does not scatter off of the bigger (but less numerous) scatterers (e.g. mitochondria,

Endoplasmic Reticulum, and vesicles). We do not know the volume fraction of these scatterers

precisely but some work, e.g. [299] suggest that they occupy at least 10 % of the volume. We

model these scatterers as ellipsoids with the 3 semi-minor axes ranging from 0.1 µm to 0.4 µm,

0.1 µm to 0.4 µm, and 1 µm to 3 µm respectively and place them in axon with r′ = 5 µm. Their

refractive indices are taken to be 1.4. Let’s take 2 different values of the refractive index of the

axon. For a value 1.38, the total power transmission (calculated by integrating the real part of

the Poynting vector of the output light directly across the required area, and dividing it by the

source power) upto a wavelength away from the axonal boundaries in a 100 µm long structure for

a mode confined inside the axon at wavelength 0.612 µm is 75.47 %, while for 1.3 µm wavelength,

the transmission is 95.93 %. If the axon’s refractive index is 1.35, then the transmission for the

wavelength 0.612 µm is 16.06 %, while no guided modes exist for the wavelength 1.3 µm. A lower

density of these scatterers, or smaller sizes, (or larger wavelengths than 0.612 µm) would, of course

yield greater transmission. The transmission for 0.612 µm wavelength light is different for different

refractive index values of the axon because scattering depends strongly on the refractive index

contrast. A mitochondrion (refractive index 1.40) placed in a medium with refractive index 1.35

would act as a much stronger scatterer than if placed in a medium with refractive 1.38. Thus, an

average uniform refractive index of 1.38 for the axon might still guide light at large wavelengths,

but an average uniform refractive index of 1.35 seems more believable (assuming the refractive

index of microtubules to be ∼1.50). In this case, the bigger scatterers lead to significant loss, even

if the microtubules themselves do not. Therefore, we do not believe that there could be guided

modes inside the axon which can transmit efficiently.

We again ran many of our previous simulations (with the input mode confined primarily in
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the myelin sheath) in the presence of all these scatterers inside the axon. We varied the refractive

index of the axon from 1.34 (the refractive index of the medium outside) to 1.38. We verified that

light well confined in the myelin sheath does not see these scatterers at all. Even when the light

diverges into the axon because of the geometry of the structure (e.g. the varying cross-sectional

area), there is still not a dramatic variation in the transmission. Both the transmission in the myelin

sheath up to a wavelength away from the boundaries, and the total transmission across the whole

cross-section (including the inside of the axon) do not change greatly; the observed variation was

on the order of a few percent. Note that for a few simulations, ∼15–20 % of the fraction of output

light can be inside the axon. The light diverging inside need not even be in the guided modes of

the waveguide. This runs counter to intuition, since we saw that a guided mode inside the axon

scattered badly. This unintuitive phenomenon can be explained again by the unconventional nature

of this waveguide, where all the light leaking inside is not irretrievably lost (even if it is not in the

guided modes of the structure). It can come back to the myelin sheath without interacting strongly

with the scatterers. This shows that we might have been too conservative while considering the

power only within a wavelength of the myelin sheath boundaries. However, there still might be

other phenomena happening (e.g. absorption) inside the axon, and we prefer to be cautious about

the inside.

Next, we shall see how varying the refractive index of the axon affects the transmission of a

mode (confined primarily in the myelin sheath) in the PNP region.

B.8 Varying the refractive indices of the axon and the cytoplasmic loops

We have observed that the paranodal regions might be the main contributor to loss (if the other

inhomogeneities are low). For our simulations so far, we have assumed that the refractive index of

the cytoplasmic loops is the same as that of the axon (1.38). As far as we know, no direct measure-

ment of the refractive index of these loops has been performed, but they are however considered

‘dense’ [300]. Since these loops are part of glia cells, which usually have higher refractive indices,
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Figure B.6: Transmission of light through the nodal and paranodal regions of the axons for a
different set of refractive indices. The refractive indices of the axon and the cytoplasmic loops
are taken as 1.34 and 1.38 respectively. (a) Transmission in all the guided modes as a function of
the p-ratio for different wavelengths (r′ = 5 µm). (b)-(d) Transmission in the guided modes as a
function of the axon caliber for different wavelengths and different paranodal lengths.

these loops might have higher refractive indices than the inside of the axon too. In Fig. B.6, we

show the result of another set of simulations where the refractive index of the axon is kept the

same as the medium outside (1.34), and that of the loops is higher (1.38). We find that in almost

all the cases (different paranodal lengths, different wavelengths, and different axon calibers), the

transmission in the guided modes is higher as compared to the previous set of simulations (see Fig.

3.2c–f in Chapter 3). If cytoplasmic loops have a higher refractive index, then they prevent the

mode from diverging into the axon, and serve as weak waveguides themselves. Note that for the

same refractive index of the axon and the cytoplasmic loops (e.g. 1.35 each), the results would be

similar to those when both had their refractive indices 1.38.
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B.9 Mathematics of mode expansion and transmission calculation

We have often mentioned the expansion of the output field in the basis of guided modes, and the

calculation of the transmission by evaluating the Poynting vector, integrating its real part across

the area of interest and dividing it by the input power. Here we give the mathematics of these

procedures.

Let the electric (E) and magnetic (M) field profiles (frequency domain) of the light sent in the

axon be denoted by
#»
E in, and

#»
H in respectively, and the field profiles of the light at the terminal end

of the axon segment in the transverse plane (perpendicular to the length) be denoted by
#»
E out , and

#»
Hout respectively. We can express

#»
E out =

#»
E guided +

#»
E non−guided

#»
Hout =

#»
Hguided +

#»
Hnon−guided

(B.1)

where
#»
E guided , and

#»
Hguided are the fields for the fraction of light in the finite number of guided

modes of the waveguide, and
#»
E non−guided , and

#»
Hnon−guided are the fields for the fraction in the

infinite number of non-guided modes. Light in the non-guided modes of a uniform structure would

be lost eventually. The guided part can further be expanded as

#»
E guided = ∑

i
(ai

#»
E f orward

i +bi
#»
E backward

i )

#»
Hguided = ∑

i
(ai

#»
H f orward

i −bi
#»
Hbackward

i )

(B.2)

where
#»
E i, and

#»
H i are the fields corresponding to a guided mode φi, and ai and bi are the transmis-

sion coefficients for the forward and backward propagating waves respectively. The summation is

over the entire set of the orthogonal guided modes of the structure. The coefficients are given in

terms of the overlap integrals as

ai = 0.25× (

∫
(

#»
E guided×

#»
H∗i ) ·

# »

dS
Pi

+

∫
(

#»
E ∗guided×

#»
H i) ·

# »

dS

P∗i
)

bi = 0.25× (

∫
(

#»
E guided×

#»
H∗i ) ·

# »

dS
Pi

−
∫
(

#»
E ∗guided×

#»
H i) ·

# »

dS

P∗i
)

(B.3)
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where
# »

dS is the differential area element in the transverse plane of interest, and the complex power

of the ith mode φi is

Pi = 0.5×
∫
(

#»
E i×

#»
H∗i ) ·

# »

dS (B.4)

The percentage transmission into all the guided modes of the structure is given by

T =
0.5×

∫
Re(

#»
E guided×

#»
H∗guided) ·

# »

dS

0.5×
∫

Re(
#»
E in×

#»
H∗in) ·

# »

dS
×100 (B.5)

Here,
#»
S guided =

#»
E guided×

#»
H∗guided is the time averaged Poynting vector for the guided fraction of

the output light, and Re() denotes the real part. Integration of the real part of the Poynting vector

across an area quantifies the time-averaged power flow through that area, while the integration of

the imaginary part quantifies the reactive power (e.g. because of interference due to a standing

wave).

In specific contexts (in particular after the PNP regions, see Fig. 3.2c–f in Chapter 3), we

integrate the real part of the Poynting vector (with the electromagnetic fields corresponding to the

guided portion of the output light) across the myelin sheath up to a wavelength away from the

boundaries to obtain the percentage transmission

T =
0.5×

∫ ρ=r+λ

ρ=r−λ
Re(

#»
E guided×

#»
H∗guided) ·

# »

dS

0.5×
∫

Re(
#»
E in×

#»
H∗in) ·

# »

dS
×100 (B.6)

where ρ is the radial coordinate, λ is the wavelength, and r and r′ are the inner and outer radius of

the myelin sheath as defined earlier. We include only the guided fraction of the light because the

non-guided fraction is expected to decay over the course of the long internode following the PNP

region (provided that the internode is approximately uniform).

In certain other instances (e.g. varying cross-sectional area and shape), where the cross-section

continuously changes, some fraction of light in the non-guided modes at a particular cross-section

might be included in the the basis of guided modes at an adjoining cross-section and vice-versa.

Therefore, it is more appropriate to observe the total power transmission (up to a wavelength of

the myelin sheath boundaries) instead of the modal transmission. In such cases we integrate the
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real part of the Poynting vector with the fields corresponding to the output light directly to obtain

the percentage transmission

T =
0.5×

∫ ρ=r+λ

ρ=r−λ
Re(

#»
E out×

#»
H∗out) ·

# »

dS

0.5×
∫

Re(
#»
E in×

#»
H∗in) ·

# »

dS
×100 (B.7)

B.10 Supplementary Methods

B.10.1 Continuously varying non-circular cross-sectional shape

We simulate the effect of the change in the cross-sectional shape of an axon in the longitudinal

direction by twisting an elliptical axon. The semi-major and the semi-minor axes of the ellipse (a

and b resp.) at x = 0 (the starting point of the axon) are changed for different simulations. We send

in an eigenmode of a circular axon with r = (a+b)/2, and r/r′= 0.6. The myelin sheath boundary

is another ellipse with its axes, a′ = a+d and b′ = b+d, where d = r′− r. The myelin sheath is

thus an approximate parallel curve to the axon. The shape of the axon changes continuously such

that at one-fourth of the axonal segment, it becomes a perfect circle with radius r = (a+ b)/2,

at half the length, it interchanges its axes, and at the end of the segment (50 µm), it resumes its

original shape. The area of the cross-section remains almost constant by this twist (less than 10

% variation for all the simulations). Different values of the change in the aspect ratio (∆AR) are

obtained by adopting the same procedure for ellipses with different semi-axes.

An approximate equivalence between an elliptical shape and a random cross-sectional shape

(as in Chapter 3) can be established. The equation of an ellipse in polar coordinates is ρ(θ) =

ab/(
√

(bcosθ)2 +(asinθ)2), where ρ is the radial coordinate and θ is the polar angle from the

a axis. The mean of the distance of the points from the origin is very close to r = (a+b)/2 (less

than 7 % variation for all the simulations). In Chapter 3, we generated random points according

to a Gaussian distribution along the circumference of the cross-section, and the s.d. of the sep-

aration of those points from a circle of radius r is taken as the degree of inhomogeneity. For an

ellipse, the s.d. of separation from a circle of radius r = (a+ b)/2 can similarly be calculated
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as
√

1/(2π)
∫ 2π

0 ((a+b)/2−ab/(
√

(bcosθ)2 +(asinθ)2))2dθ . We compare transmission in an

elliptic (non changing cross-sectional area) waveguide, and a waveguide with an arbitrary cross-

sectional area with the same s.d for some of the simulations, and find that there is comparable or

higher loss in an elliptical waveguide. This suggests that an axon with changing cross sectional

shape (random) along its length might also undergo similar loss as a twisting elliptical axon. We

quantify the change in aspect ratio (∆AR) as a measure of the change in the cross-sectional shape

for elliptical shapes. For example, if the cross-section is an ellipse with a = 3.9 µm, and b = 2.1 µm

at x = 0, after the twisting procedure, ∆AR = 2× (3.9/2.1− 2.1/3.9) = 2.64 (the factor 2 shows

that it is twisted to get back to the original shape after the segment).

The transmission is calculated by integrating the real part of the Poynting vector across an area

between 2 ellipses, one with the semi-axes a+ d + λ , b+ d + λ , and the other with the semi-

axes, a−λ , and b−λ , where λ is the wavelength of the light, and the other symbols hold their

previous meanings. The procedure adopted to account for the change in the mode profiles with

wavelength is the same as discussed in the Methods of Chapter 3 (e.g. as in bends). We divide

the transmission for the larger wavelengths by the transmission within a wavelength of the myelin

sheath for a circular waveguide on sending in a mode with the central permissible frequency to

obtain the normalised transmission. The losses are in fact a combination of the insertion loss

(coupling loss of the input light to the first cross section it sees) and the propagation loss (can be

understood as coupling losses for subsequent cross-sections), but as a conservative approach, we

allocate everything to the propagation loss. Under this assumption, we expect that an ellipse with a

larger (or smaller) aspect ratio (a/b) to start with, would have almost similar transmission if ∆AR is

the same (for the same mean caliber r, i.e. (a+b)/2). For a waveguide with arbitrary cross-sectional

shape that changes continuously, an analogous picture (to the twisting of an elliptical waveguide)

is to start with some random shape, then reduce the randomness to reach a perfect circular shape,

then increase the randomness again to arrive at a shape with the axes reversed (a π/2 rotated form

of the original shape), and carry out this procedure again to arrive at the original shape at the end
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of 50 µm.

B.10.2 Cross-talk between axons

We place two identical axons side by side, send in light through one of them and note the power (by

integrating the real part of the Poynting vector across the myelin sheath only) transmitted across

the same axon in which the mode was sent in. We divide the power for each wavelength by the

power transmitted in the myelin sheath alone (not up to a wavelength) in the absence of the second

axon to obtain the normalised transmission.

121



Chapter 4

Conclusion and outlook

With the help of explicit examples, I showed how photons could play important and somewhat

similar roles in seemingly different kinds of networks, from long-distance quantum networks to

the brain.

In the first example, I discussed some of the photonic aspects of long-distance quantum net-

works, where photons are used to carry information and mediate entanglement between distant

quantum processors, which has great potential for several communication, computation and sens-

ing tasks [1, 3, 4, 9, 20, 21, 13, 5, 10, 11]. Specifically, we designed a quantum repeater architecture

with a promising superconducting quantum circuit (SQC) based processor at the nodes and optical

communication channels to link distant nodes [163].

The processors are the cat states prepared in microwave cavities housing nonlinear supercon-

ducting elements. Cat states in microwave cavities have been demonstrated to be excellent qubits

owing to their good coherence times and the resource-efficient error-correction codes that have

been developed for them [43, 52, 44, 53, 45, 47, 235, 61, 50, 51, 301].

However, microwave photons in these cavities are too low in energy to carry quantum informa-

tion over long distances at room temperature. To convert them to telecom frequencies, suitable for

long distance quantum communication, we proposed to use a specific rare-earth ion doped crystal

(REDC) based transduction protocol [63, 171], although other promising transducer approaches

(e.g. electro-opto-mechanical approaches [78, 79, 80, 81, 302]) can also be integrated in our archi-

tecture.

We showed that our proposed repeater architecture could have higher entanglement distribution

rates than those of a few other promising architectures [172, 181], while maintaining good fidelities

for the final states. Ours is the first theoretical proposal to develop a feasible quantum repeater
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architecture with superconducting processors mediated via telecom photons in conventional optical

fibers.

An extension of this work could be the scaling-up of this architecture, (a) to include higher

number of processors at each node to enhance the local computational power, and (b) to include

more nodes to distribute entanglement over longer distances. For the former, one could try to

design an array or even an all-to-all connection between several nonlinear cavities at each node

[58, 59, 303]. For the latter, one could also think about how to integrate fiber-based repeater archi-

tectures with satellites [240, 93, 14, 94]. An interesting feature of SQCs in this aspect is the good

quantum non-demolition (QND) measurement of microwave photons possible in microwave cav-

ities. QND detection of photons is important to link nodes when the source of entangled photons

is in the satellites [93]. QND is difficult for optical photons because of relatively weak atom-light

interaction [304], but converting them to microwave photons and performing QND on those using

the strong interactions possible in SQC [230, 229, 45] could help circumvent this problem. Detec-

tion of itinerant microwave photons of arbitray pulse shapes and unpredictable times of arrival is a

challenge so far, but the field is progressing [305].

Although we did not consider quantum error-correction or entanglement purification [237] to

improve the final fidelity of the entangled state, a scaled-up version of our architecture would

likely need these additional procedures, particularly for modular and distributed quantum comput-

ing applications. This would likely be accompanied with development of suitable algorithms to

efficiently distribute general computational and communications tasks [5, 6].

As the second example for the usefulness of photons, I discussed the potential role of biopho-

tons [135, 136, 137, 138, 139] as information carriers in the brain. For that to happen in a targeted

manner in the optically inhomogeneous and scattery brain medium, photons would need to travel

in waveguides. We showed that myelinated axons can serve as good waveguides [245]. This work

of ours is the first to theoretically explore the possibility of light guidance in myelinated axons.

There is indirect evidence of such light guidance, for example in experiments where light trans-
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mission along the white matter tracts in the brain and the spinal cord (primarily composed of

myelinated axons) has been found to be higher than in other directions or in unmyelinated areas

[159, 160]. In our work [245], we also proposed experiments, both in-vivo and in-vitro, to test our

hypothesis more directly.

We speculate about the implications of light guidance in the brain. Could the brain have a pho-

tonic network, with potential sources and detectors connected via optical channels? Although there

has been no direct evidence so far that the brain has such a network, given that much about the brain

is still not known [97], it may be worth exploring other modalities of the transfer and processing of

information. Existence of photonic networks would likely provide a promising alternative route.

It is interesting to note that photonic transmission is bidirectional, i.e. photons can travel in

both directions along the myelinated axons. This can also provide a backpropagation channel

through optical communication. Backpropagation of some of the information is suspected to play

an important role in our learning process, but there is no well-established model of how it happens

in the brain using only the electrochemical pathway [306]. The presence of optical pathways as

backpropagating channels could provide a possible solution.

As quantum effects are increasingly being explored in different biological systems [116, 117,

114, 115, 118, 119, 120, 121], almost coinciding with the rapid progress in the development of

man-made quantum technologies in what is termed as the second quantum revolution, their poten-

tial role in the functioning of the brain is also seeing a surge of interest [101, 102, 103, 104, 105,

248]. Of particular promise in this context are the spins, especially the nuclear spins, which can

preserve their quantum properties (e.g. quantum superposition and quantum entanglement) long

enough at room temperature (under ambient conditions) [106, 107, 108, 109] to conceivably be

important for some physiological functions. Optical photons can carry quantum information and

mediate interaction between distant spins.

Quantum information can be encoded and distributed using different degrees of freedom of a

photon, including the Fock basis and its energy, polarization, and temporal modes. Our analysis
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for the classical transmission of light would be directly relevant for protocols where the Fock basis

is used. Our analysis for transmission at different frequencies (hence different energies) can be

used to predict how well quantum information encoded in the energy degree of freedom is pre-

served. For encoding in the polarization basis, it would be particularly important to realistically

include the birefringence of the myelin sheath in the simulations, send in light with appropriate

polarization profiles and observe the distortion and dispersion of the transmitted light. For infor-

mation encoded in the temporal modes, dispersion in the waveguide could also be relevant. For

each of these modes, it would be important to look for molecular species in the brain that could

allow such encodings. For example, to envision entanglement between a spin and a photon in

the Fock basis, emitters need to have specific selection rules and the energy levels involved in the

transitions have to be coherent for a sufficiently long period of time [90]. Similar requirements

are necessary for information to be encoded coherently in other degrees of freedom of a photon,

e.g. its frequency and to envision entanglement between the emitter and the photons. For encod-

ing in the polarization degree of freedom, there also need to be polarization selective transitions

[89], and for encoding in the temporal degree of freedom, the emitters need to be particularly fast.

For entanglement distribution schemes that need interference of one or more photons, it would be

important to consider the timing requirements for the emission events and the realistic path length

fluctuations of the myelinated axons during the relevant time scales [8, 87, 88, 89, 90].

So, similar to an artificial quantum network [13, 14, 169], could there be small quantum pro-

cessors based on spins connected through optical channels in the brain as well? As expressed

earlier too, it is essential to look for candidates in the brain where coherent spin photon interface

is imaginable. An example of spin-photon interface in biological systems is in avian magnetore-

ception [114, 115]. One proposed mechanism involves a protein called cryptochrome in birds’

eyes, which when subjected to light, undergoes a radical pair formation, whose electronic spins

are entangled. Cryptochrome is quite prevalent in nature, and is found in different organisms, from

plants to mammals, including humans [124, 125]. Their different physiological roles are being
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explored recently in greater detail [129, 130, 131, 132, 133, 134]. They could, in principle, also

provide a coherent spin-photon interface in the brain.

To envision an advantage in communication complexity with quantum systems over classical

systems [110, 111, 112, 113], one would moreover need to figure out how the pertinent quantum

gates and other operations could be performed in a biological environment such as the brain.

Our approach sort of follows the spirit of inverse-biomimetics, where after observing the de-

velopment of artificial quantum technologies and realising that they could be better than their

classical counterparts for several computing, communication and sensing tasks, we are trying to

explore whether our brains could itself be using them for similar tasks.

There are, in addition, more fundamental reasons too to explore quantum effects in the brain.

For instance, given the analogy between the integrated nature of our conscious percepts and the

integrated nature of entangled entities, one could ask if quantum entanglement may explain certain

aspects of consciousness, e.g. the binding problem. An observer has always played a central role in

the enigmatic theory of quantum mechanics [307, 308]. Is it possible that the enigma of conscious-

ness is intertwined with the enigma of quantum mechanics in ways that we do not understand right

now?

Answers to these speculative questions could help shed light on some of the outstanding ques-

tions about the inner workings of something that we all possess but still remains exceptionally

mysterious, i.e. our brain.

126



Bibliography

[1] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution

and coin tossing. Theoretical Computer Science, 560:7 – 11, 2014.
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[66] J Verdú, H Zoubi, Ch Koller, J Majer, H Ritsch, and J Schmiedmayer. Strong magnetic cou-

pling of an ultracold gas to a superconducting waveguide cavity. Physical Review Letters,

103(4):043603, 2009.

[67] Nikolai Lauk, Neil Sinclair, Shabir Barzanjeh, Jacob P Covey, Mark Saffman, Maria Spirop-

ulu, and Christoph Simon. Perspectives on quantum transduction. Quantum Science and

Technology, 5(2):020501, 2020.
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